Effects of Printing Conditions on Properties of Polycarbonate Samples Made by Fused Filament Fabrication Process

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Printing Conditions on Properties of Polycarbonate Samples Made by Fused Filament Fabrication Process EFFECTS OF PRINTING CONDITIONS ON PROPERTIES OF POLYCARBONATE SAMPLES MADE BY FUSED FILAMENT FABRICATION PROCESS By Yishu Yan A thesis submitted to The Johns Hopkins University in conformity with the requirements for the degree of Master of Science in Engineering Baltimore, Maryland May, 2019 © Yishu Yan 2019 All rights reserved Abstract Fused filament fabrication (FFF) is one of the most popular 3D printing processes. However, the quality control of FFF remains as a challenge, resulting in wide variations of geometries and inferior mechanical properties compared to those made by traditional manufacturing methods. Multiple factors can influence the geometry and mechanical properties of parts fabricated by FFF, including model design, printing parameters, and environmental conditions. The quality control of FFF remains as a big challenge. To investigate these issues, we have fabricated and characterized samples made of amorphous homopolymer polycarbonates under controlled printing parameters and environmental conditions. Then, we have characterized three dimensional geometries and mechanical properties by x-ray micro-computed tomography (micro-CT) and tensile tests. Our studies show that large geometry and bonding strength variations appear from different printing parameters. Our infrared thermography showed that heating bed still resulted in over 3 ℃/mm temperature gradient within samples which led to warping while increasing the environmental temperature could mitigate this problem. In addition, micro-CT data showed that high environmental humidity would ii ABSTRACT induce significant porosity of the polycarbonate samples. We envision that the findings from our study will contribute to providing guidelines of selecting printing conditions for FFF printer users and manufactures. Primary Reader: Prof. Sung Hoon Kang Secondary Reader: Prof. Thao (Vicky) Nguyen iii Acknowledgements I would like to acknowledge the support of the National Science Foundation (DMREF-1628974) and the start-up fund from the Whiting School of Engineering at Johns Hopkins University. I give my most sincere gratitude to my research advisor Professor Sung Hoon Kang, for his patient guidance, valuable suggestions and enthusiastic encouragement of my research work. I gratefully acknowledge Mr. Lichen Fang who has been both a great mentor and important partner throughout this project. Also, I would like to express my great appreciation to Professor Thao (Vicky) Nguyen for her great help in this project and for being my thesis reader. I would like to thank Professor Kevin J. Hemker for his priceless insight and Mr. Ojaswi Agarwal for his help in lots of aspects. I would also like to acknowledge Professor Stavros Gaitanaros for allowing us to use his lab/facilities, and Ms. Sirui Bi, Mr. Emilio Bachtiar and Dr. Jonathan Seppala for help with experiment and helpful advice. A special gratitude goes to all the Kang Lab members for always being there to iv ACKNOWLEDGEMENTS support me during the whole research process. Without their help and inspiration, this project wouldn’t be realized to me. It’s a fortune for me to spend two inestimable years at Johns Hopkins University. I appreciate all the difficulties I have encountered, all the feelings I have gained, and all the people I have met here. I wish all of my colleagues and mentors the best in the future. v Dedication This thesis is dedicated to my beloved parents, Mrs. Hong Wang and Prof. Zongxin Yan. Your affection, love and encouragement make what I become today. I will always be your pride. vi Contents Abstract ii Acknowledgements iv List of Tables xi List of Figures xii 1 Introduction 1 1.1 3D printing ...................................................................................................... 1 1.1.1 3D printing introduction ........................................................................ 1 1.1.2 Fused filament fabrication ..................................................................... 2 1.1.3 Other 3D printing methods .................................................................... 4 1.1.4 3D printing materials ............................................................................. 5 1.2 Key problems .................................................................................................. 7 1.2.1 3D geometrical evaluation ..................................................................... 7 1.2.2 Warping and delamination ..................................................................... 8 vii CONTENTS 1.2.3 Environmental conditions .................................................................... 10 1.3 Approaches .................................................................................................... 11 1.2.1 Micro-CT evaluation ............................................................................ 11 1.2.2 Mitigate warping .................................................................................. 12 1.2.3 Expected outcome ................................................................................ 13 1.4 Outline of thesis ............................................................................................ 15 2 Sample preparation 16 2.1 System set up ................................................................................................. 16 2.1.1 Material .............................................................................................. 16 2.1.2 Enclosure............................................................................................ 17 2.1.3 Environmental conditions control system .......................................... 18 2.2 Printing conditions ........................................................................................ 21 2.3 Conclusion of the Chapter ............................................................................. 22 3 Evaluation methods 23 3.1 Micro-CT evaluation ..................................................................................... 23 3.1.1 Micro-CT calibration ........................................................................... 23 3.1.2 3D geometric information .................................................................... 24 viii CONTENTS 3.1.3 Circular fitting ...................................................................................... 26 3.2 Mechanical test .............................................................................................. 27 3.2.1 Specimens preparation ......................................................................... 27 3.2.2 Tensile test ........................................................................................... 29 3.3 Conclusion of the Chapter ............................................................................. 30 4 Result 1: Printing parameters 31 4.1 Layer thickness .............................................................................................. 31 4.1.1 Geometrical properties ......................................................................... 31 4.1.2 Mechanical properties .......................................................................... 33 4.2 Nozzle temperature ....................................................................................... 35 4.2.1 Infrared thermography ......................................................................... 35 4.2.2 Geometrical properties ......................................................................... 37 4.2.3 Mechanical properties .......................................................................... 40 4.3 Nozzle movement speed ................................................................................ 41 4.3.1 Geometrical properties ......................................................................... 41 4.3.2 Mechanical properties .......................................................................... 43 4.4 Conclusion of the Chapter ............................................................................. 44 5 Result 2: Environmental conditions 46 ix CONTENTS 5.1 Environmental temperature ........................................................................... 46 5.1.1 Surface performance ............................................................................ 46 5.1.2 Warping................................................................................................ 47 5.2 Environmental humidity ................................................................................ 50 5.3 Conclusion of the Chapter ............................................................................. 51 6 Conclusion and future work 52 6.1 Conclusion ..................................................................................................... 52 6.2 Prospective work ........................................................................................... 53 Bibliography 55 Vita 64 x List of Tables 1 Average heating time to reach certain temperature 19 2 Relative humidity change with time after turning on lab compressed air 28 3 Temperature of print head area 37 xi List of Figures 1.1 Principle of fused filament fabrication process 4 1.2 Micro-CT image of internal defects inside of FFF parts 8 1.3 Schematic image of warping effect 9 1.4 Principle components of a microcomputed tomography scanner 12 2.1 System set up of a FFF printer 17 2.2 Fan heater and temperature controller 18 2.3 Relative humidity change with time after turning on lab compressed air 20 2.4 Schematic image of nozzle temperature, layer thickness, and nozzle
Recommended publications
  • A Review on Polymeric Materials in Additive Manufacturing ⇑ J.M
    Materials Today: Proceedings xxx (xxxx) xxx Contents lists available at ScienceDirect Materials Today: Proceedings journal homepage: www.elsevier.com/locate/matpr A review on polymeric materials in additive manufacturing ⇑ J.M. Jafferson , Debdutta Chatterjee VIT University Chennai Campus 600127, India article info abstract Article history: Polymers are the greatest innovation of the millennium. Due to their low price, ease of manufacture, Available online xxxx resistance to water and versatility, polymers have several applications in different domestic and indus- trial sectors. Digital fabrication technology which is also referred to as 3D printing or additive Keywords: Manufacturing (AM) is used for creating physical components from a geometrical representation by Polymeric materials step-by-step addition of materials. This review paper elaborates on the use of polymers for Rapid Additive manufacturing Manufacturing. One such material used is Shape Memory Polymers that have been analyzed as Smart Automotive Materials (4D Printing Materials). Polymers such as Thermoplastics, elastomers, thermosets, and poly- Drug delivery mers with integrated fillers, bio-polymers, and polymers blended with biological materials come under Fabric industry the range of other polymeric materials used in AM. The quality evaluations that are performed are based on mechanical properties, part density and temperature stability. Polycarbonates (PC), acrylonitrile buta- diene styrene (ABS), polyether-ester ketone (PEEK), polyetherimide (ULTEM) and Nylon are usually uti- lized polymers in measures which need thermoplastics, or plastics treated by warming to a semi-fluid state and near the softening point. Properties of materials were reviewed for example, Strength param- eters of a specific list of Polymeric Materials used in 3D printing was revised, where strength tests showed that material such as Polybutylene terephthalate has a high Yield Strength and Polypropylene has a high Ultimate Tensile Strength.
    [Show full text]
  • High Speed Sintering for 3D Printing Applications
    High Speed Sintering for 3D printing applications High Speed Sintering for 3D printing applications Neil Hopkinson, Adam Ellis, Adam Strevens, Manolis Papastavrou and Torben Lange, Xaar plc Introduction High Speed Sintering (HSS) is a transformational inkjet-based 3D printing technology which is being further developed at Xaar by the original inventor, Prof. Neil Hopkinson. This 3D printing (also called Additive Manufacturing) technology involves depositing a fine layer of polymeric powder, after which inkjet printheads deposit a single IR (infrared) absorbing fluid directly onto the powder surface in the required cross-sectional pattern where sintering is desired. The entire build area is then irradiated with an infrared lamp, causing the printed fluid to absorb this energy and then melt and sinter (consolidate) the underlying powder. This process is then repeated layer by layer until the build is complete. The use of digital inkjet printing makes the process considerably faster than point based systems, for example those requiring a laser to sinter/melt material. As with all 3D printing processes there is no requirement for new moulds, plates or other design template related fixtures. High Speed Sintering is a self-supporting process; this means that solid, hollow and complex shapes with internal features are possible without the need to create and subsequently remove support structures, at much higher speeds than other additive manufacturing processes. Today there are many 3D printing technologies and several other sintering technologies available. This paper demonstrates how High Speed Sintering (HSS) fits in the 3D printing space as a fast and cost-effective route to develop and manufacture customised prototypes and products.
    [Show full text]
  • Influence of the Printing Parameters on the Stability of the Deposited Beads in Fused Filament Fabrication of Poly(Lactic) Acid
    Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: http://oatao.univ-toulouse.fr/20922 Official URL : https://doi.org/10.1016/j.addma.2018.10.012 To cite this version: Bakrani Balani, Shahriar and Chabert, France and Nassiet, Valérie and Cantarel, Arthur Influence of the printing parameters on the stability of the deposited beads in Fused Filament Fabrication of poly(lactic) acid. Vol. 25, pp. 112-121 (2019) Additive Manufacturing. Any correspondence concerning this service should be sent to the repository administrator: [email protected] Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid Shahriar Bakrani Balani 1, 2, a), France Chabert 1, b), Valérie Nassiet 1, c), Arthur Cantarel 2, d), 1 LGP-ENIT-INPT, University of Toulouse, 47 Avenue d’Azereix, BP1629-65016 Tarbes Cedex, France Web Page: http://www.enit.fr/ 2 Institut Clément Ader (ICA), CNRS UMR 5312, University of Toulouse, IUT of Tarbes, UPS, France Web Page: http://www.institut-clement-ader.org/ Corresponding author: b) [email protected] a) [email protected] c) [email protected] d) [email protected] Abstract: Fused filament fabrication (FFF) is one of the various types of additive manufacturing processes. Similar to other types, FFF enables free-form fabrication and optimised structures by using polymeric filaments as the raw material. This work aims to optimise the printing conditions of the FFF process based on reliable properties, such as printing parameters and physical properties of polymers.
    [Show full text]
  • 3D Printing System for Ceramic Materials: Design and Testing of an Experimental Rig
    3D printing system for ceramic materials: design and testing of an experimental rig Armand Yahnn Fabrice Chefdor Thesis to obtain the Master of Science Degree in Mechanical Engineering Supervisors : Prof. Marco Alexandre de Oliveira Leite Prof. António Manuel Relógio Ribeiro Examination Committee Chairperson : Prof. Luís Filipe Galrão dos Reis Supervisor : Prof. Marco Alexandre de Oliveira Leite Member of the Committee : Prof. Bruno Alexandre Rodrigues Simões Soares July 2018 Acknowledgements Primarily, I would like to express my gratitude to my supervisors from the Mechanical Engineering Department, Professor Marco Alexandre De Oliveira Leite and Professor António Manuel Relógio Ribeiro, as well as Professor Ana Paula Valagão Amadeu do Serro from the chemical department. They all did an outstanding job by granting me support, knowledge and valuable insight into this interesting subject. I would also like to thank my former colleagues from iMakr who introduced me to the capacities of additive manufacturing and took the time to provide me useful knowledge for this following topic. I would likewise thank my colleagues from the chemical department and the Lab2Prod for their guidance and generous help with diverse tasks regarding my work. Finally, I gratefully acknowledge all the people who allow the Erasmus exchange program to exist, and thus helped me to stay at Técnico for this semester. On the other hand, I do not wish to thank my Erasmus friends who often found a way to take my concentration away from this subject. II Abstract In the context of a constantly growing additive manufacturing market, many processes are acquiring important statuses in the medical field.
    [Show full text]
  • A Study on 3D Printing and Its Effects on the Future of Transportation
    CAIT-UTC-NC19 A Study on 3D Printing and its Effects on the Future of Transportation September 2018 Submitted by: Omar Jumaah, Doctoral Candidate Department of Mechanical and Aerospace Engineering Rutgers, The State University of New Jersey 98 Brett Road Piscataway, NJ 08854-8058 [email protected] External Project Manager Patrick Szary, PhD Associate Director, CAIT Central Administration Rutgers, The State University of New Jersey 100 Brett Road Piscataway, NJ 08854-8058 [email protected] In cooperation with Rutgers, The State University of New Jersey & State of Department of Transportation & U.S. Department of Transportation Federal Highway Administration i Disclaimer Statement The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The Center for Advanced Infrastructure and Transportation (CAIT) is a National UTC Consortium led by Rutgers, The State University. Members of the consortium are the University of Delaware, Utah State University, Columbia University, New Jersey Institute of Technology, Princeton University, University of Texas at El Paso, Virginia Polytechnic Institute, and University of South Florida. The Center is funded by the U.S. Department of Transportation. ii CAIT-UTC-NC19 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. CAIT-UTC-NC19 4. Title and Subtitle 5. Report Date A Study on 3D Printing and its Effects on the Future of Transportation September 2018 6.
    [Show full text]
  • Beginner's Guide to 3D Printing
    2015 BEGINNER’S GUIDE TO 3D PRINTING VERSION 0.1 THINK3D TEAM Welcome to think3D’s Beginner’s Guide to 3D Printing. This document is for people who are completely new to 3D printing technology or who are looking at gaining additional information on 3D printing technology. It is very imperative that 3D printing technology is going to change the world. Experts claim 3D printing is a much bigger revolution than internet. We at think3D, completely agree to those viewpoints. In this document, we shall be providing data to illustrate the true revolutionary nature of 3D printing. This document is structured into 6 chapters, (a) Introduction of 3D printing (b) History of 3D printing (c) 3D Printing Technology (d) 3D Printing Processes (e) 3D Printing Materials (f) 3D Printing Applications (g) 3D Printing Glossary. “3D printing” is an umbrella term for a host of processes and technologies that offer a full spectrum of capabilities for the production of parts and products in different materials. One thing common in all these processes is the manner in which production is carried out – layer by layer in an additive process. That is why “3D Printing” is also called additive manufacturing in contrast to traditional methods of production that are primarily subtractive in nature, also called as “subtractive manufacturing” or molding/casting processes. Applications of 3D printing are emerging almost by the day, and, as this technology continues to penetrate more widely and deeply across industrial, maker and consumer sectors, this is only set to increase. Most reputable commentators on this technology sector agree that, as of today, we are only just beginning to see the true potential of 3D printing.
    [Show full text]
  • Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development
    materials Article Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development Izabela Rojek 1 , Dariusz Mikołajewski 1 , Marek Macko 2 , Zbigniew Szczepa ´nski 2 and Ewa Dostatni 3,* 1 Institute of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; [email protected] (I.R.); [email protected] (D.M.) 2 Department of Mechatronic Systems, Faculty of Mechatronics, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; [email protected] (M.M.); [email protected] (Z.S.) 3 Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, pl. M. Skłodowskiej-Curie 5, 60-965 Pozna´n,Poland * Correspondence: [email protected] Abstract: Technological and material issues in 3D printing technologies should take into account sustainable development, use of materials, energy, emitted particles, and waste. The aim of this paper is to investigate whether the sustainability of 3D printing processes can be supported by computational intelligence (CI) and artificial intelligence (AI) based solutions. We present a new AI-based software to evaluate the amount of pollution generated by 3D printing systems. We input the values: printing technology, material, print weight, etc., and the expected results (risk assessment) and determine if and what precautions should be taken. The study uses a self-learning program that will improve as more data are entered. This program does not replace but complements previously used 3D printing metrics and software. Citation: Rojek, I.; Mikołajewski, D.; Keywords: optimization; 3D printing; sustainable development; neural networks Macko, M.; Szczepa´nski,Z.; Dostatni, E. Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development.
    [Show full text]
  • Open Source Multi-Head 3D Printer for Polymer-Metal Composite Component Manufacturing
    technologies Article Open Source Multi-Head 3D Printer for Polymer-Metal Composite Component Manufacturing John J. Laureto 1 and Joshua M. Pearce 1,2,* 1 Department of Materials Science and Engineering, Michigan Technological University, 601 M&M Building, 1400 Townsend Drive, Houghton, MI 49931-1295, USA; [email protected] 2 Department of Electrical & Computer Engineering, Michigan Technological University, 121 EERC Building, 1400 Townsend Drive, Houghton, MI 49931-1295, USA * Correspondence: [email protected]; Tel.: +01-906-487-1466 Academic Editors: Salvatore Brischetto, Paolo Maggiore and Carlo Giovanni Ferro Received: 1 March 2017; Accepted: 18 April 2017; Published: 15 June 2017 Abstract: As low-cost desktop 3D printing is now dominated by free and open source self-replicating rapid prototype (RepRap) derivatives, there is an intense interest in extending the scope of potential applications to manufacturing. This study describes a manufacturing technology that enables a constrained set of polymer-metal composite components. This paper provides (1) free and open source hardware and (2) software for printing systems that achieves metal wire embedment into a polymer matrix 3D-printed part via a novel weaving and wrapping method using (3) OpenSCAD and parametric coding for customized g-code commands. Composite parts are evaluated from the technical viability of manufacturing and quality. The results show that utilizing a multi-polymer head system for multi-component manufacturing reduces manufacturing time and reduces the embodied energy of manufacturing. Finally, it is concluded that an open source software and hardware tool chain can provide low-cost industrial manufacturing of complex metal-polymer composite-based products. Keywords: open source; 3D printing; RepRap; composite; manufacturing 1.
    [Show full text]
  • 3D Printing Metals Like Thermoplastics: Fused Filament Fabrication of Metallic Glasses
    3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Gibson, Michael A., et al. “3D Printing Metals Like Thermoplastics: Fused Filament Fabrication of Metallic Glasses.” Materials Today 21, no. 7 (September 2018): 697–702. © 2018 The Authors As Published http://dx.doi.org/10.1016/j.mattod.2018.07.001 Publisher Elsevier Version Final published version Citable link http://hdl.handle.net/1721.1/119419 Terms of Use Creative Commons Attribution 4.0 International License Detailed Terms http://creativecommons.org/licenses/by/4.0/ Materials Today d Volume 21, Number 7 d September 2018 RESEARCH 3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses RESEARCH: Short Communication Michael A. Gibson 1,2, Nicholas M. Mykulowycz 1, Joseph Shim 1, Richard Fontana 1, Peter Schmitt 1, Andrew Roberts 1, Jittisa Ketkaew 4 Ling Shao 4, Wen Chen 5, Punnathat Bordeenithikasem 4, Jonah S. Myerberg 1, Ric Fulop 1, Matthew D. Verminski 1, Emanuel M. Sachs 1,3, Yet-Ming Chiang 1,2, Christopher A. Schuh 1,2, A. John Hart 1,3, Jan Schroers 1,4,⇑ 1 Desktop Metal, Inc., Burlington, MA 01803, United States 2 Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States 3 Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States 4 Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT 06520, United States 5 Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003, United States Whereas 3D printing of thermoplastics is highly advanced and can readily create complex geometries, 3D printing of metals is still challenging and limited.
    [Show full text]
  • A Critical Review of the Use of 3-D Printing in the Construction Industry
    1 A critical review of the use of 3-D printing in the construction 2 industry 3 Peng Wu1, Jun Wang2 and Xiangyu Wang2 4 5 1Department of Construction Management, Curtin University, Perth, Australia. Email: 6 [email protected]. Tel: +61 8 926 4723 7 2Australasian Joint Research Centre for Building and Information Modelling, Curtin University, 8 Perth, Australia. 9 Abstract 10 3-D printing, which is an automated production process with layer-by-layer control, has been 11 gaining rapid development in recent years. The technology has been adopted in the 12 manufacturing industry for decades and has recently been introduced in the construction 13 industry to print houses and villas. The technology can bring significant benefits to the 14 construction industry in terms of increased customization, reduced construction time, reduced 15 manpower and construction cost. A few isolated products and projects have been preliminarily 16 tested using the 3-D printing technology. However, it should be noted that such tests and 17 developments on the use of 3-D printing in the construction industry are very fragmented at 18 the time of the study. It is therefore necessary for the building and construction industry to 19 understand the technology, its historical applications and challenges for better utilization in the 20 future. A systematic review shows that 3-D printing technology, after years of evolution, can 21 be used to print large-scale architectural models and buildings. However, the potential of the 22 technology is limited by the lack of large-scale implementation, the development of building 23 information modelling, the requirements of mass customization and the life cycle cost of the 24 printed projects.
    [Show full text]
  • Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: a Holistic Materials–Process Perspective
    pharmaceutics Review Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective Mohammad A. Azad 1,*, Deborah Olawuni 1, Georgia Kimbell 1, Abu Zayed Md Badruddoza 2 , Md. Shahadat Hossain 3 and Tasnim Sultana 4 1 Department of Chemical, Biological and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; [email protected] (D.O.); [email protected] (G.K.) 2 Department of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; [email protected] 3 Department of Engineering Technology, Queensborough Community College, City University of New York (CUNY), Bayside, NY 11364, USA; [email protected] 4 Department of Public Health, School of Arts and Sciences, Massachusetts College of Pharmacy and Health Sciences (MCPHS), Boston, MA 02115, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-336-285-3701 Received: 1 January 2020; Accepted: 30 January 2020; Published: 3 February 2020 Abstract: Three dimensional (3D) printing as an advanced manufacturing technology is progressing to be established in the pharmaceutical industry to overcome the traditional manufacturing regime of 'one size fits for all'. Using 3D printing, it is possible to design and develop complex dosage forms that can be suitable for tuning drug release. Polymers are the key materials that are necessary for 3D printing. Among all 3D printing processes, extrusion-based (both fused deposition modeling (FDM) and pressure-assisted microsyringe (PAM)) 3D printing is well researched for pharmaceutical manufacturing. It is important to understand which polymers are suitable for extrusion-based 3D printing of pharmaceuticals and how their properties, as well as the behavior of polymer–active pharmaceutical ingredient (API) combinations, impact the printing process.
    [Show full text]
  • History of Additive Manufacturing
    Wohlers Report 2014 History of Additive Manufacturing History of additive This 34‐page document is a part of Wohlers Report 2014 and was created for its readers. The document chronicles the history of additive manufacturing manufacturing (AM) and 3D printing, beginning with the initial by Terry Wohlers and Tim Gornet commercialization of stereolithography in 1987 to May 2013. Developments from May 2013 through April 2014 are available in the complete 276‐page version of the report. An analysis of AM, from the earliest inventions in the 1960s to the 1990s, is included in the final several pages of this document. Additive manufacturing first emerged in 1987 with stereolithography (SL) from 3D Systems, a process that solidifies thin layers of ultraviolet (UV) light‐sensitive liquid polymer using a laser. The SLA‐1, the first commercially available AM system in the world, was the precursor of the once popular SLA 250 machine. (SLA stands for StereoLithography Apparatus.) The Viper SLA product from 3D Systems replaced the SLA 250 many years ago. In 1988, 3D Systems and Ciba‐Geigy partnered in SL materials development and commercialized the first‐generation acrylate resins. DuPont’s Somos stereolithography machine and materials were developed the same year. Loctite also entered the SL resin business in the late 1980s, but remained in the industry only until 1993. After 3D Systems commercialized SL in the U.S., Japan’s NTT Data CMET and Sony/D‐MEC commercialized versions of stereolithography in 1988 and 1989, respectively. NTT Data CMET (now a part of Teijin Seiki, a subsidiary of Nabtesco) called its system Solid Object Ultraviolet Plotter (SOUP), while Sony/D‐MEC (now D‐MEC) called its product Solid Creation System (SCS).
    [Show full text]