High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology

Total Page:16

File Type:pdf, Size:1020Kb

High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology materials Review A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology Paweł Fiedor 1 and Joanna Ortyl 1,2,* 1 Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; pawel.fi[email protected] 2 Photo HiTech Ltd., Bobrzy´nskiego14, 30-348 Cracow, Poland * Correspondence: [email protected] Received: 9 June 2020; Accepted: 29 June 2020; Published: 1 July 2020 Abstract: The following article introduces technologies that build three dimensional (3D) objects by adding layer-upon-layer of material, also called additive manufacturing technologies. Furthermore, most important features supporting the conscious choice of 3D printing methods for applications in micro and nanomanufacturing are covered. The micromanufacturing method covers photopolymerization-based methods such as stereolithography (SLA), digital light processing (DLP), the liquid crystal display–DLP coupled method, two-photon polymerization (TPP), and inkjet-based methods. Functional photocurable materials, with magnetic, conductive, or specific optical applications in the 3D printing processes are also reviewed. Keywords: 3D printing; high-resolution; additive manufacturing; photopolymerization; industry 4.0; stereolithography; two-photon polymerization 1. Introduction Three dimensional (3D) printing is currently an extremely important branch of Research and Development (R&D) departments. This is because of its rapid prototyping, swift elimination of design errors, and improvements of the product at the prototyping stage. This approach significantly accelerates the implementation of new solutions without incurring significant production costs and eliminating in-production testing of underdeveloped models. Thanks to 3D printing techniques, making a prototype with complex geometry has become possible in a short time with unprecedented precision [1]. Progressive computerization of manufacturing processes introduces us to a new era called Industry 4.0. This level of smart production was enabled by significant breakthroughs in artificial intelligence, robotics, nanotechnology, and 3D printing observed in the twenty-first century. Thanks to the extreme customization and personalization of production technologies, the practice of Industry 4.0 is an observed phenomenon in every section of manufacturing processes. The application of artificial intelligence (AI) algorithms for the preparation and transformation of 3D models significantly quickens and improves the quality of 3D figures. AI has been successfully applied in printability checking, slicing acceleration, nozzle path planning, and, among others, cloud service platforms [2]. Evolution of industry models are presented in Figure1. Materials 2020, 13, 2951; doi:10.3390/ma13132951 www.mdpi.com/journal/materials Materials 2020, 13, 2951 2 of 25 Materials 2020, 13, x FOR PEER REVIEW 2 of 25 FigureFigure 1. 1.Industrial Industrial revolution—from revolution—from Industry Industry 1.0 1.0 to to Industry Industry 4.0. 4.0. TheThe conceptconcept ofof Industry 4.0 is based onon encompassing encompassing a a combination combination of of traditional traditional manufacturing manufacturing andand industrialindustrial platformsplatforms and practices withwith the the latest latest smart smart technologies. technologies. TheThe industry industry has has just just begun begun to to adopt adopt additive additive manufacturing manufacturing methods,methods, which they use mainly toto prototype prototype and and produce produce individual individual items. items. WithWith IndustryIndustry 4.0,4.0, 3D3D printingprinting methods will be widely usedused to to produce produce small small batches batches of of made-to-order made-to-order products products thatthat oofferffer constructionconstruction advantages, such as complex,complex, lightweight lightweight designs designs [3 [3].]. TheThe flexibility flexibility of of 3D 3D printing printing opens opens the the way way for for sharing sharing productionproduction capacitiescapacities betweenbetween diverse companiescompanies for for better better utilization utilization of of assets assets and and supporting supporting growthgrowth andand willwill alsoalso open up opportunities toto share share production production capacities capacities between between di differentfferent companies,companies, therebythereby better utilizing these assets assets [4]. [4]. ResearchResearch projects projects such such as as Horizon Horizon 2020 2020 are are focused focused on on creating creating such such business business modelsmodels inin industry.industry. ManufacturersManufacturers have have implemented implemented 3D3D printingprinting technologiestechnologies throughthrough sevenseven didifferentfferent additive manufacturingmanufacturing processes: processes: powderpowder bedbed fusion,fusion, vatvat photopolymerization,photopolymerization, binder jetting, material extrusion,extrusion, directed directed energy energy deposition, deposition, material material jetting, jetting, and sheet and lamination.sheet lamination. Each method Each ismethod achieved is throughachieved a di throughfferent variation a different of variation 3D printing of technology,3D printing whichtechnology, varies which based onvaries its material based on state, its material sources state, sources of light or heat, print axes, feed systems, and post-production processing [5]. of light or heat, print axes, feed systems, and post-production processing [5]. • Powder bed fusion: It works by melting powder to fuse particles together. It is ideal for most Powder bed fusion: It works by melting powder to fuse particles together. It is ideal for most • types of manufacturing [6]. • typesVat photopolymerization: of manufacturing [6]. It uses a liquid instead of a powder or filament in its build platform Vat photopolymerization: It uses a liquid instead of a powder or filament in its build platform • and is a light-activated process. It is ideal for low-run injection molds [7,8]. • andDirected is a light-activated energy deposition: process. It uses It is highly ideal for focused low-run thermal injection energy molds delivered [7,8]. via a laser, electron Directedbeam, or energy plasma deposition: art to melt It uses and highly fuse focusedmaterial. thermal It is used energy exclusively delivered viain ametal laser, additive electron • beam,manufacturing or plasma [9,10]. art to melt and fuse material. It is used exclusively in metal additive • manufacturingMaterial jetting: [9, 10Tiny]. nozzles dispense droplets of a waxy photopolymer, layer by layer, which Materialis hardened jetting: via Tiny UV light. nozzles It is dispense ideal for droplets items requiring of a waxy high photopolymer, detail and high layer accuracy by layer, [11,12]. which is • • hardenedBinder jetting: via UV It light.is similar It is to ideal material for items jetting requiring but instead high uses detail a powdered and high material accuracy and [11 ,a12 binding]. Binderagent. jetting: It is primarily It is similar used to in material furniture jetting design but models instead [13,14]. uses a powdered material and a binding • • agent.Material It is extrusion: primarily A used thermoplastic in furniture filament design modelsis extruded [13, 14through]. a heated nozzle onto the build Materialplatform, extrusion: which solidifies A thermoplastic as it cools. filament It is the most is extruded commonly through referred a heated to additive nozzle manufacturing onto the build • platform,method whichwhen someone solidifies is as discussing it cools. It 3D is the printing most commonly[15,16]. referred to additive manufacturing • Sheet lamination: Ultra-thin layers of solid material are bonded by alternating layers of adhesive. method when someone is discussing 3D printing [15,16]. It is best used for non-functional models [17]. Sheet lamination: Ultra-thin layers of solid material are bonded by alternating layers of adhesive. • ItThe is best history used forof 3D non-functional printing in modelsits extremely [17]. turbulent beginnings revealed many ideas and solutions that have been verified by the market over time [18]. Among the ideas that have been developedThe history for commercialized of 3D printing in technologies its extremely based turbulent on the beginnings polymerization revealed of many liquid ideas resin and are solutions thermal thatprocessing have been of verifiedthermoplastic by the materi marketals, over melting/sintering time [18]. Among of metals, the ideas and thatmethods have creating been developed prints from for commercializedcomposite materials technologies or rubber. based The on list the of polymerization methods that should of liquid be resinhighlighted are thermal in the processing topic of 3D of thermoplasticprinting is presented materials, below melting [19]:/ sintering of metals, and methods creating prints from composite • Photopolymerization of liquid resin: Materials 2020, 13, 2951 3 of 25 materials or rubber. The list of methods that should be highlighted in the topic of 3D printing is presented below [19]: Photopolymerization of liquid resin: • o SLA—stereolithography, o DLP—digital light processing, o MJP—multijet printing, o BJ—binder jetting, o CAL—computed axial lithography, o SGC—solid ground curing, o CLIP—continuous liquid interface production. Thermal processing of thermoplastic polymers: • o FDM—fused deposition modeling, o BPM—ballistic particle manufacturing, o SLS—selective
Recommended publications
  • Accepted Article Preview
    ACCEPTED ARTICLE PREVIEW Accepted Article Preview: Published ahead of advance online publication Multi-material multi-photon 3D laser micro- and nanoprinting Liang Yang, Frederik Mayer, Uwe H. F. Bunz, Eva Blasco and Martin Wegener Cite this article as: Liang Yang, Frederik Mayer, Uwe H. F. Bunz, Eva Blasco and Martin Wegener. Multi-material multi-photon 3D laser micro- and nanoprinting. Light: Advanced Manufacturing accepted article preview 29 May 2021; doi: 10.37188/lam.2021.017 This is a PDF file of an unedited peer-reviewed manuscript that has been accepted for publication. LAM are providing this early version of the manuscript as a service to our customers. The manuscript will undergo copyediting, typesetting and a proof review before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply. Received 11 February 2021; revised 26 May 2021; accepted 26 May 2021; Accepted article preview online 29 May 2021 Multi-material multi-photonACCEPTED 3D laser ARTICLE micro- and nanoprinting PREVIEW Liang Yang 1, Frederik Mayer 1,2, Uwe H. F. Bunz 3,4, Eva Blasco 1,3,4 and Martin Wegener 1,2 1Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany 2Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany 3Institut für Organische Chemie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany 4Centre for Advanced Materials (CAM), Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225 and 270, 69120 Heidelberg, Germany Correspondence: Professor Martin Wegener, Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany E-mail: [email protected] Abstract: Three-dimensional (3D) laser micro- and nanoprinting based upon multi-photon absorption has made its way from early scientific discovery to industrial manufacturing processes, e.g., for advanced microoptical components.
    [Show full text]
  • A Review on Polymeric Materials in Additive Manufacturing ⇑ J.M
    Materials Today: Proceedings xxx (xxxx) xxx Contents lists available at ScienceDirect Materials Today: Proceedings journal homepage: www.elsevier.com/locate/matpr A review on polymeric materials in additive manufacturing ⇑ J.M. Jafferson , Debdutta Chatterjee VIT University Chennai Campus 600127, India article info abstract Article history: Polymers are the greatest innovation of the millennium. Due to their low price, ease of manufacture, Available online xxxx resistance to water and versatility, polymers have several applications in different domestic and indus- trial sectors. Digital fabrication technology which is also referred to as 3D printing or additive Keywords: Manufacturing (AM) is used for creating physical components from a geometrical representation by Polymeric materials step-by-step addition of materials. This review paper elaborates on the use of polymers for Rapid Additive manufacturing Manufacturing. One such material used is Shape Memory Polymers that have been analyzed as Smart Automotive Materials (4D Printing Materials). Polymers such as Thermoplastics, elastomers, thermosets, and poly- Drug delivery mers with integrated fillers, bio-polymers, and polymers blended with biological materials come under Fabric industry the range of other polymeric materials used in AM. The quality evaluations that are performed are based on mechanical properties, part density and temperature stability. Polycarbonates (PC), acrylonitrile buta- diene styrene (ABS), polyether-ester ketone (PEEK), polyetherimide (ULTEM) and Nylon are usually uti- lized polymers in measures which need thermoplastics, or plastics treated by warming to a semi-fluid state and near the softening point. Properties of materials were reviewed for example, Strength param- eters of a specific list of Polymeric Materials used in 3D printing was revised, where strength tests showed that material such as Polybutylene terephthalate has a high Yield Strength and Polypropylene has a high Ultimate Tensile Strength.
    [Show full text]
  • All-Printed Smart Structures: a Viable Option? John O’Donnella, Farzad Ahmadkhanloub, Hwan-Sik Yoon*A, Gregory Washingtonb Adept
    All-printed smart structures: a viable option? John O’Donnella, Farzad Ahmadkhanloub, Hwan-Sik Yoon*a, Gregory Washingtonb aDept. of Mechanical Engineering, The University of Alabama, Box 870276, Tuscaloosa, AL, USA 35487-0276; bDept. of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, USA 92697-3975 ABSTRACT The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure. Keywords: printed smart structures, 3D printing, printed electronics, printed strain sensor 1. INTRODUCTION Decades of research and development have seen the progression of a variety of different additive manufacturing processes [1]. From basic Fused Deposition modeling to the more intricate Energy Beam methods, the ability to print a diverse selection of structures, both complex and simple, on demand with accuracy and precision has become a reality.
    [Show full text]
  • High Speed Sintering for 3D Printing Applications
    High Speed Sintering for 3D printing applications High Speed Sintering for 3D printing applications Neil Hopkinson, Adam Ellis, Adam Strevens, Manolis Papastavrou and Torben Lange, Xaar plc Introduction High Speed Sintering (HSS) is a transformational inkjet-based 3D printing technology which is being further developed at Xaar by the original inventor, Prof. Neil Hopkinson. This 3D printing (also called Additive Manufacturing) technology involves depositing a fine layer of polymeric powder, after which inkjet printheads deposit a single IR (infrared) absorbing fluid directly onto the powder surface in the required cross-sectional pattern where sintering is desired. The entire build area is then irradiated with an infrared lamp, causing the printed fluid to absorb this energy and then melt and sinter (consolidate) the underlying powder. This process is then repeated layer by layer until the build is complete. The use of digital inkjet printing makes the process considerably faster than point based systems, for example those requiring a laser to sinter/melt material. As with all 3D printing processes there is no requirement for new moulds, plates or other design template related fixtures. High Speed Sintering is a self-supporting process; this means that solid, hollow and complex shapes with internal features are possible without the need to create and subsequently remove support structures, at much higher speeds than other additive manufacturing processes. Today there are many 3D printing technologies and several other sintering technologies available. This paper demonstrates how High Speed Sintering (HSS) fits in the 3D printing space as a fast and cost-effective route to develop and manufacture customised prototypes and products.
    [Show full text]
  • Three-Dimensional Mesostructures As High-Temperature Growth Templates
    Three-dimensional mesostructures as high-temperature PNAS PLUS growth templates, electronic cellular scaffolds, and self-propelled microrobots Zheng Yana,b,1, Mengdi Hanc,d,e,1, Yan Shif,g,h,i, Adina Badeaj, Yiyuan Yangk, Ashish Kulkarnic,d, Erik Hansonl, Mikhail E. Kandelm, Xiewen Wenn, Fan Zhangf,g,h, Yiyue Luoc,d, Qing Linc,d, Hang Zhangf,g,h, Xiaogang Guof,g,h, Yuming Huangc,d, Kewang Nano, Shuai Jian, Aaron W. Orahamj, Molly B. Mevisj, Jaeman Limc,d, Xuelin Guoc,d, Mingye Gaoc,d, Woomi Ryuc,d, Ki Jun Yup, Bruno G. Nicolauj, Aaron Petronicoj, Stanislav S. Rubakhinj, Jun Loun, Pulickel M. Ajayann, Katsuyo Thorntonl, Gabriel Popescum, Daining Fangq,r, Jonathan V. Sweedlerj, Paul V. Braunc,d, Haixia Zhange, Ralph G. Nuzzoc,d,j, Yonggang Huangk,s,t, Yihui Zhangf,g,h,2, and John A. Rogersk,t,u,v,w,x,y,2 aDepartment of Chemical Engineering, University of Missouri, Columbia, MO 65211; bDepartment of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211; cDepartment of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801; dFrederick Seitz Materials Research Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801; eNational Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, People’s Republic of China; fCenter for Mechanics and Materials, Tsinghua University, Beijing 100084, People’s Republic of China; gCenter for Flexible Electronics Technology, Tsinghua University, Beijing 100084, People’s Republic of
    [Show full text]
  • Call for Papers | 2022 MRS Spring Meeting
    Symposium CH01: Frontiers of In Situ Materials Characterization—From New Instrumentation and Method to Imaging Aided Materials Design Advancement in synchrotron X-ray techniques, microscopy and spectroscopy has extended the characterization capability to study the structure, phonon, spin, and electromagnetic field of materials with improved temporal and spatial resolution. This symposium will cover recent advances of in situ imaging techniques and highlight progress in materials design, synthesis, and engineering in catalysts and devices aided by insights gained from the state-of-the-art real-time materials characterization. This program will bring together works with an emphasis on developing and applying new methods in X-ray or electron diffraction, scanning probe microscopy, and other techniques to in situ studies of the dynamics in materials, such as the structural and chemical evolution of energy materials and catalysts, and the electronic structure of semiconductor and functional oxides. Additionally, this symposium will focus on works in designing, synthesizing new materials and optimizing materials properties by utilizing the insights on mechanisms of materials processes at different length or time scales revealed by in situ techniques. Emerging big data analysis approaches and method development presenting opportunities to aid materials design are welcomed. Discussion on experimental strategies, data analysis, and conceptual works showcasing how new in situ tools can probe exotic and critical processes in materials, such as charge and heat transfer, bonding, transport of molecule and ions, are encouraged. The symposium will identify new directions of in situ research, facilitate the application of new techniques to in situ liquid and gas phase microscopy and spectroscopy, and bridge mechanistic study with practical synthesis and engineering for materials with a broad range of applications.
    [Show full text]
  • Influence of the Printing Parameters on the Stability of the Deposited Beads in Fused Filament Fabrication of Poly(Lactic) Acid
    Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: http://oatao.univ-toulouse.fr/20922 Official URL : https://doi.org/10.1016/j.addma.2018.10.012 To cite this version: Bakrani Balani, Shahriar and Chabert, France and Nassiet, Valérie and Cantarel, Arthur Influence of the printing parameters on the stability of the deposited beads in Fused Filament Fabrication of poly(lactic) acid. Vol. 25, pp. 112-121 (2019) Additive Manufacturing. Any correspondence concerning this service should be sent to the repository administrator: [email protected] Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid Shahriar Bakrani Balani 1, 2, a), France Chabert 1, b), Valérie Nassiet 1, c), Arthur Cantarel 2, d), 1 LGP-ENIT-INPT, University of Toulouse, 47 Avenue d’Azereix, BP1629-65016 Tarbes Cedex, France Web Page: http://www.enit.fr/ 2 Institut Clément Ader (ICA), CNRS UMR 5312, University of Toulouse, IUT of Tarbes, UPS, France Web Page: http://www.institut-clement-ader.org/ Corresponding author: b) [email protected] a) [email protected] c) [email protected] d) [email protected] Abstract: Fused filament fabrication (FFF) is one of the various types of additive manufacturing processes. Similar to other types, FFF enables free-form fabrication and optimised structures by using polymeric filaments as the raw material. This work aims to optimise the printing conditions of the FFF process based on reliable properties, such as printing parameters and physical properties of polymers.
    [Show full text]
  • 3D Printing System for Ceramic Materials: Design and Testing of an Experimental Rig
    3D printing system for ceramic materials: design and testing of an experimental rig Armand Yahnn Fabrice Chefdor Thesis to obtain the Master of Science Degree in Mechanical Engineering Supervisors : Prof. Marco Alexandre de Oliveira Leite Prof. António Manuel Relógio Ribeiro Examination Committee Chairperson : Prof. Luís Filipe Galrão dos Reis Supervisor : Prof. Marco Alexandre de Oliveira Leite Member of the Committee : Prof. Bruno Alexandre Rodrigues Simões Soares July 2018 Acknowledgements Primarily, I would like to express my gratitude to my supervisors from the Mechanical Engineering Department, Professor Marco Alexandre De Oliveira Leite and Professor António Manuel Relógio Ribeiro, as well as Professor Ana Paula Valagão Amadeu do Serro from the chemical department. They all did an outstanding job by granting me support, knowledge and valuable insight into this interesting subject. I would also like to thank my former colleagues from iMakr who introduced me to the capacities of additive manufacturing and took the time to provide me useful knowledge for this following topic. I would likewise thank my colleagues from the chemical department and the Lab2Prod for their guidance and generous help with diverse tasks regarding my work. Finally, I gratefully acknowledge all the people who allow the Erasmus exchange program to exist, and thus helped me to stay at Técnico for this semester. On the other hand, I do not wish to thank my Erasmus friends who often found a way to take my concentration away from this subject. II Abstract In the context of a constantly growing additive manufacturing market, many processes are acquiring important statuses in the medical field.
    [Show full text]
  • Opas 3D-Tulostuksen Yleisimpiin Tekniikoihin Ja Niiden Haasteiden Ratkaisemiseen
    JOONAS KORTELAINEN Opas 3D-tulostuksen yleisimpiin tekniikoihin ja niiden haasteiden ratkaisemiseen AUTOMAATIOTEKNOLOGIAN KOULUTUSOHJELMA 2019 Tekijä(t) Julkaisun laji Päivämäärä Kortelainen, Joonas Opinnäytetyö, ylempi AMK Joulukuu 2019 Sivumäärä Julkaisun kieli 91 Suomi Julkaisun nimi Opas 3D-tulostuksen yleisimpiin tekniikoihin ja niiden haasteiden ratkaisemiseen Tutkinto-ohjelma Automaatioteknologian koulutusohjelma Tä ssä opinnäytetyössä tuotettiin opas 3D-tulostuksen yleisimpiin ongelmatilanteisiin ja niiden ratkaisemiseen. Käsiteltäviksi 3D-tulostusteknologioiksi valittiin FDM- ja MSLA-teknologiat niiden yleisyyden vuoksi. Tämä tutkimus toteutettiin konkreettisin menetelmin, kokeilemalla ja tuottamalla on- gelmatapauksia tarkoituksella, sekä ratkaisemalla niitä saatavilla olevin keinoin sekä kokemuksen tuoman ratkaisukeskeisen toimintatavan avulla. Tuloksena on tämä opinnäytetyön muotoon kirjoitettu opas valittujen 3D-tulostustek- niikoiden yleisimpiin ongelmiin ja niiden ratkaisuihin. Ratkaisut näihin ongelmiin on tuotu esille ytimekkäästi sekä konkreettisin askelein. Lopuksi oli hyvä huomata, kuinka paljon ongelmia 3D-tulostamisessa näillä valituilla teknologioilla oikeastaan on. Käsitellyt ongelmat ovat yleisimpiä näillä tulostusteknii- koilla esille tulevia ongelmia, mutta muitakin ongelmia saattaa esiintyä. Asiasanat 3D-tulostus, ongelmanratkaisu, 3D-tulostimet Author(s) Type of Publication Date Kortelainen, Joonas Master’s thesis December 2019 ThesisNumberAMK of pages Language of publication: 91 Finnish Title of publication
    [Show full text]
  • A Study on 3D Printing and Its Effects on the Future of Transportation
    CAIT-UTC-NC19 A Study on 3D Printing and its Effects on the Future of Transportation September 2018 Submitted by: Omar Jumaah, Doctoral Candidate Department of Mechanical and Aerospace Engineering Rutgers, The State University of New Jersey 98 Brett Road Piscataway, NJ 08854-8058 [email protected] External Project Manager Patrick Szary, PhD Associate Director, CAIT Central Administration Rutgers, The State University of New Jersey 100 Brett Road Piscataway, NJ 08854-8058 [email protected] In cooperation with Rutgers, The State University of New Jersey & State of Department of Transportation & U.S. Department of Transportation Federal Highway Administration i Disclaimer Statement The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The Center for Advanced Infrastructure and Transportation (CAIT) is a National UTC Consortium led by Rutgers, The State University. Members of the consortium are the University of Delaware, Utah State University, Columbia University, New Jersey Institute of Technology, Princeton University, University of Texas at El Paso, Virginia Polytechnic Institute, and University of South Florida. The Center is funded by the U.S. Department of Transportation. ii CAIT-UTC-NC19 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. CAIT-UTC-NC19 4. Title and Subtitle 5. Report Date A Study on 3D Printing and its Effects on the Future of Transportation September 2018 6.
    [Show full text]
  • Additive Manufacture of Three Dimensional Nanocomposite Based Objects Through Multiphoton Fabrication
    polymers Article Additive Manufacture of Three Dimensional Nanocomposite Based Objects through Multiphoton Fabrication Yaan Liu 1, Qin Hu 1, Fan Zhang 1, Christopher Tuck 1, Derek Irvine 1, Richard Hague 1, Yinfeng He 1, Marco Simonelli 1, Graham A. Rance 2, Emily F. Smith 2 and Ricky D. Wildman 1,* 1 Faculty of Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, UK; [email protected] (Y.L.); [email protected] (Q.H.); [email protected] (F.Z.); [email protected] (C.T.); [email protected] (D.I.); [email protected] (R.H.); [email protected] (Y.H.); [email protected] (M.S.) 2 Nanoscale and Microscale Research Centre, The University of Nottingham, University Park, Nottingham NG7 2RD, UK; [email protected] (G.A.R.); [email protected] (E.F.S.) * Correspondence: [email protected]; Tel.: +44-115-8466-893 Academic Editor: Georg von Freymann Received: 25 May 2016; Accepted: 4 August 2016; Published: 1 September 2016 Abstract: Three-dimensional structures prepared from a gold-polymer composite formulation have been fabricated using multiphoton lithography. In this process, gold nanoparticles were simultaneously formed through photoreduction whilst polymerisation of two possible monomers was promoted. The monomers, trimethylopropane triacrylate (TMPTA) and pentaerythritol triacrylate (PETA) were mixed with a gold salt, but it was found that the addition of a ruthenium(II) complex enhanced both the geometrical uniformity and integrity of the polymerised/reduced material, enabling the first production of 3D gold-polymer structures by single step multiphoton lithography.
    [Show full text]
  • Near-Field Multiphoton Nanolithography Using an Apertureless Optical Probe
    Invited Paper Near-Field Multiphoton Nanolithography Using an Apertureless Optical Probe Xiaobo Yin, Nicholas Fang, Xiang Zhang* Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles CA, 90095 Ignacio B. Martini and Benjamin J. Schwartz Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1569 ABSTRACT Near-field multiphoton optical lithography is demonstrated by using ~120 fs laser pulses at 790 nm in an apertureless near-field optical microscope, which produce the lithographic features with ~ 70 nm resolution. The technique takes advantage of the field enhancement at the extremity of a metallic probe to induce nanoscale multiphoton absorption and polymerization in a commercial photoresist, SU-8. Even without optimization of the resist or laser pulses, the spatial resolution of this technique is as high as λ/10, nearly a factor of two smaller than the previous multiphoton lithography in the far field. Keywords: near field, multiphoton, lithography 1. INTRODUCTION There has been great recent excitement over the development of techniques for exceeding the diffraction limit in high-resolution optical imaging and photolithographic nanometer-scale device fabrication. In particular, there have been two different approaches to improving optical resolution below the limits dictated by diffraction. The first approach takes advantage of the nanoscale aperture of a near-field scanning optical microscope (NSOM) probe[1-3], while the second approach is based on the non-linear absorption of light by a chromophore exposed to an intense electromagnetic field [4,5]. The NSOM approach to improved spatial resolution takes advantage of the small, nanometer-sized aperture formed by a metal-coated optical fiber tip from which light can be either directed to or collected from the sample.
    [Show full text]