<<

ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. The Institution ofMechanical Engineers The Institution ofChemicalEngineers Endorsed by Thermophysical propertiesof nitrous oxide Issued September1991 91022 ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. Flow and Physical Data Group. Data Physical and Flow subj this in work the for responsibility overall with The person with theassistanceof Mr J. Walton. by was of (undercontracttoESDU) DataItem undertaken the availabl of the assessment the in involved work technical The which first met in 1966 and now has the following membership: and monitored was Item Data particular this on The work THE OFTHIS PREPARATION DATA ITEM that migh information newtopics or for data, oranysuggestions data review and work new develop to striving We areconstantly community. engineering the to operational), whichmaynotbewidelyav Technical Committees.Thisprocess ensu throug world the around from others and universities laboratories, support crucial which for review toindependent subject work original by supported areinvariably and unpublished, Theda engineers. qualified professionally desi inengineering information validated provide Data Items ITEMS ESDU DATA Mr S.R. Knight — Stone Webster& Stone UK Keynes, Ltd,Milton Engineering — British Chemic Imperial — — Dr K.N.Marsh Mr Knight S.R. Dr A.E. Humphreys Hobson Dr G. Dr J.R.Downey Dr M.W. Chase Dr E.Brunner rCF etn—Independent — Ambrose Dr D. Members Independent — Mr C.F.Beaton Vice-Chairman Dr D.T.Jamieson Chairman † * rCF etn—Independent — Mr C.F.Beaton Engineer National — Mr J.T.R. Watson Corresponding Member. Emeritus Member. † † * † † ailable orinareadilyusableform,can ta are founded on an evaluation of all the relevant information, both published and published both information, relevant the all of evaluation an on ta arefounded res that the results of much valuable theresultsofmuch res that — Thermodynamics ResearchCenter, Thermodynamics Texas System, M A & University — USA Chemical, Midland, Dow — Technology, Standards & of Institute National Gaithersburgh, USA — Germany BASF AG,Ludwigshafen, — Independent — Wilton, UK USA guided by the Physical Data and Reaction Kinetics Committee, Kinetics Reaction and Data Physical the by guided e information and the construction and subsequent development andsubsequent construction and the e information of ESDU staff engineers or consultants. The whole processis whole The consultants. or engineers staff ESDU of is provided by industrial companies, government research government companies, byindustrial provided is Gas plc, Loughborough, UK Loughborough, plc, Gas t lead to improvements, will help us to provide servic toprovide help a better us will t leadtoimprovements, ect area is Mr G.H. Walter, H Walter, Mr G.H. area is ect already issued. Any comments arising out of your use ofour ofyour out arising comments Any already issued. gn and analysis for use by, or under the supervision of, supervision the or under by, for use analysis and gn h the participation of some of their leading experts on ESDU experts on leading their of of some participation h the al Industries plc, Petrochemicals & Plastics Division, Division, Plastics & Petrochemicals plc, al Industries ing Laboratory,ing UK. Kilbride, East becommunicatedconcisely andaccurately work(theoretical, experimental and ead of Transfer, Internal Transfer, Heat ead of 91022 e. ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. CONTENTS PROPERTIESTHERMOPHYSICAL NITROUSOXIDE OF .RFRNE N EIAIN6 5 TABLES ANDDERIVATION REFERENCES 7. 3 EXPLANATION OF THE TABLES 1 6. 5. 2 EQUATIONS FOR PROPERTIES THERMOPHYSICALPROPERTIES 4. NOTATION ANDUNITS 3. INTRODUCTION 2. 1. AL . Thermophysical propertiesni of TABLE7.3 AL . Thermophysical propertiesni of TABLE7.2 AL . Physicalconstantsof TABLE 7.1 .3SraeTnin4 5 5 5 4 4 4 3 4 3 3 3 3 Thermal Conductivity of the Dilute Gas DynamicViscosity Gas oftheDilute 4.17 SpecificEnthalpy of theIdealGas 4.16 Heat Specific Isobaric 4.15 3 SurfaceTension 4.14 Thermal Conductivity of theSaturated Vapour 4.13 Thermal Conductivity of theSaturated Liquid 4.12 DynamicViscosity oftheSaturatedVapour 4.11 Dynamic Viscosity oftheSaturatedLiquid 4.10 Capa Heat Specific Isobaric 4.9 Capa Heat Specific Isobaric 4.8 SpecificEnthalpy of theSaturated Vapour 4.7 Latent Heatof Vaporisation (Specific of Vaporisation) 4.6 SpecificEnthalpy of theSaturated Liquid 4.5 Density oftheSaturatedVapour 4.4 Density oftheSaturatedLiquid 4.3 Vapour Pressure 4.2 4.1 o eprtr nkli 12 for in kelvin o eprtr ndge esu 10 for temperature indegree Celsius o qain(.)t 41)9 for Equation(4.1)to(4.17) aaiyo h da a 4 Capacity of theIdealGas nitrousoxide and constants iyo h auae aor4 3 city of theSaturatedVapour city of theSaturatedLiquid i trous oxideonthesaturation line trous oxideonthesaturationline 91022 Page 9 1 ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. PEDXACNESO ATR 16 B APPENDIX CONVERSION FACTORS A APPENDIX 1 PCFCHA AAIISO AUAE IUD N AOR 17 SPECIFICHEAT CAPACITIES OFSATURATED LIQUIDSAND VAPOURS B1. Thermophysical propertiesnitr of TABLE7.5 AL . Thermophysical propertiesnitr of TABLE7.4 o eprtr nkli 15 14 for temperature inkelvin for temperature indegree Celsius ii ous oxideintheideal and dilute gas ous oxideintheideal and dilute gas 91022 17 ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. .NOTATION ANDUNITS 2. .INTRODUCTION 1. PROPERTIESTHERMOPHYSICAL NITROUSOXIDE OF * given in Section other units, conversion factorsareprovided in Appendix All quantities are expressed in SIun are expressed All quantities from 182.33 to 1000 K. criticaltemperature. The kelvinofthe at least 27 available andthe range coveredfor The data on which the recommended values of values the flui therecommended The data onwhich and inthe ideal gasstate thermophysical representing the equations fluids, gives withth concerned series Item,whichisoneofa This V ω σ ρ λ θ η v u t T p M h c b 1 The constants qain( Equation ( Jk K ( kJ/kg ,,,, b b 1 and exp( 2 b 3 b 4.16 1 ); Equation( b b 4 1 ) respectively); Equation( b ), b are dimensionlessex µ 4 5 N s/m and Section yai icst mN s/m dynamic viscosity specific volume, constants inEquations est kg/m mW/m K K kPa density kJ/kg thermal conductivity temperature dependentvariableinEquation kJ/kgK Celsius temperature,( kelvin temperature vapour pressure (rela molecular weight specific enthalpy cnrcfco – mN/m cm kJ/kg factor acentric surface tension molar volume internalenergy specific 4.9 2 (all); Equation ( and dilute gas state,togetherwithta dilute and ), K( b 3 ), mN s/m mN ), 5 Issued September 1991 - 18 pages gives an explanation of explanation givesan th cept for thefollowing:Equations ( the saturation line proper the saturationline its or theirmultiples(seeSection its v 4.17 4.13 =1 m =1/ 2 ( ), mW/m K (all). ), mW/m ), mN/m( b T 4 iemlclrms)– ) molecular tive (4.1) –231)ºC – 273.15) ); Equation( ρ to 1 b (4.17) 1 ); Equation( properties aregivenfor properties of theidealanddilutegas e thermophysicale properties ofindustrially important 4.10 d properties arebasedco properties ofnitrousoxide line, on the saturation A ), . Equationsrepresentingthe fluid properties are µ e Tables in the Data Item. N s/m ties is from themeltingtemperatureto within bulated values calculatedfrom the equations. 4.4 4.14 (4.9) 2 ) and ( (exp( ), kJ/kg K(all); Equation( 2 b 4.6 ) but, for usersrequire themin but, who ) 1 )); Equations( ), kJ/kg (all);Equations ( – * nsidered to be the best the nsidered tobe 3 4.11 /kg 3 /mol 91022 3 ) and ( 2 4.15 or 4.12 4.7 µ ), kJ/kg(all); N s/m ), mW/m K mW/m ), ) and( 2 4.8 ), ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. .THERMOPHYSICALPROPERTIES 3. and the specific enthalpy and thespecificenthalpy of from thefollowingdatasources: p dilute denotes gas denotes ideal gas Subscripts forsaturatedliquid value (o) id forgasorsaturatedvapour value Superscripts ∆ (l) (g) State descriptors The tables,TablesThe evaluated by the relationshipin Appendixevaluated bythe defined saturated enthalpy ofthe specific (Derivation sat value at saturation (defined inAppendix valueatsaturation(defined sat A computer software package, codename ‘LOADER’, package, software A computer v aorpesr Derivations Derivation Vapour pressure Physical constants est ftestrtdlqi Derivations Density of thesaturated liquid est ftestrtdvpu Derivations Density of the saturated vapour aetha fvprsto Derivations of vaporisation Specific heatcapacityofth icst ftestrtdlqi Derivation Thermal conductivity of the Viscosity ofthe saturated liquid icst ftedlt a Derivations Derivation Derivation Viscosity ofthe dilute gas Specific heatcapacityofthe ideal gas Surface tensionoftheliquid Thermal conductivity of th vap r m c b 22 ) was used tocheckthatathermodynamically ) used was 7.1 denotes reduced quantity, pressure value atconstant value atnormal meltingpoint value atcriticalpoint value atnormal boilingpoint propertydifferencedenotes twostates between denotes evaporation. volume value atconstant to 7.5 iuegsDerivation gas e dilute auae iudDerivations liquid e saturated are derived from Equations Equations from derived are auae iudDerivations saturated liquid vaporisation. The liquid Theliquid vaporisation. liquid was determined from the specifi determinedfromthe liquid was e.g. 2

T B r = , Section , Section developed by theNationa T (4.1) specific heat capacity at constant pressure was capacity pressure heat constant at specific / T c B to B1 consistent setofresults wasevaluated.The , Section 19 23 25 17 24 (4.17) 10 11 11 10 9 15 12 . , . , , , , 23 , , 11 13 13 13 18 20 , whichwerefittedtovaluesderived , , , B1 13 16 21 c enthalpy of the saturatedvapour ofthe c enthalpy , ) 14 l Engineering Laboratory l Engineering 91022 ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. . Density oftheSaturatedLiquid 4.2 Vapour Pressure EQUATIONS FOR PROPERTIES 4.1 4. 4.7 Isobaric Specific HeatCapa Specific Isobaric 4.7 SpecificEnthalpy of theSaturated Vapour 4.6 Latent Heat of Vaporisation ( 4.5 . SpecificEnthalpy of theSaturated Liquid 4.4 Density oftheSaturatedVapour 4.3 Data for the density of the saturated liquid are represented byEquation Data for the density of the saturatedliquidarerepresented representedby are Data Equation for the vapour pressure h infcneo arepresentationof as Appendix of The significance of Data for the isobaric specificheatcapacity enthalpyofthesat Data for the specific Data for the latent heatofvapo Data for the specific enthalpyofthesat Data for the specific saturated of the the density Data for log e

  ------ρ ρ () g c B - Section , = b c ∆ log h h log 1 p vap   () () () l g T ---- 1 l e e - r

hh B1     = – = = ---- p ------ρ c p = 1 ρ c b - . p () b b c 1 l () 1/3 1 1 l ++++ () = [] ++++ g 1 ++++ b = b ---- T city of theSaturatedLiquid ++++ 1 2 b – 2 - r risation arerepresented by Equation Specific EnthalpyofVaporisation) () b b [] () 2 1 h b 1 2 1   () – 1 () () ---- T – 1 l 1 1 () - T r vapour are represented by Equation Equation by are represented vapour 1 T .(4.5) – – – r r – T T 1 1/3 urated vapour are represented byEquation urated vapourarerepresented urated liquid arerepresented by Equation 1/3 T r r 2/3 r – 1/3 1 +++ b b +++ 3 b 3 b the saturated byEquation liquid arerepresented b () 2 b () 1 3 3 () 1 2 3   () 1 – () – ---- T 1 1 1 – T - r T – – r T – r T T r 2/3 1 2/3 r r 3/2 2/3 specific heat capacity is fully explained in isfullyexplained specific heatcapacity (4.1) b b b b 4 4 4 b 4 () ()   3 b () 1 1 T ---- () 1 1 . 3 1 - – – r () – 1 – – T T T – 1 r r T r (4.5) T r 2 4/3 r 5/2 b b (4.2) b 5 5 . (4.3) 5 () b b () 1 () b 1 5 4 1 – 4   () . – – 1 () ---- T . 1 T 1 T - T r – r r – – r T 4/3 4/3 (4.4) T 1 3 r (4.6) r 4/3 5/3 .(4.4) .(4.7) .(4.6) 5 . 91022 .(4.1) .(4.2) .(4.3) . (4.7) . ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. .0DynamicViscosity of theSaturatedVapour 4.10 Dynamic Viscosity of theSaturatedLiquid 4.9 4.12 Thermal Conductivity of the Saturated Vapourthe Thermal Conductivity of 4.12 Saturated Liquidthe ThermalConductivity of 4.11 HeatCapa Specific Isobaric 4.8 .3SurfaceTension 4.13 4.14 Isobaric Specific Heat Specific Isobaric 4.14 The significance of as a representation of asarepresentation sp of The significance hr . Data for the dynamic viscosityofthe satu where ofthe sa Data for the dynamic viscosity Appendix Data for the thermal conductivity of thesaturated vapour arerepresented by Equation Data for the thermal conductivity ofthesat of Data for the isobaric specificheatcapacity Data for surface tension are represented byEquation tensionare represented Data for surface Data for the isobaric specific heat capacity of Data for the isobaric specificheatcapacity B Section , σ λ θ c log η log c p id () p () = = l () l () e e g g

()

b B1 = η λ = T 1 c c () () = () = b Capacity of theIdealGas g g b p . 1 – 1 () 4 b b [] – b g exp 1 1 = = 1 3 T [] +++ +++ 1 r b city of theSaturatedVapour b Tb ⁄ [] b b ++++ 1 1 () b b 2 2 2 ++ ++++ b 1 [] T () – () 2 1 1 b b r θ () – 2 2 + – 1 1/2 –   () 3 T b 1 – ---- T 1 1 3 r - r – T turated liquid are represented by Equation by Equation represented liquidare turated () b – 1/3 1/3 r 1 T rated vapour arerepresented by Equation 3 1 r – T – urated byEquation liquid arerepresented + 2/3 r – 1/2 T 1/3 the ideal gas are represented represented by Equation theideal gas are 2/3 b b the saturated byEquation vapour arerepresented r 2 3 4 () () b θ b 1 .(4.13) b 3 b 4 – – 3 () T 3   1 1 T () r ---- T (4.13) 1 1 – r - .(4.14) r 4/3 – T 2/3 – r T 1 r – . ecific heat capacity heat ecific 1/3 4/3 – b 1/3 4 () .(4.10) 1 b – 4 b () 4 T 1 () r 1 – – T .(4.11) r T r 1/3 1/3 b 5 b () 5 1 is fully explainedin (4.9) () (4.10) 1 – (4.11) – T (4.12) 91022 . r T (4.14) r 2/3 . 2/3 . . .(4.8) . .(4.12) (4.8) . (4.9) ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. * DynamicViscosity Gas of theDilute 4.16 SpecificEnthalpy IdealGas of the 4.15 .EXPLANATION OF THE TABLES 5. Dilute Gas the ThermalConductivity of 4.17 Appendix temperature. The specific enthalpy values are calculate are values enthalpy specific The temperature. Tables numbers. tworounded differences between the specific enthalpiesincolumn therefore, betw inthelast figuremayoccur usually Equation ofvapori specificenthalpies The K. zero at298.15 Parentheses are used in all the tables to indicate to indicate the inallthetables used are Parentheses in Section saturation line extrapolate inaphysically realistic ma isobaric heat capacity, viscosity an (Equations (Equations and vapour tend to the same value thecr as and vapour tendtothesamevalue enthalpies liquid enthalpycurve,Equation approached; thistheoreticallimit hasbeen that represent thefluid properties inthe SI units Data for the dynamic viscosityofthe d enthalpyofth Data for the specific terminate at The values derived from the equations applying on the saturation line, Tables equations, Equations the remaining and Table Table th of conductivity thermal the for Data from the meltingtemperaturetoapproximately Equations A (4.11) gives conversion factors to other units. gives conversionfactorstoother 7.1 7.4 provides values of thephysicalconstants andco (4.5) and approach a finite value and Equation Equation and value finite a approach (4.9) 4 (4.14) outside the temperatureoutside the limitsin Table specified T r with subsequent rounding to the desired nu roundingtothedesired subsequent with = 0.90, and Equations Equations and 0.90, = 7.5 , (4.10) λ η h and id () () present values for the ideal d valuesfortheideal and present o o () g () () g g (4.15) , (4.11) = = = b b b 1 are thermodynamically consistent.) arethermodynamically 1 1 + and ++ ++ + b b b 2 (4.4) 2 T 2 sation incolumn 7ofTables (4.12) () T 5 fromthoseincolumn6,sinceth r e ideal gas representedby gas are Equation e ideal 1/2 1 r (4.1) d thermalconductivitytotend – ++ ++ ++ tnst ,nt asrequired.Al ,not tendsto e dilute gas representedby gas are Equation e dilute T ilute gas are represented represented by Equation ilute gas are b b (4.1) r do not conform with theory 3 3 , T T (4.2) r 2 included where appropriate inTables includedwhereappropriate r b , 3 b (4.2) b () , – 4 4 1 * 5 T (4.3) T oftheNotation,Section T ∞ (4.12) – r r = 0.98, 0.98, = except for Equations r 3 3/2 , T .(4.16) een these values and those obtained by subtraction of bysubtraction andthose obtained values een these ilute gas from 182.33 to 1000 K. 1000 to 182.33 from gas ilute values not directly supported by data. values experimental nner, users should not extrapolate ofthe any equations (4.3) r , itical pointisapproached, itical the slopeofsaturated 2 (4.5) b goes to zero atthecritical goesto temperature.Although d on the basis that the enth thatthe d onthebasis 5 nstants for use in the eq the in use for nstants ∞ , T b (4.6) r 4 mber of significant figures. Smalldifferences,significant figures. of mber 2 , () .(4.15) (4.6) 1 7.1 – 7.2 and T . , r and (4.7) 3 in this respect; Equations inthisrespect; (4.13) .(4.17) e values generated therebyaree values the , 7.3 (4.8) infinity asthe critical pointis 2 which arevalid tothecritical (4.15) werecalculateddirectlyfrom so moderntheoryrequires the . Although the saturated liquid Although thesaturated . (4.16) and (4.17) 7.2 uations giveninSection . (4.11) (4.13) and alpy of the idealgasis of alpy . 7.2 . and 91022 and 7.3 , applying on the on , applying , are presented , are 7.3 (4.12) (4.9) . However, , which (4.10) 4 , ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. 6. REFERENCES ANDDERIVATION REFERENCES 6. 0 OE ..Vapour pressure, latenthe HOGE, H.J. 10. .BLUE, R.W. 9. .SEL,RA Estimatedviscosities and SVEHLA, R.A. 1. 4 DAD,DG The vapour pressures of30 inorganic liquids between one EDWARDS, D.G. 14. .QUINN,E.L. 8. CGA 7. The Derivation lists selected sour The Derivationlistsselected Derivation L’AIR LIQUIDE 6. HORVATH, A.L. 5. YAWS, C.L. 4. MATHESON Co. 3. MELLOR,J.W. 2. ofinfo sources are recommended given The references References 11. COOK, D. The vapour pressure and orthobaric density ofnitrousoxide. orthobaricdensity and Thevapourpressure E.J. COUCH, 13. COOK, D. 11. 2 RAW, C.J.G. 12. GIAUQUE, W.F.GIAUQUE, VERNIMONT, G. et al. HIRTH, L.J. KOBE, K.A. ELLIS, C.P. ces that have assisted in the pr o.57, pp. 991-997, 1935. Vol. oxide. Theentropyfromitsbandspectrum. and vapourpr capacity heat The 1930. 2723-2730, pp. 52, Vol. California, USA,1963. atmosphere andthecritical point. UCRLReport 7167, Universityof Data Chem. Eng. temperature ofN The surface tension ofliquidnitrous oxide. Corporation, pp. 418-419, 1981. ofcompressedHandbook gases 1053-1060, 1976. pp. Enclyclop 241-254, 1975. Arnold, London, pp. Physical properties of inorganic compounds in S.I. units McGrawHill, engineering. Physical and thermodynamic properties. 1974. Gas data book 192-203, 1967. pp. VIII, SupplementII, Nitrog Vol. Comprehensive treatise inorganic on theoretical and Government Printing Office, Washington D.C., 1962. temperatures.Tech. Report TR132,NASA, Cleveland, Ohio, U.S. high pressures.Gascompressib Volumetricox nitrous behaviourof 1945. Chem. Phys oxygen. and oxide I. Nitrous viscosities. gas High-temperature Faraday Soc é die des gaz – l’air liquide l’air – gaz des die 6 ., Vol.., 28,No. 6,pp.1198-1200, 1958. ., Vol. 49, pp. 716-724, 1955. . 5th Edition,MathesonCo.Incorporated,NewJersey, , Vol. 1961. 229-237, No.2,pp. 6, 2 O. rmation supplementaryto th J. Res. Nat. Bur. Res. J. Stand. eparation ofthis Data Item. thermal conductivities of at thermal conductivities gases high New York, p.106,1974. at of vaporisation and triple point at ofvaporisationandtriple . 2nd Edition, Van NostrandReinhold ility factorsatlow pressures. en (Part II), Longmans, London, en (PartII),Longmans, essure of solid and liquid nitrous and of solid essure ide. Pressure-volume isotherms at isotherms Pressure-volume ide. . Elsevier, Amsterdam, , Vol. 281-293, pp. 34, at inthisDataItem. J. Am. Chem. Soc J. Am.Chem.Soc Part 3.Chemical 91022 . Edward Trans. J. J. ., ., . ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. 17. JASPER, J.J. The surface tens surface The J.J. JASPER, 17. LEADBETTER, A.J. 16. RICHTER, G.N. 15. 24. ESDU Thermal conductivity ofinor conductivity Thermal ofPPDS. National forSubscribers Manual ‘LOADER’User ESDU 24. TOULOUKIAN, Y.S. 23. NEL 22. A. BOUSHEHRI, 21. Vapour-liquid criticalproperties.Chem.Report 107, NPL National A.A. CLIFFORD, 20. AMBROSE, D. 19. D.T. JAMIESON, 18. 5 R TRCThermodynamic Tables- non-Hydrocarbons. Thermodynamics TRC 25. VINCENT, B. TAYLOR, D.J. SAGE, B.H. HO, C.Y. MASON, E.A. KESTIN, J. BZOWSKI, J. SCOTT, A.C. , P. TUDHOPE, J.S. IRVING, J.B. J. Chem The densitiesandsurface tensions ofethane and nitrous oxide. Vol. 8, No. 2, pp. 221-225, 1963. Thermal conductivityof New York, 1988. inorganic and organicfluids. Hemisphere Publishing Corporation, on materialproperties. CINDAS dataseries Laboratory,Engineering UK,1988. EastKilbride, 1987. low density. at gases polyatomic ofeleven transportproperties Equilibrium and 1981. 997-1001, pp. dioxide. Viscosities nitricox of gaseous Physical Laboratory, Teddington, Middlesex, UK,1980. Edinburgh, UK, 1975. to The thermal conductivity of Asurvey 1973 liquids. Data Extant 2000. Extant TX/National InstituteofStandard Center,Research Texas A&MUniv ESDU Internationalplc, London, UK,1999. pressure: low at number ofgases conductivity,viscosity, sp isobaric International plc, London, UK, 1990. Superseded by: Thermal , Vol. 1, No.4,pp. 841-1009, 1972. ., Vol. 42, pp. 2930-2932, 1964. J. Chem.Soc., FaradayTrans. I 7 J. Phys.Chem. Ref.Data ion of pure liquid compounds. compounds. liquid ofpure ion fluids. Nitrous oxide. fluids. Nitrous ganic gases. Data 90014,ESDU Data Item gases. ganic Inorganic Item 99005, gases. Data s andTechnology, Boulder, CO, ide, nitrous oxidesulphur and ecific heat capacity andPrandtl heat ecific ersity System,CollegeStation, , Vol. 16,No.3,pp. 445-466, Vol. of V-1.Properties J. Chem.Eng.Data , Vol. 77, No. 5, J. Phys. Chem. Ref Chem. J. Phys. 91022 . HMSO, Can. , . ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. This page isintentionally blank 8 91022 ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. Property c η .TABLES 7. λ h c c p η ρ λ h id (ο) η (ο) ρ λ h id p p (g) (g) (g) σ (g) p (l) (l) (l) (l) (g) () (l) g ( (g) g ( (g) g ( (g) g Section Equation ( ( ( ( ( ( ( ( ( ( ( ( ( 4.14 4.16 4.10 4.17 4.15 4.11 4.13 4.12 4.8 4.9 4.7 4.1 4.2 4.4 4.3 4.6 in 1262 .517-.693-.03 0564 -0t 30 to -90 0.536141 -1.20233 -0.364923 0.052187 132.632 ) 168 203 52 00943- 9 o30 to -90 - 0.0293423 5.24 2.0439 1.6089 ) 2493 .244-.03 1.95-458 -0t 30 to -90 -14.5180 13.0945 -3.80136 0.023454 2.49973 ) 6783 .56 137 401- 9 o36 to -90 - -4.051 -1.3779 1.35966 -6.71893 ) 1738-.35 0500-.01 -0t 36 to -90 - -0.10412 0.51060 -0.83950 1.72328 ) 20 1603-1.2 7479-8.8 -0t 35 to -90 36 to -90 -589.587 0.629427 794.779 -7.90463 -917.225 7.50332 116.043 -6.28792 -200. -1.00900 ) ) 20 4005-5.0 4401-8.3 -0t 36 to -90 -485.338 434.081 -459.701 440.055 -200. ) 0190 0095 1282-.434--0t 727 to -90 - -0.248324 1.20822 0.099053 -0.169903 ) 0956 1.35-.48 0142 9 o727 to -90 - 0.164927 -2.34589 18.8315 -0.955565 ) .21-.83 0055 -0t 30 to -90 - - -0.055155 -1.18237 3.3281 ) 1.2-48 00 00 9 o727 to -90 - 727 to -90 0.06 -38.4368 -0.09 249.352 -24.84 -52.5969 18.32 61.3277 ) -209.559 ) 7.5 . 35 . -0t 10 to -90 - 4.5 -3.5 1.5 72.35 ) 6.1 .94 -0t 36 to -90 - 10 to -90 - -11.8221 16.6116 0 2.88672 1.19346 -0.276962 69.31 -7.08870 ) ) Critical Density Critical Acentric Factor Normal MeltingTemperature hsclCntnsSmo Value Molar Critical Volume Symbol Critical Temperature Molecular Weight Constants Physical Normal Boiling Temperature Critical Pressure 4 TABLE 7.1 Physical constants ofnitrous oxideandconstants b 1 Constants used in Equations ( Constants used in Equations ( b for Equation 2 CAS Reg. No: 10024-97-2 N 2 O NITROUS OXIDE T V T ρ T p M ω m c c b c c 9 (4.1) b 3 to to 0.160 182.33 K (-90.82 (-90.82 (-88.46 K 182.33 K 184.69 cm 97. (36.42 kg/m 452. kPa 7251. K 309.57 44.013 (4.17) 4.14 4.1 ) to ( ) to ) to ( ) to 3 /mol 4.13 b 4.17 3 4 ) ) o o o C) b C) C) 5 91022 Applicability Range of Range ºC ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. -10 2397. 953.9 63.21 (-325.) (-69.5) 255. 255. 266. 276. (-69.5) (-69.2) 285. (-69.3) (-325.) 294. (-69.8) (-335.) (-345.) 302. 63.21 (-70.5) 310. (-355.) 54.47 318. (-71.6) 953.9 46.82 326. (-364.) (-72.9) 975.2 40.11 995.4 (-74.4) (-374.) 333. (-76.1) 1014.8 2397. 34.22 (-383.) 340. 2083. (-392.) 346. (29.05) (-78.1) 1033.4 1801. (-402.) 353. -10 (24.53) (-80.2) 1547. (1051.4) 359. -15 (20.58) (-82.5) (-411.) (1068.8) -20 (17.14) (-85.0) 1321. (-420.) (1085.6) 365. -25 (-87.6) 1119. (1102.0) (-429.) 371. (14.16) 941.7 (-438.) -30 (11.60) (-90.4) 785.8 (1118.0) (9.406) (-446.) -35 ( 377.) (-93.3) 649.9 (1133.6) (7.546) -40 (1148.8) (5.982) (-455.) -45 (-96.3) 532.3 (1163.7) (-464.) -50 431.5 (1178.3) (4.680) 345.7 (-473.) (3.609) -55 273.6 (1192.7) -60 213.6 (2.738) (1206.7) -65 -70 164.2 1220.6 -75 124.2 (92.29) -80 -85 -90 9.2(77)12. (2.6 1222.8 (87.73) -90.82 -88.46 101.325 1216.3 (2.987) (-470.) (-95.4) 375. 375. (-95.4) (-470.) (2.987) 1216.3 101.325 -88.46 3.2 21 42 42 -0. (20)0 64.9 117. 147. (-200.) (-138.) (-108.) 169. (-94.4) (-200.) (-203.) 188. (-224.) 204. (-86.2) (-241.) (-80.6) 452. 330.4 (-76.6) (-255.) 236.7 589.4 452. 190.0 (-269.) 688.0 (-281.) 743.9 158.1 7033. 133.9 7251. 786.6 6315. 114.5 36.42 822.2 5660. 35 853.5 30 5060. 25 4510. 4007. 20 15 10 -5 2744. 931.4 73.26 (-315.) (-70.3) 244. 244. (-70.3) (-315.) 73.26 931.4 2744. -5 5 3547. 881.6 98.41 (-293.) (-73.7) 219. 219. 232. (-73.7) (-71.7) (-293.) (-304.) 98.41 84.86 881.6 907.4 3547. 3127. 5 0 o t C Thermophysical properties of nitrou kPa p for temperature indegree Celsius kg/m ρ (l) 3

TABLE 7.2 kg/m ρ (g) 10 3 -7. -68 (377.) (-96.8) (-474.) 13) 3 s oxide on the saturation line on thesaturation s oxide kJ/kg h (l) kJ/kg h (g) ∆ kJ/kg vap 91022 h ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. -0(.7)(.0)(.86 1.)(0.)(73 7.2 8.1 9.1 (17.3) 10.1 (16.5) (15.8) 11.0 (107.4) (15.1) 12.0 (109.6) (111.8) 13.1 (14.3) (14.4) (114.1) 14.1 (13.9) (13.8) 15.1 (13.5) (0.0896) (13.2) (116.4) (13.2) (0.0965) (118.8) (12.6) (0.1041) (1.402) (16.2) (121.2) (12.0) (12.8) (0.1125) (1.318) (17.2) (12.5) (2.079) (123.6) (1.243) (18.3) (11.5) (12.2) (0.1219) (126.0) (2.011) (1.176) (19.4) (11.0) (20.5) (0.1325) (1.957) (11.9) (10.5) -10 (0.1444) (1.915) (128.5) (1.115) (11.6) (10.0) (21.6) -15 (131.0) (1.061) (9.6) (0.1580) -20 (133.5) (1.883) (1.013) (11.3) (0.1736) -25 23.8 (1.858) (136.0) (0.9700) (11.0) (9.1) (138.6) (1.840) (0.9322) (10.8) (0.1915) -30 (1.827) (10.5) (0.2123) (8.3) -35 (1.818) (141.2) (0.8995) (10.2) (0.2367) -40 (0.8716) (0.2654) -45 (1.812) (0.8485) (146.4) (10.0) (0.2995) ( -50 (1.807) (0.8300) (1.803) (0.8160) (0.3404) (9.5) -55 (1.798) (0.3900) -60 (1.791) (0.8063) (0.8009) -65 (0.4507) -70 (1.781) (0.7997) -75 1.768 -80 1.750 -85 -90 8.6 .5 079)(0.4306 (0.7996) (0.4619 (0.7999) 1.756 -88.46 1.747 -90.82 3 513 978 006)(01 0.7 1.4 2.1 2.9 3.7 (21.4) (20.1) (18.7) (0.0465) 98.8 (17.7) (0.0520) (16.9) (9.718) (16.3) (0.0570) (4.493) (0.0619) (5.143) 36.42 (0.0668) (3.781) (2.967) (2.322) 0.1 30 (3.188) (1.982) 25 (2.834) (2.592) 20 35 15 10 - 216 150 003)(47 152 1.)6.3 (18.2) (105.2) (14.7) (0.0833) (1.500) (2.166) -5 5(.1)(.6)(.70 1.) 0. (02 4.5 5.4 (20.2) (19.1) 100.9 103.0 (15.7) (15.2) (0.0720) (0.0774) (1.769) (1.618) (2.412) (2.274) 5 0 o t C kJ/kg K kJ/kg c Thermophysical properties of nitrou 444444 p (l) (l) kJ/kg K kJ/kg c p (g) (g) for temperature indegree Celsius TABLE 7.2(concluded) mN s/m η (l) 2 96 156 84 (23.5) 24.0 (8.4) (8.2) (145.6) (146.9) (9.6) (9.4) ) ) 11 µ N s/m η .)(4.)(.)(22.7) (8.7) (143.8) 9.7) s oxide on the saturation line on thesaturation s oxide (g) (g) 2 mW/m K λ (l) (l) mW/m K λ (g) (g) 91022 mN/m 0 σ

ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. 305 6573. 660.5 261.5 (-217.) (-115.) 102. 137. (-115.) 161. (-98.5) 182. (-217.) 199. (-88.9) (-235.) 214. (-82.4) 227. (-77.9) (-250.) 261.5 (-74.6) (-264.) 240. 204.9 (-72.3) (-277.) 251. 660.5 (-288.) 262. 725.3 168.8 (-70.7) (-300.) 272. 142.1 (-69.8) 771.8 6573. 282. 121.2 (-69.3) (-311.) 809.7 5896. 104.0 (-69.2) (-321.) 89.62 842.3 291. (-69.6) 305 (-331.) 871.5 5276. 300 (-341.) 77.35 898.1 4708. 299. (-70.2) 66.77 4188. (-351.) 307. 295 57.57 922.7 3712. 315. (-71.1) 290 49.53 945.7 (-361.) 3278. 323. (-72.3) 285 967.4 42.49 (-73.8) 280 988.0 2881. (-370.) 330. (-75.5) 275 2522. 36.31 (-380.) 337. 1007.7 2196. (-389.) 344. (-77.3) 270 (30.89) 1902. (-398.) 1026.6 350. (-79.4) 265 (26.13) 1638. 357. (-81.6) 260 (1044.8) (21.98) (-407.) (-84.0) 255 (1062.4) (18.36) 1401. (-416.) 363. (-86.6) 250 (1079.5) (-425.) 1191. 369. (1096.0) (15.21) (-434.) 374. 1005. (-89.3) 245 841.1 (12.50) (-443.) (-92.2) (1112.1) 240 698.0 (10.18) (8.198) 375. (-95.2) (1127.8) 235 (-452.) (6.528) (1143.2) 230 573.8 (-461.) (1158.2) 225 466.9 (-95.4) (-470.) (5.133) (1172.9) 375.8 (3.980) 220 298.8 (-470.) (3.039) (1187.4) 215 234.5 210 (1201.6) 205 (1215.5) (2.987) 181.3 200 138.0 103.2 1216.3 195 190 101.325 185 184.69 309.57 7251. 452. 452. (-200.) (-200.) 0 (-200.) (-200.) 452. 452. 7251. 309.57 (2.613) 1222.8 (87.73) 182.33 K T Thermophysical properties of nitrou kPa p kg/m ρ (l) for temperature in kelvin 3

TABLE 7.3 kg/m ρ (g) (g) 12 3

s oxide on the saturation line on thesaturation s oxide -7. -68 (377.) (-96.8) (-474.) kJ/kg h (l) (l) kJ/kg kJ/kg h (g) ∆ kJ/kg kJ/kg vap 91022 h

ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. 300 (4.133) (5.642) (0.0501) (19.2) 1.1 1.8 2.6 3.4 4.2 5.1 (19.2) (20.6) 6.0 (19.5) 6.9 (18.1) (0.0501) 7.8 100.1 (17.2) (18.5) 8.7 102.2 (16.5) (0.0552) (5.642) (17.6) 9.7 (15.9) (0.0601) (16.8) (104.4) (15.4) (4.133) (0.0650) (3.369) (16.1) (106.5) 10.7 (0.0700) (2.509) (15.3) (108.7) 11.7 (14.9) (3.367) (0.0754) (2.087) (111.0) 12.7 300 (14.4) (2.948) (1.838) (14.7) (113.3) (14.0) (2.672) (0.0810) (1.669) 13.7 (14.0) 295 (13.7) (2.473) (0.0872) 14.7 (13.4) (115.6) 290 (13.3) (2.321) 305 (0.0939) (1.541) (117.9) (12.8) 285 (0.1012) (15.8) (1.437) (120.3) (12.2) 280 (12.9) (2.203) (0.1093) (16.8) (1.348) 275 (12.6) (2.109) (122.7) (1.269) (17.9) (11.7) (12.3) (125.1) (2.035) (0.1183) (1.200) (19.0) (11.2) (20.1) 270 (1.976) (0.1284) (12.0) (10.7) 265 (127.6) (1.929) (0.1399) (1.137) (11.7) (10.2) (21.2) 260 (130.0) (1.081) (9.7) (22.3) (0.1528) 255 (132.6) (1.894) (23.4) (1.030) (11.4) (0.1676) 250 (1.866) (135.1) (0.9853) (11.1) (9.3) (8.9) (137.6) (1.846) (0.9456) (10.9) (0.1846) (8.4) 245 (1.832) (10.6) (0.2042) 240 (1.821) (140.2) (0.9110) (10.3) (0.2272) (142.8) 235 (0.8813) (145.5) 0.5 (0.2542) 230 (1.814) (0.8565) (10.1) (0.2861) 225 (9.8) (1.809) (0.8363) (9.6) (1.804) (0.8206) (0.3244) 220 (1.800) (0.3705) 215 (1.794) (0.4267) (0.8094) 210 (0.8024) 205 (0.7997) (1.785) (0. 200 (1.773) (0.7996) 1.757 195 190 1.756 185 184.69 309.57 24.0 (8.2) (146.9) (9.4) (0.4619) (0.7999) 1.747 182.33 K T kJ/kg K kJ/kg c Thermophysical properties of nitrou 444444 p (l) (l) kJ/kg K kJ/kg c p (g) (g) for temperature in kelvin TABLE 7.3(concluded) mN s/m η 36 96 156 84 (23.5) (8.4) (145.6) (9.6) 4306) (l) 2

13 µ N s/m η s oxide on the saturation line on thesaturation s oxide (g) (g) 2

mW/m K λ (l) (l) mW/m K λ (g) (g) 91022 mN/m 0 σ

ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. Thermophysical properties of nitrous 2 .5 79)4.672.09 70.56 69.03 67.50 40.76 65.96 40.18 64.42 62.88 39.60 39.01 61.33 (769.) 38.41 59.78 (744.) 37.81 58.23 37.20 56.67 (719.) 1.253 55.11 (694.) 1.248 36.58 (669.) 35.95 53.55 (645.) 1.242 35.31 51.99 (620.) 1.236 34.67 50.42 720 1.230 34.01 48.85 700 (596.) 1.224 47.27 (572.) 1.218 33.35 680 (548.) 32.68 45.70 660 (524.) 1.211 31.99 44.12 640 (500.) 1.204 31.30 42.54 620 1.197 30.60 40.95 600 (477.) 1.190 39.37 (453.) 1.182 29.88 580 (430.) 29.16 37.78 560 (407.) 1.174 28.42 36.19 540 (384.) 1.166 27.67 34.60 520 1.157 26.92 33.01 500 (362.) 1.148 31.41 (339.) 1.139 26.14 480 (317.) 25.36 29.82 460 (295.) 1.129 24.57 440 (273.) 28.22 1.119 23.76 420 26.62 1.109 22.94 400 (251.) 25.02 1.098 (230.) 23.42 1.087 22.10 380 (209.) 360 (188.) 21.25 1.076 340 (167.) 20.39 1.063 320 19.51 1.051 300 (147.) 18.62 1.038 1.024 (127.) 280 (107.) 260 (87.6) 1.010 240 (68.5) 0.9956 220 0.9802 200 0.9642 0.9475 180 160 140 120 100 2 .22(3.)1.713.79 12.18 10.58 8.969 12.97 8.099 11.97 10.95 9.921 (-38.4) (-54.8) (9.356) (-70.6) (-86.0) 0.8292 0.8057 0.7810 (-94.1) 0.7549 -20 (0.7402) -40 -60 -80 -90.82 0090 4.)1.221.81 20.21 17.40 18.61 17.00 17.72 16.80 15.15 15.86 (49.7) 14.91 (31.3) (13.3) 0 0.9300 (-4.38) 0.9117 0.8926 0.8776 0.8725 80 60 40 25 20 .54(2.)1.515.40 13.95 (-21.6) 0.8514 0 o t C kJ/kg K kJ/kg c p id for temperature indegree Celsius () g da a Dilute gas Ideal gas h TABLE 7.4 kJ/kg id (g) 14 oxide intheideal anddilute gas µ η N s/m (o) (g) 2

mW/m K λ (o) (g) 91022 ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. Thermophysical properties of nitrous 00125(7. 09 72.61 40.96 (777.) 1.255 1000 8 .4 72)4.871.08 69.56 68.03 66.49 64.95 40.38 63.41 39.80 61.86 39.21 60.32 38.62 58.76 (752.) 38.02 57.21 (727.) (703.) 37.41 55.65 (678.) 36.79 1.249 54.09 (653.) 36.17 1.244 52.52 35.53 1.238 50.96 (629.) 34.89 1.232 49.38 (604.) 1.226 980 (580.) 34.24 960 47.81 (556.) 33.58 1.220 940 46.24 (532.) 32.91 1.213 920 44.66 32.23 1.207 900 43.08 (509.) 31.54 1.200 41.50 (485.) 1.192 880 (461.) 30.84 860 39.91 (438.) 30.13 1.185 840 38.32 (415.) 29.41 1.177 820 36.74 28.68 1.169 800 35.14 (392.) 27.93 1.160 33.55 (369.) 1.151 780 (347.) 27.18 760 31.96 (324.) 26.41 1.142 740 30.36 (302.) 25.63 1.133 720 28.77 24.84 1.123 700 (280.) 24.04 27.17 1.113 (259.) 25.57 1.102 680 (237.) 23.22 660 (216.) 22.39 23.97 1.091 640 (195.) 21.54 22.36 1.080 620 20.76 1.068 20.69 600 (174.) 19.16 1.055 19.82 (154.) 17.55 1.042 580 (134.) 18.93 560 17.40 (114.) 1.029 18.03 540 (94.3) 1.015 17.12 15.95 520 1.001 16.19 14.34 500 (75.0) 0.9855 15.24 12.73 (56.1) 0.9698 11.13 480 15.15 (37.6) 9.519 460 (19.4) 0.9533 (1.62) 440 14.28 0.9361 420 13.30 8.099 0.9181 400 12.31 0 0.8992 11.30 (-15.8) 0.8795 380 10.28 (-32.7) 360 (-49.2) 340 (9.356) (-65.3) 0.8587 0.8776 320 (-80.8) 0.8369 300 0.8139 0.7897 298.15 (-94.1) 0.7640 280 260 240 (0.7402) 220 200 182.33 K T kJ/kg K kJ/kg c p id () g Ideal gas Ideal for temperature in kelvin h TABLE 7.5 kJ/kg kJ/kg id (g) 15 oxide intheideal anddilute gas µ η N s/m (o) (g) 2 Dilute gas

mW/m K λ (o) (g) 91022 ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. APPENDIX A FACTORSAPPENDIX CONVERSION * Density inkg/m Density To convert from to multiply by multiply to in kPa(kN/m Pressure To convertfrom Surface tension in mN/m Surface in Surface tension N/m Surface tensionin mN/m mW/m K Thermal conductivityin s/m in mN viscosity Dynamic in Dynamic viscosity in K cal/g Specific heat capacity S inkJ/kgK Specific heatcapacity inkJ/kg Specific enthalpy Note: the values used for the and Britis 3 µ 2 N s/m ) Pressure inPa Pressure ) 2 2 Surface tension in J/m Surface tension Thermal conductivityinkcal/m h K Thermal conductivityinJ/cmsK Thermal conductivityinW/mK Surface tension in lbf/ft Surface tension in erg/cmSurface tension in dyn/cm Surface tension Thermal conductivityinBtuin/ft Thermal conductivityinBtu/ft h ºF Thermal conductivityincal/cmsK Dynamic viscosity in lbfs/in s/m kgf in viscosity Dynamic Dynamic viscosity in lb/fth Dynamic viscosity in kg/ms viscosity in poiseor Dynamic g/cm s Dynamic viscosity in Ns/m Dynamic viscosity in lbfs/in s/m kgf in viscosity Dynamic Dynamic viscosity in lb/fth Dynamic viscosity in kg/ms viscosity in poiseor Dynamic g/cm s Dynamic viscosity in Ns/m in Btu/lb ºF Specific heat capacity Specific enthalpy inBtu/lb Density inlb/ft Density ing/cm inmmHg Pressure Pressure inlbf/in Pressure inkgf/cm Pressure inatm Pressure inbar Pressure pecific incal/g pecific enthalpy h Thermal Unit are International Table values. 16 3 3 2 2 2 * 2 * 2 2 2 2 2 2 * 2 * hºF * * * * 10 10 10 10 238.846 ×10 238.846 ×10 429.923 ×10 238.846 ×10 ×10 62.428 10 617 7.500 145.037 7×10 ×10 16 10.197 9.869 233 ×10 10 68.52 ×10 1 1 10 6.933 47 ×10 577.789 ×10 2.388 46 ×10 859.845 ×10 10 10 145.038 ×10 101.972 ×10 09 2.419 10 10 10 145.038 ×10 101.972 ×10 2.419 09 ×10 10 –6 –5 –6 –3 –2 3 –3 –3 –5 –3 –3 –2 –3 91022 –6 –3 –3 –3 –3 –3 –6 –6 –9 –6 –12 –9 –3 –6 –3 –3 –3 –3 ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. 1 SPECIFIC HEAT CAPACITIES OFSATURATED LIQUIDSAND VAPOURS B1. B APPENDIX n ,(B1.3) neglected. For thesaturated vapour, thediff not thespecificheatcapacity woul and would change a phase since process , heat capac The threespecific respectively represent and where and where represents the change in vapour pressure invapour change temperature. with pressure the represents In practice,thespecificheatcap where The thermodynamic definitions ofth heat capacity whichrelates tothesatur In addition to the constant pressure c p ad are in close numerical ag and () d c maintaining thefluidinasatura values commonly used in engine internalener changeinspecific the pressure and c c sat p sat p /d is not but is the specific butisthespecific requir not is T sat   c   c c c d ------d ------sat v p d d v

T T h h () = ∂ = = sat sat c h p     c / ∂ ------∂ ∂ ∂ ------∂ p = = = T T u T h – c c c T sat v p v sat p ities areinter-relatedasfollows: ,(B1.2) , + ,(B1.1) , +   ∂ ------∂ + T acity atsaturationcond T v vT v   – ∂ ------and constant volume specific volumespecific heat constant and p ∂     d ------T d accompany an energy an accompany inputandthe v e three specific heatcapacities are: d ------d reement atlowreducedtemperatur T p   ation line conditionsofeitherphase. T p p d bedetermined.Fortheliquidph ∂ ------∂ ted state, and state, and ted is the specifich   sat ering design calculations),and ering design T v ∂ ------sat ∂ T p the change the change in specificenthalpy ,(B1.6) p rnebten ad should not be ignored. and erence between v   ,(B1.4) , d ------d 17 T p sat ,(B1.5) , itions cannotbemeasure gy with temperature at constant volume(the atconstant temperature gy with c p ed to effected to while temperaturechange a c eat capacity commonlymeasured. eat capacity sat capacities, there isanotherspecific there capacities, es anddifferences be es canusually specific enthalpyofvaporisation specific ase, thespecific heatcapacities withtemperatureatconstant d byaconstantpressure 91022 ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. This page isintentionally blank 18 91022 ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. For usersin the USA, pleaseaddr engineer technical Please addressall not as towhether or If areinany doubt you Volumes. Whenever Itemsarerevised,su KEEPING UPTODATE and Fax: 1 303 397 2599 397 303 1 Fax: (toll free number) 525 7052 1 800 www.ihs.com Website: Tel: Documents Engineering Global and Products Engineering IHS UK) the (from 5151 7490 020 Tel: plc International ESDU bscribers totheserviceautoma ess all Customer Service and Support enquiries and suggestions to: andsuggestions enquiries ServiceandSupport ess all Customer ing enquiries and suggestions to: suggestions and enquiries ing est:www.esdu.com [email protected] Website: UK) 2701 (from the 7490 020 E-Mail: Fax: your ESDU holding is up to date, please contact is todate,pleasecontact us. up your ESDU holding tically receivethematerialre www.global.ihs.com UK) the outside (from 2701 7490 20 +44 UK) the outside (from 5151 7490 20 +44 quired toupdate 91022 theappropriate ESDU product issue: 2006-04. For current status, contact ESDU. Observe Copyright. 91022 A full bibliography is given thesources isgiven of consulted. bibliography A full factors tofacilitate use of theequations extrapolated valuesandthese are data tabulated data,the ofexperimental absence Inthe K. 1000 to temperature melting the from degreeCelsiusintervals Kandat 20 at 20 aretabulated the equations remainder.the Idealanddilutegasprop tensionandto surface and the vapour for temperature the critical to temperature melting the from intervals Celsius 5degree andat K intervals at 5 units, SI in properties line Saturation conductivity. gas thermal dilute the and viscosity dynamic en specific and capacity atconstantpressure presented areequations forthevariati pressure, line ofthevapour forthevariati areequations Also given heat capacityatconstant pressure, dynam density, properties: vapour and liquid enthalpy,following specific the for specific literature aregivenforthe ev acritical on based Equations, oxide. fornitrous propertiesdata thermophysical evaluated provides 91022 ESDU N16UA. London ESDU engineering datacontact validated and onPhysicalData,MechanicalEngi AvailableSeries on part oftheESDU as 0141-4070 ISSN ISSN0141-4062, 784 7, ISBN 085679 ESDU 91022 propertThermophysical property rightsESDU International belongto plc. International plcinwriting. Save forsuch anystorage and informationrecording orby optical, orbyanymeans, elect in anyform reserved.Nopart are rights All within at least 27kelvinof withinat © ESDU International plc,2004 © ies of nitrousies oxide. of anyDataItemmaybereprinted,reproduced, ortransmitted variation with temperature along the saturation line saturation the along temperature with variation latent heatofvaporisati calculated from theequationsaretabulated calculated retrieval systemwithout permission from ESDU permission allcopyrightandotherintellectual on withtemperatureof the specific heat on with temperature ronic ormechanical pressure, saturation densities, enthalpies densities, saturation pressure, are indicated inth are and tables in Britishunitsareincluded. neering. For information on all ESDU all on neering. Forinformation erties, also in SI units calculated from also inSI erties, Physical Data, Chemical Engineering PhysicalData, International plc, 27 Corsham Street, Corsham 27 plc, International aluation of experimental data in the in data of experimental aluation ic viscosity and thermal conductivity. thermal and viscosity ic thalpy in the ideal gas, the dilute gas idealgas, dilute in the the thalpy on and surface tension.Alsoon and the criticaltemperature for including photocopying, e tables. Conversion e tables. along the saturation the along