Duke University Dissertation Template

Total Page:16

File Type:pdf, Size:1020Kb

Duke University Dissertation Template Gene-Environment Interactions in Cardiovascular Disease by Cavin Keith Ward-Caviness Graduate Program in Computational Biology and Bioinformatics Duke University Date:_______________________ Approved: ___________________________ Elizabeth R. Hauser, Supervisor ___________________________ William E. Kraus ___________________________ Sayan Mukherjee ___________________________ H. Frederik Nijhout Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program in Computational Biology and Bioinformatics in the Graduate School of Duke University 2014 i v ABSTRACT Gene-Environment Interactions in Cardiovascular Disease by Cavin Keith Ward-Caviness Graduate Program in Computational Biology and Bioinformatics Duke University Date:_______________________ Approved: ___________________________ Elizabeth R. Hauser, Supervisor ___________________________ William E. Kraus ___________________________ Sayan Mukherjee ___________________________ H. Frederik Nijhout An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program in Computational Biology and Bioinformatics in the Graduate School of Duke University 2014 Copyright by Cavin Keith Ward-Caviness 2014 Abstract In this manuscript I seek to demonstrate the importance of gene-environment interactions in cardiovascular disease. This manuscript contains five studies each of which contributes to our understanding of the joint impact of genetic variation and environmental exposures to cardiovascular disease: a candidate gene study for gene- smoking interactions associated with early-onset coronary artery disease, an epidemiology study of the association between traffic-related air pollution and cardiovascular disease, a Genome-Wide Interaction Study for gene-by-traffic related air pollution interactions associated with peripheral arterial disease, a Genome-Wide Interaction Study for gene-by-traffic related air pollution interactions on coronary atherosclerosis burden, and a method for analyzing associations between high- dimensional genomics datasets. Smoking is a strong risk factors for coronary artery disease, and may play a causative role in the incidence of coronary artery disease. Smoking had been implicated as a reason for heterogeneity observed in associations between genetic variants on chromosome three and coronary artery disease. I used a family-based early-onset coronary artery disease cohort (GENECARD) to study gene-smoking interactions. I also used data from the three independent cohorts to perform a meta-analysis of gene- smoking interactions focusing on the KALRN gene and Rho-GTPase pathway. I found iv significant evidence for gene-smoking interactions associations involving variants in KALRN and other Rho-GTPase pathway genes on chromosome 3. Though the estimated increase in incident cardiovascular disease or cardiovascular events due to air pollution exposure is modest at 3-5%, the ubiquitous nature of air pollution exposures means it has a substantial population-level impact on cardiovascular disease. Historically genome-wide interaction studies with air pollution have not yielded genome-wide significant interactions, however by implementing statistical tools novel to this field I have discovered significant interactions between genetic variants and traffic-related air pollution that are associated with cardiovascular diseases. I studied interactions associated with peripheral arterial disease and the number of diseased coronary vessels (an indicator for coronary artery disease burden) using race-stratified cohort study designs. With peripheral arterial disease I observed that variants in both BMP8A and BMP2 showed evidence for interactions in both European- American and African-American cohorts. In BMP8A I uncovered the first genome-wide significant interaction with air pollution associated with cardiovascular disease. BMP2 gene expression is upregulated after exposure to black carbon, a major component of diesel exhaust, and coding variants within this gene showed evidence for interaction. With the number of diseased coronary vessels I observed that variants in PIGR showed significant evidence for involvement in gene-traffic related air pollution interactions. I v observed that coding variation within PIGR was associated with coronary artery disease burden in a gene-by-traffic related air pollution interaction model. As PIGR is involved in the immune response it represents a strong candidate gene discovered via an unbiased genome-wide scan. The use of high dimensional data to study chronic disease is becoming commonplace. In order to properly analyze high-dimensional data without suffering from high false-discovery rate penalties, the data is often summarized in a way that takes advantage of the correlation structure. Two common approaches for this are principal components analysis and canonical correlation analysis. However neither of these approaches are appropriate when one preferentially desires to preserve structure within the data. To address this shortcoming I developed constrained canonical correlation analysis (cCCA). With cCCA one can evaluate the correlation between two high dimensional datasets while preferentially preserving structure in one of the datasets. This has uses when studying multi-variate outcomes such as cardiovascular disease using multi-variate predictors such as air pollution. Additionally cCCA can be used to create endophenotype factors that specifically explain the variation within a high-dimensional set of predictors (such as gene expression or metabolomics data) with respect to potential endophenotypes for cardiovascular disease, such as cholesterol measures. vi For the family. vii Contents Abstract ......................................................................................................................................... iv List of Tables ................................................................................................................................ xii List of Figures .............................................................................................................................xiv List of Symbols and Abbreviations .........................................................................................xvi Acknowledgements ................................................................................................................... xix 1. Introduction ............................................................................................................................... 1 1.1 Cardiovascular Disease ................................................................................................... 1 1.2 Genetics of Cardiovascular Disease ............................................................................... 4 1.3 Air Pollution, Smoking and Cardiovascular Disease .................................................. 7 1.3.1 Smoking Background .................................................................................................. 7 1.3.2 Air Pollution Background .......................................................................................... 8 1.4 Gene-Environment Interaction Studies ....................................................................... 12 2. Gene-smoking interactions in multiple Rho-GTPase pathway genes in an early-onset coronary artery disease cohort .................................................................................................. 17 2.1 Introduction ..................................................................................................................... 17 2.2 Methods ........................................................................................................................... 18 2.2.1 Subjects ....................................................................................................................... 18 2.2.2 Statistical Methods .................................................................................................... 20 2.2.2.1 Meta-Analysis ..................................................................................................... 23 2.2.2.2 Pathway-based Analysis ................................................................................... 23 2.3 Results .............................................................................................................................. 24 2.3.1 APL Results ................................................................................................................ 25 viii 2.3.2 APL-OSA Results ...................................................................................................... 27 2.3.3 Pathway-based WebGestalt Results ...................................................................... 54 2.4 Discussion ........................................................................................................................ 55 2.4.1 Chromosome 3q13 associations and LD ................................................................ 56 2.4.2 Evidence for validation ............................................................................................. 58 2.4.3 Evidence for allelic heterogeneity in KALRN ....................................................... 58 2.4.4 Functional heterogeneity in KALRN ...................................................................... 60 2.4.5 Smoking and KALRN ..............................................................................................
Recommended publications
  • Genetic Analysis of Retinopathy in Type 1 Diabetes
    Genetic Analysis of Retinopathy in Type 1 Diabetes by Sayed Mohsen Hosseini A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by S. Mohsen Hosseini 2014 Genetic Analysis of Retinopathy in Type 1 Diabetes Sayed Mohsen Hosseini Doctor of Philosophy Institute of Medical Science University of Toronto 2014 Abstract Diabetic retinopathy (DR) is a leading cause of blindness worldwide. Several lines of evidence suggest a genetic contribution to the risk of DR; however, no genetic variant has shown convincing association with DR in genome-wide association studies (GWAS). To identify common polymorphisms associated with DR, meta-GWAS were performed in three type 1 diabetes cohorts of White subjects: Diabetes Complications and Control Trial (DCCT, n=1304), Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR, n=603) and Renin-Angiotensin System Study (RASS, n=239). Severe (SDR) and mild (MDR) retinopathy outcomes were defined based on repeated fundus photographs in each study graded for retinopathy severity on the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Multivariable models accounted for glycemia (measured by A1C), diabetes duration and other relevant covariates in the association analyses of additive genotypes with SDR and MDR. Fixed-effects meta- analysis was used to combine the results of GWAS performed separately in WESDR, ii RASS and subgroups of DCCT, defined by cohort and treatment group. Top association signals were prioritized for replication, based on previous supporting knowledge from the literature, followed by replication in three independent white T1D studies: Genesis-GeneDiab (n=502), Steno (n=936) and FinnDiane (n=2194).
    [Show full text]
  • Isyte: Integrated Systems Tool for Eye Gene Discovery
    Lens iSyTE: Integrated Systems Tool for Eye Gene Discovery Salil A. Lachke,1,2,3,4 Joshua W. K. Ho,1,4,5 Gregory V. Kryukov,1,4,6 Daniel J. O’Connell,1 Anton Aboukhalil,1,7 Martha L. Bulyk,1,8,9 Peter J. Park,1,5,10 and Richard L. Maas1 PURPOSE. To facilitate the identification of genes associated ther investigation. Extension of this approach to other ocular with cataract and other ocular defects, the authors developed tissue components will facilitate eye disease gene discovery. and validated a computational tool termed iSyTE (integrated (Invest Ophthalmol Vis Sci. 2012;53:1617–1627) DOI: Systems Tool for Eye gene discovery; http://bioinformatics. 10.1167/iovs.11-8839 udel.edu/Research/iSyTE). iSyTE uses a mouse embryonic lens gene expression data set as a bioinformatics filter to select candidate genes from human or mouse genomic regions impli- ven with the advent of high-throughput sequencing, the cated in disease and to prioritize them for further mutational Ediscovery of genes associated with congenital birth defects and functional analyses. such as eye defects remains a challenge. We sought to develop METHODS. Microarray gene expression profiles were obtained a straightforward experimental approach that could facilitate for microdissected embryonic mouse lens at three key devel- the identification of candidate genes for developmental disor- opmental time points in the transition from the embryonic day ders, and, as proof-of-principle, we chose defects involving the (E)10.5 stage of lens placode invagination to E12.5 lens primary ocular lens. Opacification of the lens results in cataract, a leading cause of blindness that affects 77 million persons and fiber cell differentiation.
    [Show full text]
  • A New Mutation in BFSP2 (G1091A) Causes Autosomal Dominant Congenital Lamellar Cataracts
    Molecular Vision 2008; 14:1906-1911 <http://www.molvis.org/molvis/v14/a226> © 2008 Molecular Vision Received 17 August 2008 | Accepted 18 October 2008 | Published 24 October 2008 A new mutation in BFSP2 (G1091A) causes autosomal dominant congenital lamellar cataracts Xu Ma,1,2,3 Fei-Feng Li,1,2 Shu-Zhen Wang,4 Chang Gao,1,2 Meng Zhang,2 Si-Quan Zhu4 (The first three authors contributed equally to this work.) 1Graduate School, Peking Union Medical College, Beijing, China; 2Department of Genetics, National Research Institute for Family Planning, Beijing, China; 3WHO Collaborative Center for Research in Human Reproduction, Beijing, China; 4Beijing Tongren Eye Center, Capital Medical University, Beijing, China Purpose: We sought to identify the genetic defect in a four-generation Chinese family with autosomal dominant congenital lamellar cataracts and demonstrate the functional analysis with biosoftware of a candidate gene in the family. Methods: Family history data were recorded. Clinical and ophthalmologic examinations were performed on family members. All the members were genotyped with microsatellite markers at loci considered to be associated with cataracts. Two-point LOD scores were calculated by using the Linkage Software after genotyping. A mutation was detected by using gene-specific primers in direct sequencing. Wild type and mutant proteins were analyzed with Online Bio-Software. Results: Affected members of this family had lamellar cataracts. Linkage analysis was obtained at markers D3S2322 (LOD score [Z]=7.22, recombination fraction [θ]=0.0) and D3S1541 (Z=5.42, θ=0.0). Haplotype analysis indicated that the cataract gene was closely linked to these two markers.
    [Show full text]
  • PARSANA-DISSERTATION-2020.Pdf
    DECIPHERING TRANSCRIPTIONAL PATTERNS OF GENE REGULATION: A COMPUTATIONAL APPROACH by Princy Parsana A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July, 2020 © 2020 Princy Parsana All rights reserved Abstract With rapid advancements in sequencing technology, we now have the ability to sequence the entire human genome, and to quantify expression of tens of thousands of genes from hundreds of individuals. This provides an extraordinary opportunity to learn phenotype relevant genomic patterns that can improve our understanding of molecular and cellular processes underlying a trait. The high dimensional nature of genomic data presents a range of computational and statistical challenges. This dissertation presents a compilation of projects that were driven by the motivation to efficiently capture gene regulatory patterns in the human transcriptome, while addressing statistical and computational challenges that accompany this data. We attempt to address two major difficulties in this domain: a) artifacts and noise in transcriptomic data, andb) limited statistical power. First, we present our work on investigating the effect of artifactual variation in gene expression data and its impact on trans-eQTL discovery. Here we performed an in-depth analysis of diverse pre-recorded covariates and latent confounders to understand their contribution to heterogeneity in gene expression measurements. Next, we discovered 673 trans-eQTLs across 16 human tissues using v6 data from the Genotype Tissue Expression (GTEx) project. Finally, we characterized two trait-associated trans-eQTLs; one in Skeletal Muscle and another in Thyroid. Second, we present a principal component based residualization method to correct gene expression measurements prior to reconstruction of co-expression networks.
    [Show full text]
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Regulation of Cdc42 and Its Effectors in Epithelial Morphogenesis Franck Pichaud1,2,*, Rhian F
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs217869. doi:10.1242/jcs.217869 REVIEW SUBJECT COLLECTION: ADHESION Regulation of Cdc42 and its effectors in epithelial morphogenesis Franck Pichaud1,2,*, Rhian F. Walther1 and Francisca Nunes de Almeida1 ABSTRACT An overview of Cdc42 Cdc42 – a member of the small Rho GTPase family – regulates cell Cdc42 was discovered in yeast and belongs to a large family of small – polarity across organisms from yeast to humans. It is an essential (20 30 kDa) GTP-binding proteins (Adams et al., 1990; Johnson regulator of polarized morphogenesis in epithelial cells, through and Pringle, 1990). It is part of the Ras-homologous Rho subfamily coordination of apical membrane morphogenesis, lumen formation and of GTPases, of which there are 20 members in humans, including junction maturation. In parallel, work in yeast and Caenorhabditis elegans the RhoA and Rac GTPases, (Hall, 2012). Rho, Rac and Cdc42 has provided important clues as to how this molecular switch can homologues are found in all eukaryotes, except for plants, which do generate and regulate polarity through localized activation or inhibition, not have a clear homologue for Cdc42. Together, the function of and cytoskeleton regulation. Recent studies have revealed how Rho GTPases influences most, if not all, cellular processes. important and complex these regulations can be during epithelial In the early 1990s, seminal work from Alan Hall and his morphogenesis. This complexity is mirrored by the fact that Cdc42 can collaborators identified Rho, Rac and Cdc42 as main regulators of exert its function through many effector proteins.
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • BNIPL Antibody - Middle Region Rabbit Polyclonal Antibody Catalog # AI13432
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 BNIPL antibody - middle region Rabbit Polyclonal Antibody Catalog # AI13432 Specification BNIPL antibody - middle region - Product Information Application WB Primary Accession Q7Z465 Other Accession NM_138278, NP_612122 Reactivity Human, Mouse, Rat, Rabbit, Horse, Bovine, Guinea Pig, Dog Predicted Human, Mouse, Rat, Rabbit, Pig, WB Suggested Anti-BNIPL Antibody Titration: Horse, Bovine, 0.2-1 μg/ml Guinea Pig, Dog Positive Control: OVCAR-3 cell lysate Host Rabbit Clonality Polyclonal Calculated MW 40kDa KDa BNIPL antibody - middle region - BNIPL antibody - middle region - Additional References Information Zhou Y.T.,et al.J. Biol. Chem. Gene ID 149428 277:7483-7492(2002). Qin W.,et al.Biochem. Biophys. Res. Commun. Alias Symbol BNIP-S, BNIPL-1, 308:379-385(2003). BNIPL-2, PP753 Gregory S.G.,et al.Nature 441:315-321(2006). Other Names Shen L.,et al.FEBS Lett. 540:86-90(2003). Bcl-2/adenovirus E1B 19 kDa-interacting protein 2-like protein, BNIPL Format Liquid. Purified antibody supplied in 1x PBS buffer with 0.09% (w/v) sodium azide and 2% sucrose. Reconstitution & Storage Add 50 ul of distilled water. Final anti-BNIPL antibody concentration is 1 mg/ml in PBS buffer with 2% sucrose. For longer periods of storage, store at 20°C. Avoid repeat freeze-thaw cycles. Precautions BNIPL antibody - middle region is for research use only and not for use in diagnostic or therapeutic procedures. Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 BNIPL antibody - middle region - Protein Information Name BNIPL Function May be a bridge molecule between BCL2 and ARHGAP1/CDC42 in promoting cell death.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • <I>BOC</I> Is a Modifier Gene in Holoprosencephaly
    Received: 12 May 2017 Revised: 20 June 2017 Accepted: 28 June 2017 DOI: 10.1002/humu.23286 BRIEF REPORT BOC is a modifier gene in holoprosencephaly Mingi Hong1∗ Kshitij Srivastava2∗ Sungjin Kim1 Benjamin L. Allen3 Daniel J. Leahy4 Ping Hu2 Erich Roessler2 Robert S. Krauss1† Maximilian Muenke2† 1Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York 2Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 3Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 4Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas Correspondence Robert S. Krauss (for editorial communication), Abstract Department of Cell, Developmental and Regen- Holoprosencephaly (HPE), a common developmental defect of the forebrain and midface, has a erative Biology, Icahn School of Medicine at complex etiology. Heterozygous, loss-of-function mutations in the sonic hedgehog (SHH) pathway Mount Sinai, New York, New York 10029. Email: [email protected] are associated with HPE. However, mutation carriers display highly variable clinical presentation, Maximilian Muenke, Medical Genetics Branch, leading to an “autosomal dominant with modifier” model, in which the penetrance and expressiv- National Human Genome Research Institute, ity of a predisposing mutation is graded by genetic or environmental modifiers. Such modifiers National Institutes of Health, Bethesda, Mary- land 20892. have not been identified. Boc encodes a SHH coreceptor and is a silent HPE modifier gene in mice. Email: [email protected] Here, we report the identification of missense BOC variants in HPE patients. Consistent with these ∗Mingi Hong and Kshitij Srivastava contributed alleles functioning as HPE modifiers, individual variant BOC proteins had either loss- or gain-of- equally to this work.
    [Show full text]
  • High Throughput Strategies Aimed at Closing the GAP in Our Knowledge of Rho Gtpase Signaling
    cells Review High Throughput strategies Aimed at Closing the GAP in Our Knowledge of Rho GTPase Signaling Manel Dahmene 1, Laura Quirion 2 and Mélanie Laurin 1,3,* 1 Oncology Division, CHU de Québec–Université Laval Research Center, Québec, QC G1V 4G2, Canada; [email protected] 2 Montréal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; [email protected] 3 Université Laval Cancer Research Center, Québec, QC G1R 3S3, Canada * Correspondence: [email protected] Received: 21 May 2020; Accepted: 7 June 2020; Published: 9 June 2020 Abstract: Since their discovery, Rho GTPases have emerged as key regulators of cytoskeletal dynamics. In humans, there are 20 Rho GTPases and more than 150 regulators that belong to the RhoGEF, RhoGAP, and RhoGDI families. Throughout development, Rho GTPases choregraph a plethora of cellular processes essential for cellular migration, cell–cell junctions, and cell polarity assembly. Rho GTPases are also significant mediators of cancer cell invasion. Nevertheless, to date only a few molecules from these intricate signaling networks have been studied in depth, which has prevented appreciation for the full scope of Rho GTPases’ biological functions. Given the large complexity involved, system level studies are required to fully grasp the extent of their biological roles and regulation. Recently, several groups have tackled this challenge by using proteomic approaches to map the full repertoire of Rho GTPases and Rho regulators protein interactions. These studies have provided in-depth understanding of Rho regulators specificity and have contributed to expand Rho GTPases’ effector portfolio. Additionally, new roles for understudied family members were unraveled using high throughput screening strategies using cell culture models and mouse embryos.
    [Show full text]