Additive Manufacturing and Radio Frequency Filters a Case Study on 3D-Printing Processes, Post- Processing and Silver Coating Methods
Total Page:16
File Type:pdf, Size:1020Kb
DEGREE PROJECT IN MECHANICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Additive manufacturing and radio frequency filters A case study on 3D-printing processes, post- processing and silver coating methods AMANDA HERRERO MARTIN ANA GARCIA VERDUGO ZUIL KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT Additive manufacturing and radio frequency filters: A case study on 3D-printing processes, post-processing and silver coating methods Master's Programme, Production Engineering and Management (TPRMM), 120 cr School Industrial Engineering and Management KTH - Kungliga Tekniska Högskolan 18 - August - 2020 Ana García-Verdugo Zuil [email protected] Ericsson Supervisor: Göran Poshman Amanda Herrero Martín [email protected] KTH Supervisor: Jonny Gustafsson Additive manufacturing and radio frequency filters: A case study on 3D-printing processes, post-processing and silver coating methods Abstract Additive manufacturing (AM) is an attractive way to shorten development time, reduce product weight and allow the manufacturing of more complex products than by conventional manufacturing processes. The problem arises when the previous traditional manufacturing requirements need to be fulfilled by AM as well as the volume production capability. This investigation is done together with Ericsson to evaluate the possibilities of the different AM technologies, post-processing methods and silver coating processes to guarantee the specifications of radiofrequency (RF) filters. Here, minimal RF signal insertion losses are targeted. Since insertion losses are dependent on surface roughness, surface smoothness is sought as well. Ericsson simulation software uses correction factors to account for surface roughness, however there are some inconsistencies between the simulated and actual surface roughness that is allowed in the parts. In AM parts, surface roughness is not easy to control since it depends on parameters related to feedstock, process and machine properties. Commonly, most AM components do not comply with requirements of lower surface roughness values. Therefore, parts need to be smoothened before silver plated; this step is necessary to ensure the electrical conductivity in this specific application. These finishing processes add costs to the final product and increase time to market. Firstly, a comprehensive study was carried out to better understand the landscape of AM technologies, post- processing and silver coating methods. Secondly, the different processes are assessed with the help of selection matrices, considering the products requirements. The components to print are two RF filters with different shapes and dimensions but similar requirements. The CAD design is modified depending on each AM process and directly affects the results. Afterwards, the design of an experimental plan is carried out; the number of samples of each part comparing AM technologies, feedstock, different suppliers (3D printing and post-processing) is obtained. Due to budget and time restrictions, the parts were printed using Multi Jet Fusion and Selective Laser Melting processes. After printing, tolerances and surface roughness were measured. This thesis results in the selection of suitable AM technologies and post-processing methods for RF filters. For MJF printed cavities at 0˚, 30˚ and 90˚ orientation, the best results for this application are obtained at 30˚ providing a good balance between sharp detail and smooth surfaces. In the case of SLM, waveguides are printed at 0˚ and 30˚. 30˚ waveguides present lower surface roughness values than the 0˚ ones as inner support material is needed at 0˚ orientation. SLM cavities were printed at 30˚ in seek of asymmetry between faces, resulting in higher surface roughness in the downfacing face. Keywords: Additive manufacturing, radio-frequency filters, post-processing, silver coating, surface roughness, Multi Jet Fusion (MJF), Selective Laser Melting (SLM) 2 Additive manufacturing and radio frequency filters: A case study on 3D-printing processes, post-processing and silver coating methods Sammanfattning Additiv tillverkning (AM) är ett attraktivt sätt att förkorta utvecklingstiden, minska produktvikten och tillåta tillverkning av mer komplexa produkter än vad som är möjligt med konventionella tillverkningsprocesser. Problem uppstår när traditionella tillverkningskrav och volymproduktionskapacitet också måste uppfyllas. Denna undersökning utfördes tillsammans med Ericsson för att utvärdera möjligheterna med olika AM- tekniker, efterbehandlingsmetoder och silverbeläggningsprocesser för att säkerställa specifikationerna för radiofrekvensfilter. Här är minimerade införingsförluster för RF-signaler måltavlan. Eftersom införingsförluster är beroende av ytojämnhet, eftersträvas även släta ytor. Ericssons simuleringsprogramvara använder korrigeringsfaktorer för att bestämma ytojämnhetens inverkan, men man finner inkonsekvenser mellan den simulerade och faktiska ytojämnheten som tillåts i delarna. I AM-delar är ytojämnhet inte lätt att kontrollera eftersom den beror på parametrar relaterade till råmaterial, process- och maskinegenskaper. Vanligtvis uppfyller de flesta AM-komponenter inte kraven på låga ytojämnhetsvärden. Därför måste delar jämnas till innan de silverpläteras; detta steg är nödvändigt för att säkerställa den elektriska konduktiviteten i denna specifika applikation. Dessa efterbehandlingsprocesser ökar kostnaderna för slutprodukten och ökar också tid till marknad. Först genomfördes en omfattande studie för att bättre förstå AM-teknikens landskap, efterbehandling och silverbeläggningsmetoder. Sedan bedömdes de olika processerna med hjälp av urvalsmatriser baserade på produktkraven. Komponenterna som ska skrivas ut är två RF-filter med olika former och dimensioner, men med liknande krav. CAD-designen ändrades för varje AM-process och påverkade resultatet direkt. Därefter utformades en experimentell plan; antalet prover av varje del som jämför AM-teknik, råmaterial, olika leverantörer (3D-utskrift och efterbehandling) erhölls. På grund av budget- och tidsbegränsningar tillverkades delarna med Multi Jet Fusion och Selective Laser Melting. Efter tillverkningen mättes toleranser och ytojämnhet. Detta arbete resulterar en rekommendation av lämpliga AM-tekniker och efterbehandlingsmetoder för RF- filter. För MJF-utskrivna håligheter vid 0˚, 30˚ och 90˚ orientering erhölls de bästa resultaten för denna applikation vid 30˚ vilket ger en god balans mellan skarpa detaljer och släta ytor. För SLM skrevs vågledarna ut i 0˚ och 30 ˚. Vågledarna i 30 uppvisar lägre ytjämnhetsvärden än de i 0, som behöver inre stödmaterial. SLM-håligheter tillverkades vid 30 ° för att få en asymmetri mellan ytorna, vilket resulterade i högre ytojämnhet i nedfasningsytan. Nyckelord: Tillsatsstillverkning, radiofrekvensfilter, efterbehandling, silverbeläggning, ytojämnhet, Multi Jet Fusion (MJF), Selective Laser Melting (SLM) 3 Additive manufacturing and radio frequency filters: A case study on 3D-printing processes, post-processing and silver coating methods Acknowledgements This master thesis project has been carried out in Ericsson under their AM initiative as part of our master studies in Production Engineering and Management at KTH. We would like to thank both parts, Ericsson and KTH, for awakening our interest in the additive manufacturing world and giving us the opportunity of being part of this project. We would like to especially thank our supervisor at Ericsson, Göran Poshman for guiding us during the project. His valuable inputs and knowledge helped us to approach the thesis in a good way. Also, special thanks to the Prototyping and Production Department at Ericsson, whose help during the whole process was extremely appreciated for us. We would also like to thank Jonny Gustafsson, our KTH supervisor, for the consideration he showed answering to all our enquiries promptly and for his advice. Finally. thanks to our families and close friends, who have been supporting us during this time, without you this would have never been possible. 4 Additive manufacturing and radio frequency filters: A case study on 3D-printing processes, post-processing and silver coating methods Table of contents 1. Introduction ....................................................................................................................................................................... 9 1.1. Background ................................................................................................................................................................................... 9 1.2. Problem statement ..................................................................................................................................................................... 9 1.3. Research questions ................................................................................................................................................................... 10 1.4. Working method ....................................................................................................................................................................... 10 1.5. Delimitations and Limitations ............................................................................................................................................. 10 2. Literature and state‐of‐the‐art study .................................................................................................................... 10 2.1. Radio-frequency filters