Appendix a Definitions and Symbols

Total Page:16

File Type:pdf, Size:1020Kb

Appendix a Definitions and Symbols Appendix A Definitions and Symbols A.1 Symbols and Conversion Factors A absorptivity a distance aperture b net increase in number of molecules per formula unit; b = μ − 1 C constant C Euler’s constant; C = 0.577 Cp heat capacity c speed of light; c = 2.998 ×1010 cm/s cp specific heat at constant pressure [J/gK, J/molK] cv specific heat at constant volume [J/gK, J/molK] D heat diffusivity [cm2/s] transmittivity 2 Di molecular diffusion coefficient of species i [cm /s] d lateral width of laser-processed features [μm, cm] diameter E electric field [V/cm] energy [J] −2 kBT (T = 273.15 K) = 2.354 ×10 eV 1 kcal/mol =# 0.043 eV =# 5.035 ×102 K 1eV=# 1.1604 ×104 K =# 1.602 ×10−19 J 1 kcal =# 4.187 ×103 J 1cm−1 =# 1.24 ×10−4 eV =# 1.439 K 1J=# 2.39 ×10−4 kcal EF Fermi energy E activation temperature [K]; E = E/kB E ∗ normalized activation temperature; E ∗ = E /T (∞) E activation energy [eV; kcal/mol] Em activation energy for melting Ev activation energy for vaporization at Tb D. Bäuerle, Laser Processing and Chemistry, 4th ed., 739 DOI 10.1007/978-3-642-17613-5, C Springer-Verlag Berlin Heidelberg 2011 740 Appendix A Eg bandgap energy = energy distance between (lowest) conduction and (highest) valence bands E laser-pulse energy [J] e elementary charge; e = 1.602 ×10−19 C ee≈ 2.718 eV electron Volt 1eV/particle = 23.04 kcal/mol F area Faraday constant; F = 96485 C/mol f focal length [cm] Gr Grashof number G Gibbs free energy g acceleration due to gravity gT temperature discontinuity coefficient H total enthalpy [J/cm3,J/g, J/mol] reaction enthalpy H a [J/atom]= H [J/cm3]·M/ρL = H [J/g]·M/L = H [J/mol]/L Hv heat of vaporization at Tb Hm heat of melting Ht total latent heat Ht = Hm + Hv h Planck’s constant; h = 6.626 ×10−34 Js ◦ height, thickness or depth of laser-processed patterns [A, μm] h1 thickness of single evaporated or sputtered layer on a substrate hi thickness of layer i on a substrate hl thickness of a liquid layer, or an adsorbate hs thickness of slab or substrate h change in layer thickness ◦ ablated layer thickness per pulse [A/pulse] hν photon energy hν[eV]≈1240/λ[nm] I intensity [W/cm2] Ia absorbed laser-light intensity Ith threshold intensity Iv evaporation intensity J flux 2 Ji flux of species i [species/cm s] j current density K force k kinetic (rate) constant k0 pre-exponential factor −23 kB Boltzmann constant; kB = 1.381 ×10 Ws/K rec ki recombination constant for species i k wavevector of laser radiation kT thermal diffusion ratio Appendix A 741 L Avogadro number (Loschmidt number); L = 6.022 ×1023 /mol L Langmuir [1 L = 10−6 Torr s] l characteristic length, depth [μm] lT heat-diffusion length [μm] − lα optical penetration depth [μm]; lα = α 1 M molar mass [g/mol] m mass exponent, e.g., in κ(T ) N total number of species (atoms, molecules, electrons, holes, etc.) per volume [cm−3] or per area [cm−2] −3 Ni number of species i per volume [cm ] or per area [cm−2] N number of laser pulses n refractive index (real part) exponent, e.g., in Di (T ) n normal vector nˆ unit vector √ n˜ complex refractive index; n˜ = ε = n + iκa ≡ n(1 + iκ0) P laser power [W] Pa absorbed laser power [W] p total gas pressure [mbar] 1 mbar =# 102 N/m2 =# 102 Pa ≈ 0.750 Torr =# 1.02 ×10−3 at[kp/cm2] =# 9.87 ×10−4 atm 1atm=# 2.688 ×1019[species/cm3] pi partial pressure of species i [mbar] Q source term q exponent, e.g., in equation of state q wavevector R optical (power) reflectivity electrical resistance ["] R sheet resistance ["/] RD optical reflection coefficient of deposited material RG gas constant; RG = 8.314 J/Kmol =# 1.987 cal/Kmol Ra Rayleigh number r radial distance rD radius of deposit S stress oversaturation S Poynting vector energy flux [J/cm2s] s sticking coefficient T temperature [K] Tb boiling temperature Tc center temperature 742 Appendix A Tg gas-phase temperature Tl temperature within liquid TM temperature within medium Tm melting temperature Ts substrate temperature surface temperature Tst stationary temperature Tth threshold temperature Tv temperature of vapor T (∞) temperature far away from irradiated zone T temperature rise T ∗ normalized temperature, e.g., T/T (∞) t time tv time to reach Tst (Fig. 11.2.2) t time interval tm time of existence of melt on surface V volume [cm3] Vn volume per molecule/atom v velocity [cm/s] mass average velocity vls velocity of liquid–solid interface vvl velocity of vapor–liquid interface v0 sound velocity vs scanning velocity of laser beam or substrate [μm/s] v thermal velocity of gas molecules W reaction rate heterogeneous reactions [number of species/scm2] homogeneous reactions [number of species/scm3] ◦ WA ablation rate [μm/s; A/pulse] ◦ WD deposition rate [μm/s; A/pulse] ◦ WE etch rate [μm/s; A/pulse] Wex excitation rate w radius of laser focus with constant intensity distribution [μm] radius of laser focus at FWHM √ 2 we radius of laser focus (1/e intensity); we = 2w0 w0 radius of laser focus of Gaussian beam (1/e intensity) [μm] w probability width of reaction zone xi molar ratio of species i; xi = Ni /N x, xα set of space coordinates with α = 1, 2, 3, e.g., x, y, z Y Young’s modulus Z number of condensed atoms per molecule z charge of ions in units of e zR Rayleigh length of laser focus [μm] Appendix A 743 α optical absorption coefficient [cm−1] αT thermal diffusion constant β exchange coefficient exponent parameter symmetry factor factor βT coefficient of thermal expansion Γ increment parameter ratio aspect ratio [ratio of depth or height to width]; Γ = h/d γ exponent total reaction order adiabatic index; γ = cp/cv;1<γ ≤ 5/3 real part of increment γi reaction order with respect to species i difference δ delta function parameter ε dielectric constant permittivity spectral emissivity εa apparent emissivity −12 ε0 dielectric constant in vacuum; ε0 = 8.854 ×10 As/Vm εt total emissivity ζ parameter integer factor ζi stoichiometric coefficient of species i η dissociation yield dynamic viscosity [g/cm s]; η = ρνk reaction probability surface conductance [coefficient of surface heat transfer] [W/cm2K] % angle θ linearized temperature θ c center-temperature√ rise for Gaussian beam; θc = π Iaw0/2κ,see(7.1.4) %i coverage by species i ϑ angle κ thermal conductivity [W/cm K]; 1W/mK=# 2.39 ×10−3 cal/cmKs κa absorption index κa = nκ0 κD thermal conductivity of deposit κL, κ1 thermal conductivity of thin layer 744 Appendix A κM thermal conductivity of medium κs thermal conductivity of substrate κ0 attenuation index Λ parameter spacing function λ wavelength of electromagnetic radiation [nm, μm] λ[nm]≈1240/hν [eV] λm mean free path of molecules [cm] μ factor index integer chemical potential Poisson ratio μ = b + 1 2 μe, μh mobility of electrons and holes [cm /Vs] ν frequency [s−1] index 2 νk kinematic viscosity [cm /s] νr laser-pulse-repetition rate [Hz] ξ overpotential parameter product parameter π 3.14159 ρ electrical resistivity [" cm] 3 mass density [g/cm ] summation sign e.g., a ± b ∓ c ≡ (a + b − c) + (a − b + c) ± σ electrical conductivity [" cm]−1 surface tension [J/cm2] excitation cross section of species [cm2] −12 2 4 σr Stefan–Boltzmann constant; σr = 5.67 ×10 W/cm K τ relaxation time [s] τ laser-pulse duration [s] laser-beam dwell time [s]; τ = 2w/vs τm time for surface melting τT thermal relaxation time [s] Φ electrical potential φ laser fluence [J/cm2] angle φth threshold fluence ϕ angle Appendix A 745 χ magnetic susceptibility parameter Ψ function ψ wave function " total solid angle; " = 4π Ohm d" solid angle [sr] ω angular frequency [s−1]; ω = 2πν ⊥ normal (perpendicular) parallel ∇2 Laplace operator ∇ Nabla operator A.2 Abbreviations, Acronyms − acac [CH3COCHCOCH3] = acetylacetonate anion AdGC allyl-diglycol-carbonate AES Auger electron spectroscopy ALE atomic layer epitaxy AM1 sunlight illumination APD ablative photodecomposition BBS barium aluminum borosilicate BK7 boron crown glass CAD computer-aided design CAM computer-aided manufacturing CARS coherent anti-Stokes Raman scattering CBE chemical beam epitaxy CCD charge-coupled device CMR colossal magnetoresistance, same as GMR CPA chirped-pulse amplification CVD chemical vapor deposition DLC diamond-like carbon; dry laser cleaning EAL etching of atomic layers; excimer-laser ablation lithography EB electron beam EBCVD electron-beam-induced chemical vapor deposition EBE electron-beam evaporation EDX energy-dispersive X-ray analysis EELS electron-energy-loss spectroscopy EMF electromotive force ESCA electron spectroscopy for chemical analysis ESR electron spin resonance FEP tetrafluoroethylene-hexafluoropropylene FH fourth harmonic Foturan lithium aluminosilicate glass doped with (photoactive) Ce 746 Appendix A FWHM full width at half maximum GMR giant magnetoresistance HAZ heat-affected zone − hfacac [CF3COCHCOCF3] = hexafluoroacetylacetonate anion HPDS hexaphenyldisilane HTS high-temperature superconductors HV high vacuum (10−7 < p < 10−3 mbar) IBAD ion-beam assisted deposition IC integrated circuit IR infrared radiation ITO indium tin oxide Kapton polyimide (Du Pont) LA laser annealing LAL laser-ablation lithography LC laser cleaning; liquid crystal LCP laser-induced chemical processing LCVD laser-induced CVD LEC laser-enhanced electrochemistry LEE laser-enhanced electrochemical etching LEED low-energy electron diffraction LEP laser-enhanced electrochemical plating LI laser implantation LID laser-induced desorption LIF laser-induced fluorescence LIFT laser-induced forward transfer LIS laser isotope separation LMBE laser molecular beam epitaxy LPCVD laser-enhanced PCVD LPE laser-enhanced plasma etching LPPC laser-pulsed plasma chemistry LSA laser-surface
Recommended publications
  • The Wilman Collection
    The Wilman Collection Martel Maides Auctions The Wilman Collection Martel Maides Auctions The Wilman Collection Martel Maides Auctions The Wilman Collection Lot 1 Lot 4 1. A Meissen Ornithological part dessert service 4. A Derby botanical plate late 19th / early 20th century, comprising twenty plates c.1790, painted with a central flower specimen within with slightly lobed, ozier moulded rims and three a shaped border and a gilt line rim, painted blue marks square shallow serving dishes with serpentine rims and and inscribed Large Flowerd St. John's Wort, Derby rounded incuse corners, each decorated with a garden mark 141, 8½in. (22cm.) diameter. or exotic bird on a branch, the rims within.ects gilt £150-180 edges, together with a pair of large square bowls, the interiors decorated within.ects and the four sides with 5. Two late 18th century English tea bowls a study of a bird, with underglaze blue crossed swords probably Caughley, c.1780, together with a matching and Pressnumern, the plates 8¼in. (21cm.) diameter, slop bowl, with floral and foliate decoration in the dishes 6½in. (16.5cm.) square and the bowls 10in. underglaze blue, overglaze iron red and gilt, the rims (25cm.) square. (25) with lobed blue rings, gilt lines and iron red pendant £1,000-1,500 arrow decoration, the tea bowls 33/8in. diameter, the slop bowl 2¼in. high. (3) £30-40 Lot 2 2. A set of four English cabinet plates late 19th century, painted centrally with exotic birds in Lot 6 landscapes, within a richly gilded foliate border 6.
    [Show full text]
  • Catalogue Monthly Antique, Vintage & Collectibles
    The Auction Barn Pty Ltd Phone 02 6239 2095 9 Wiluna Street www.theauctionbarn.com.au Fyshwick ACT 2609 Catalogue Monthly Antique, Vintage & Collectibles Auction Date and Time: 2019-08-25 10:30:00 Auction Type: Pre-Bid To be held at: 10 Wiluna St, Fyshwick Terms: Cash, EFTPOS, Visa and MasterCard (a 1.6% surchargeapplies to Credit Card Payments) Lot Description Closing Time Lot 1 105mm Military Mortar Shell 06:47 AM Lot 2 1970 Yalumba 2 Litre Magnum Shiraz-Cabernet-Malbec 06:47 AM Lot 3 Vintage Porcelain Character Jug - 27 cm 06:47 AM Lot 4 Large Oriental Metal Teapot - 62 cm 06:47 AM Lot 5 Vintage Waterford Crystal Three Wise Men Figurines 06:47 AM Lot 6 Vintage Foot's Artwork Cast Bronze Mermaid on Rock Sculpture Signed on Back 06:47 AM Lot 7 <p>Pair of Vintage Floral Cloisonne Vases 16 cm</p> 06:47 AM Lot 8 Vintage Style Cast Bronze Oriental Shoemaker Sculpture Signed to Base 06:47 AM Lot 9 Mats Jonasson Moose Paperweight 06:47 AM Lot 10 Chrome Clock/Barometer with Gemset World Globe Above 06:47 AM Lot 11 Vintage Replica WUI 2000 Cast Metal Horse & Foal Figurine 06:47 AM Lot 12 Art Deco Yalumba Niblick Bottle with Original Bakelite Lid - S. Smith & Son - Angaston SA 06:47 AM Lot 13 White Hand Blown Art Glass Polar Bear Figurine and a Small Bud Vase 06:47 AM Lot 14 Reproduction Cast Aluminium Negro Mechanical Money box 06:47 AM Lot 15 Antique Hallmarked Silver Levi & Salaman Birmingham c1909 Pierced Dish and an 800 Silver Dish 06:47 AM Lot 16 Two Oriental Silver Filigree Figures - Fish and Rickshaw with Driver 06:47 AM Lot 17 Swarovski
    [Show full text]
  • Chapter 22 Reflection and Refraction of Light
    Chapter 22 Reflection and Refraction of Light Problem Solutions 22.1 The total distance the light travels is d2 Dcenter to R Earth R Moon center 2 3.84 108 6.38 10 6 1.76 10 6 m 7.52 10 8 m d 7.52 108 m Therefore, v 3.00 108 m s t 2.51 s 22.2 (a) The energy of a photon is sinc nair n prism 1.00 n prism , where Planck’ s constant is 1.00 8 sinc sin 45 and the speed of light in vacuum is c 3.00 10 m s . If nprism 1.00 1010 m , 6.63 1034 J s 3.00 10 8 m s E 1.99 1015 J 1.00 10-10 m 1 eV (b) E 1.99 1015 J 1.24 10 4 eV 1.602 10-19 J (c) and (d) For the X-rays to be more penetrating, the photons should be more energetic. Since the energy of a photon is directly proportional to the frequency and inversely proportional to the wavelength, the wavelength should decrease , which is the same as saying the frequency should increase . 1 eV 22.3 (a) E hf 6.63 1034 J s 5.00 10 17 Hz 2.07 10 3 eV 1.60 1019 J 355 356 CHAPTER 22 34 8 hc 6.63 10 J s 3.00 10 m s 1 nm (b) E hf 6.63 1019 J 3.00 1029 nm 10 m 1 eV E 6.63 1019 J 4.14 eV 1.60 1019 J c 3.00 108 m s 22.4 (a) 5.50 107 m 0 f 5.45 1014 Hz (b) From Table 22.1 the index of refraction for benzene is n 1.501.
    [Show full text]
  • Three-Dimensional Mesostructures As High-Temperature Growth Templates
    Three-dimensional mesostructures as high-temperature PNAS PLUS growth templates, electronic cellular scaffolds, and self-propelled microrobots Zheng Yana,b,1, Mengdi Hanc,d,e,1, Yan Shif,g,h,i, Adina Badeaj, Yiyuan Yangk, Ashish Kulkarnic,d, Erik Hansonl, Mikhail E. Kandelm, Xiewen Wenn, Fan Zhangf,g,h, Yiyue Luoc,d, Qing Linc,d, Hang Zhangf,g,h, Xiaogang Guof,g,h, Yuming Huangc,d, Kewang Nano, Shuai Jian, Aaron W. Orahamj, Molly B. Mevisj, Jaeman Limc,d, Xuelin Guoc,d, Mingye Gaoc,d, Woomi Ryuc,d, Ki Jun Yup, Bruno G. Nicolauj, Aaron Petronicoj, Stanislav S. Rubakhinj, Jun Loun, Pulickel M. Ajayann, Katsuyo Thorntonl, Gabriel Popescum, Daining Fangq,r, Jonathan V. Sweedlerj, Paul V. Braunc,d, Haixia Zhange, Ralph G. Nuzzoc,d,j, Yonggang Huangk,s,t, Yihui Zhangf,g,h,2, and John A. Rogersk,t,u,v,w,x,y,2 aDepartment of Chemical Engineering, University of Missouri, Columbia, MO 65211; bDepartment of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211; cDepartment of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801; dFrederick Seitz Materials Research Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL 61801; eNational Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, People’s Republic of China; fCenter for Mechanics and Materials, Tsinghua University, Beijing 100084, People’s Republic of China; gCenter for Flexible Electronics Technology, Tsinghua University, Beijing 100084, People’s Republic of
    [Show full text]
  • New Editions 2012
    January – February 2013 Volume 2, Number 5 New Editions 2012: Reviews and Listings of Important Prints and Editions from Around the World • New Section: <100 Faye Hirsch on Nicole Eisenman • Wade Guyton OS at the Whitney • Zarina: Paper Like Skin • Superstorm Sandy • News History. Analysis. Criticism. Reviews. News. Art in Print. In print and online. www.artinprint.org Subscribe to Art in Print. January – February 2013 In This Issue Volume 2, Number 5 Editor-in-Chief Susan Tallman 2 Susan Tallman On Visibility Associate Publisher New Editions 2012 Index 3 Julie Bernatz Managing Editor Faye Hirsch 4 Annkathrin Murray Nicole Eisenman’s Year of Printing Prodigiously Associate Editor Amelia Ishmael New Editions 2012 Reviews A–Z 10 Design Director <100 42 Skip Langer Design Associate Exhibition Reviews Raymond Hayen Charles Schultz 44 Wade Guyton OS M. Brian Tichenor & Raun Thorp 46 Zarina: Paper Like Skin New Editions Listings 48 News of the Print World 58 Superstorm Sandy 62 Contributors 68 Membership Subscription Form 70 Cover Image: Rirkrit Tiravanija, I Am Busy (2012), 100% cotton towel. Published by WOW (Works on Whatever), New York, NY. Photo: James Ewing, courtesy Art Production Fund. This page: Barbara Takenaga, detail of Day for Night, State I (2012), aquatint, sugar lift, spit bite and white ground with hand coloring by the artist. Printed and published by Wingate Studio, Hinsdale, NH. Art in Print 3500 N. Lake Shore Drive Suite 10A Chicago, IL 60657-1927 www.artinprint.org [email protected] No part of this periodical may be published without the written consent of the publisher.
    [Show full text]
  • All What You Need About Glass in the Czech Republic
    ALL WHAT YOU NEED ABOUT GLASS IN THE CZECH REPUBLIC ... For any further information, please do not hesitate to contact the Commercial Councilor of the Embassy of the Czech Republic in Athens tel. 210 6713755, fax: 210 6710675, e-mail: [email protected] Association of the Glass and Ceramic Industry of the Czech Republic Address: Sámova 1, 101 00 Praha 10, Czech Republic Telephone: 00420 271 745 888 Fax: 00420 271 745 888 E-mail: [email protected] Website: www.askpcr.cz President: Ing.Petr Mazzolini Office of the secretary: Ing. Magda Purkrábková - executive secretary Jiřina Kotvová - assistant PRECIOSA, a.s. Opletalova 3197, 466 67 Jablonec nad Nisou Tel: +420 - 483 225 111 Fax: +420 - 483 311 761 E-mail: [email protected] Web: http://www.preciosa.com Directors: Ing. Ludvík Karl Export regions: worldwide No.of Employees: 5,000 Products: Candelabra, candlesticks, glass, Hollow glassware for domestic and catering use. Crystal glassware, Glassware, handmade, Glass products, Souvenirs, non-promotional giftware and novelties CRYSTALEX a.s. B.Egermanna 634, 473 13 Nový Bor Tel: +420 - 487 741 111 Fax: +420 - 487 726 250 E-mail: [email protected] Web: http://www.crystalex.cz Office Hours: Mo-Fr 7.00-16.00 Directors: Ing. Oldřich Karas Turnover: 2,030,000,000 CZK (2002) Export Turnover: 1,000,000,000 CZK No.of Employees: 1,500 Products and services: Hollow glassware for domestic and catering use. Crystal glassware, Hollow glassware for domestic and catering use. Crystal glassware (cont'd) MOSER, a.s. Kpt. Jaroše 46/19, 360 06 Karlovy Vary Tel: +420 - 353 416 111, +420 - 353 416 117 Fax: +420 - 353 449 619 E-mail: [email protected] Web: http://www.moser-glass.com Contact persons: Ing.
    [Show full text]
  • Download New Glass Review 15
    eview 15 The Corning Museum of Glass NewGlass Review 15 The Corning Museum of Glass Corning, New York 1994 Objects reproduced in this annual review Objekte, die in dieser jahrlich erscheinenden were chosen with the understanding Zeitschrift veroffentlicht werden, wurden unter that they were designed and made within der Voraussetzung ausgewahlt, daB sie inner- the 1993 calendar year. halb des Kalenderjahres 1993 entworfen und gefertigt wurden. For additional copies of New Glass Review, Zusatzliche Exemplare der New Glass Review please contact: konnen angefordert werden bei: The Corning Museum of Glass Sales Department One Museum Way Corning, New York 14830-2253 Telephone: (607) 937-5371 Fax: (607) 937-3352 All rights reserved, 1994 Alle Rechte vorbehalten, 1994 The Corning Museum of Glass The Corning Museum of Glass Corning, New York 14830-2253 Corning, New York 14830-2253 Printed in Frechen, Germany Gedruckt in Frechen, Bundesrepublik Deutschland Standard Book Number 0-87290-133-5 ISSN: 0275-469X Library of Congress Catalog Card Number Aufgefuhrt im Katalog der Library of Congress 81-641214 unter der Nummer 81 -641214 Table of Contents/lnhalt Page/Seite Jury Statements/Statements der Jury 4 Artists and Objects/Kunstlerlnnen und Objekte 10 Bibliography/Bibliographie 30 A Selective Index of Proper Names and Places/ Ausgewahltes Register von Eigennamen und Orten 58 etztes Jahr an dieser Stelle beklagte ich, daB sehr viele Glaskunst- Jury Statements Ller aufgehort haben, uns Dias zu schicken - odervon vorneherein nie Zeit gefunden haben, welche zu schicken. Ich erklarte, daB auch wenn die Juroren ein bestimmtes Dia nicht fur die Veroffentlichung auswahlen, alle Dias sorgfaltig katalogisiert werden und ihnen ein fester Platz in der Forschungsbibliothek des Museums zugewiesen ast year in this space, I complained that a large number of glass wird.
    [Show full text]
  • New Glass Review 10.Pdf
    'New Glass Review 10J iGl eview 10 . The Corning Museum of Glass NewG lass Review 10 The Corning Museum of Glass Corning, New York 1989 Objects reproduced in this annual review Objekte, die in dieser jahrlich erscheinenden were chosen with the understanding Zeitschrift veroffentlicht werden, wurden unter that they were designed and made within der Voraussetzung ausgewahlt, dal3 sie the 1988 calendar year. innerhalb des Kalenderjahres 1988 entworfen und gefertigt wurden. For additional copies of New Glass Review, Zusatzliche Exemplare des New Glass Review please contact: konnen angefordert werden bei: The Corning Museum of Glass Sales Department One Museum Way Corning, New York 14830-2253 (607) 937-5371 All rights reserved, 1989 Alle Rechtevorbehalten, 1989 The Corning Museum of Glass The Corning Museum of Glass Corning, New York 14830-2253 Corning, New York 14830-2253 Printed in Dusseldorf FRG Gedruckt in Dusseldorf, Bundesrepublik Deutschland Standard Book Number 0-87290-119-X ISSN: 0275-469X Library of Congress Catalog Card Number Aufgefuhrt im Katalog der KongreB-Bucherei 81-641214 unter der Nummer 81-641214 Table of Contents/lnhalt Page/Seite Jury Statements/Statements der Jury 4 Artists and Objects/Kunstler und Objekte 10 Bibliography/Bibliographie 30 A Selective Index of Proper Names and Places/ Verzeichnis der Eigennamen und Orte 53 er Wunsch zu verallgemeinern scheint fast ebenso stark ausgepragt Jury Statements Dzu sein wie der Wunsch sich fortzupflanzen. Jeder mochte wissen, welchen Weg zeitgenossisches Glas geht, wie es in der Kunstwelt bewer- tet wird und welche Stile, Techniken und Lander maBgeblich oder im Ruckgang begriffen sind. Jedesmal, wenn ich mich hinsetze und einen Jurybericht fur New Glass Review schreibe (dies ist mein 13.), winden he desire to generalize must be almost as strong as the desire to und krummen sich meine Gedanken, um aus den tausend und mehr Dias, Tprocreate.
    [Show full text]
  • Download New Glass Review 21
    NewG lass The Corning Museum of Glass NewGlass Review 21 The Corning Museum of Glass Corning, New York 2000 Objects reproduced in this annual review Objekte, die in dieser jahrlich erscheinenden were chosen with the understanding Zeitschrift veroffentlicht werden, wurden unter that they were designed and made within der Voraussetzung ausgewahlt, dass sie in- the 1999 calendar year. nerhalb des Kalenderjahres 1999 entworfen und gefertigt wurden. For additional copies of New Glass Review, Zusatzliche Exemplare der New Glass please contact: Review konnen angefordert werden bei: The Corning Museum of Glass Buying Office One Corning Glass Center Corning, New York 14830-2253 Telephone: (607) 974-6479 Fax: (607) 974-7365 E-mail: [email protected] All rights reserved, 2000 Alle Rechte vorbehalten, 2000 The Corning Museum of Glass The Corning Museum of Glass Corning, New York 14830-2253 Corning, New York 14830-2253 Printed in Frechen, Germany Gedruckt in Frechen, Bundesrepublik Deutschland Standard Book Number 0-87290-147-5 ISSN: 0275-469X Library of Congress Catalog Card Number Aufgefuhrt im Katalog der Library of Congress 81-641214 unter der Nummer 81-641214 Table of Contents/In halt Page/Seite Jury Statements/Statements der Jury 4 Artists and Objects/Kunstlerlnnen und Objekte 16 1999 in Review/Ruckblick auf 1999 36 Bibliography/Bibliografie 44 A Selective Index of Proper Names and Places/ Ausgewahltes Register von Eigennamen und Orten 73 Jury Statements Here is 2000, and where is art? Hier ist das Jahr 2000, und wo ist die Kunst? Although more people believe they make art than ever before, it is a Obwohl mehr Menschen als je zuvor glauben, sie machen Kunst, "definitionless" word about which a lot of people disagree.
    [Show full text]
  • Additive Manufacture of Three Dimensional Nanocomposite Based Objects Through Multiphoton Fabrication
    polymers Article Additive Manufacture of Three Dimensional Nanocomposite Based Objects through Multiphoton Fabrication Yaan Liu 1, Qin Hu 1, Fan Zhang 1, Christopher Tuck 1, Derek Irvine 1, Richard Hague 1, Yinfeng He 1, Marco Simonelli 1, Graham A. Rance 2, Emily F. Smith 2 and Ricky D. Wildman 1,* 1 Faculty of Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, UK; [email protected] (Y.L.); [email protected] (Q.H.); [email protected] (F.Z.); [email protected] (C.T.); [email protected] (D.I.); [email protected] (R.H.); [email protected] (Y.H.); [email protected] (M.S.) 2 Nanoscale and Microscale Research Centre, The University of Nottingham, University Park, Nottingham NG7 2RD, UK; [email protected] (G.A.R.); [email protected] (E.F.S.) * Correspondence: [email protected]; Tel.: +44-115-8466-893 Academic Editor: Georg von Freymann Received: 25 May 2016; Accepted: 4 August 2016; Published: 1 September 2016 Abstract: Three-dimensional structures prepared from a gold-polymer composite formulation have been fabricated using multiphoton lithography. In this process, gold nanoparticles were simultaneously formed through photoreduction whilst polymerisation of two possible monomers was promoted. The monomers, trimethylopropane triacrylate (TMPTA) and pentaerythritol triacrylate (PETA) were mixed with a gold salt, but it was found that the addition of a ruthenium(II) complex enhanced both the geometrical uniformity and integrity of the polymerised/reduced material, enabling the first production of 3D gold-polymer structures by single step multiphoton lithography.
    [Show full text]
  • Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding
    Design and Fabrication of Nonconventional Optical Components by Precision Glass Molding DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Peng He Graduate Program in Industrial and Systems Engineering The Ohio State University 2014 Dissertation Committee: Dr. Allen Y. Yi, Advisor Dr. Jose M. Castro Dr. L. James Lee Copyright by Peng He 2014 Abstract Precision glass molding is a net-shaping process to fabricate glass optics by replicating optical features from precision molds to glass at elevated temperature. The advantages of precision glass molding over traditional glass lens fabrication methods make it especially suitable for the production of optical components with complicated geometries, such as aspherical lenses, diffractive hybrid lenses, microlens arrays, etc. Despite of these advantages, a number of problems must be solved before this process can be used in industrial applications. The primary goal of this research is to determine the feasibility and performance of nonconventional optical components formed by precision glass molding. This research aimed to investigate glass molding by combing experiments and finite element method (FEM) based numerical simulations. The first step was to develop an integrated compensation solution for both surface deviation and refractive index drop of glass optics. An FEM simulation based on Tool-Narayanaswamy-Moynihan (TNM) model was applied to predict index drop of the molded optical glass. The predicted index value was then used to compensate for the optical design of the lens. Using commercially available general purpose software, ABAQUS, the entire process of glass molding was simulated to calculate the surface deviation from the adjusted lens geometry, which was applied to final mold shape modification.
    [Show full text]
  • High-Precision Micro-Machining of Glass for Mass-Personalization and Submitted in Partial Fulfillment of the Requirements for the Degree Of
    High-precision micro-machining of glass for mass-personalization Lucas Abia Hof A Thesis In the Department of Mechanical, Industrial and Aerospace Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy (Mechanical Engineering) at Concordia University Montreal, Québec, Canada June 2018 © Lucas Abia Hof, 2018 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Lucas Abia Hof Entitled: High-precision micro-machining of glass for mass-personalization and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: ______________________________________ Chair Dr. K. Schmitt ______________________________________ External Examiner Dr. P. Koshy ______________________________________ External to Program Dr. M. Nokken ______________________________________ Examiner Dr. C. Moreau ______________________________________ Examiner Dr. R. Sedaghati ______________________________________ Thesis Supervisor Dr. R. Wüthrich Approved by: ___________________________________________________ Dr. A. Dolatabadi, Graduate Program Director August 14, 2018 __________________________________________________ Dr. A. Asif, Dean Faculty of Engineering and Computer Science Abstract High-precision micro-machining of glass for mass- personalization Lucas Abia Hof,
    [Show full text]