<<

NATIONAL BUREAU OF STANDARDS REPORT

2611

THERMODYNAMIC PROPERTIES OF MOLECULAR

tv

Harold ¥, Woolley Themodynamics Section Division of and Power

U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS U. S. DEPARTMENT OF COMMERCE Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin, Director THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards is suggested in the following listing of the divisions and sections engaged in technical . In general, each section is engaged in special- ized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant reports and publications, appears on the inside of the back cover of this report.

Electricity. Resistance Measurements. Inductance and Capacitance. Electrical Instruments. Magnetic Measurements. Applied Electricity. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Gage.

Heat and Power. Measurements. . Cryogenics. Engines and Lubrication. Engine . Cryogenic Engineering.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Spectrometry. State Physics. Electron Physics. Atomic Physics. Neutron Measurements. Infrared Spectroscopy. Nuclear Physics. Radioactivity. X-Rays. Betatron. Nucleonic Instrumentation. Radio- logical Equipment. Atomic Commission Instruments Branch.

Chemistry. Organic Coatings. Surface Cheipistry. Organic . Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Chemistry. Physical Chemistry. Thermo- chemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. . Engineering Mechanics. Hy- draulics. Mass. Capacity, , and Meters.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifi- cations. Polymer Structure. Organic Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion.

Mineral Products. Porcelain and Pottery. Glass. Refractories. Enameled Metals. Con- creting Materials. Constitution and Microstructure. Chemistry of Mineral Products.

Building Technology. Structural Engineering. Fire Protection. Heating and Air Condition- ing. Floor, Roof, and Wall Coverings. Codes and Specifications.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Machine Development.

Electronics. Engineering Electronics. Electron Tubes. Electronic Computers. Electronic Instrumentation.

Radio Propagation. Upper Atmosphere Research. Ionospheric Research. Regular Propaga- tion Services. Frequency Utilization Research. Tropospheric Propagation Research. High Frequency Standards. Microwave Standards.

Ordnance Development. These three divisions are engaged in a broad program of research Electromechanical Ordnance, and development in advanced ordnance. Activities include Ordnance Electronics. basic and applied research, engineering, pilot production, field testing, and evaluation of a wide variety of ordnance materiel. Special skills and facilities of other NBS divisions also contribute to this program. The activity is sponsored by the Department of Defense.

Missile Development. Missile research and development: engineering, dynamics, intelligence, instrumentation, evaluation. Combustion in jet engines. These activities are sponsored by the Department of Defense.

• Office of Basic Instrumentation • Office of Weights and Measures. NATIONAL BUREAU OF STANDARDS REPORT NBS NBS PROJECT 0302-50-2606 June 30, 1953 2611

THERMODYNAMIC PROPERTIES OF MOLECULAR OXYGEN

Harold VI, Woolley Thermodynamics Section Division of Heat and Power

Sponsored in part by Rational Advisory Committee for Aeronautics Order No. W-5594

Approved for public release by the In part, Is prohibited The publlcatloni t National Institute of Director of the tandards, Washington unleti permission Standards and Technology (NIST) has been specifically 25. D.C. Such

2015 port for Its own use. prepared f that on October 9,

1 FOREWORD

This is one of a series of reports on the thermodynamic properties of compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aero- nautics. Advances in methods of propulsion and the high speeds attain- ed thereby have emphasized the importance of accurate data on thermal properties of wind-tunnel and jet-engine gases. It has been the purpose of the project on thermal properties of gases to make a critical com- pilation of existing published and unpublished data, and to present such data in convenient form for application. The dimensionless char- acter of the tables and their general format should facilitate calcula- tions in aerodynamics, heat-transfer, and jet-engine problems. The work was conducted under the supervision of Fir. Joseph Hilsenrath by members of the Thermodynamics Section, Division of Heat and Power.

C. W. Beckett, Chief Thermodynamics Section

^ UJiLteY) R. E. Wilson, Acting Chief Division of Heat and Power

ii TAELS OF CONTENTS Page

Foreword , . ii

Table of Contents iii

Summary 1

I Introduction 3

II SytbolS 6

III The experimental data of state for oxygen 11

IV Comparison of derived quantities with the experimental data , 13

V The calculation of the tables IS

VI Conclusion 19

VII References 20

Figure 1 - FVT data for oxygen 23

Figure 2 - Heat of vaporization of oxygen 24

Table 9*01 - of oxygen vapor at .••••••••«.«••• 25

Appendices

Table 9*10 Specific heat and entropy of molecular o:ygen in the state. Table 9.11 Free energy of molecular oxygen in the ideal gas state. Table 10.10 Specific ' eat, nthalpy, and entropy of e’xraic oxygen in the ideal gas state. Table 10.11 Free energy of atomic oxygen in the ideal gas state. Table 9 .IS Density of ’r.olecular oxygen. Table 9*20 factor for molecular oxygen. Table 9.22 Enthalpy and entropy of molecular oxygen. Table 9*24 Specific heat of molecular oxygen. Table 9.26 Specific heat ratio jf molecular oxygen. Table 9*32 Sound velocity in molecular oxygen. Table 9.39 Viscosity of oxygen. Table 9*42 Thermal conductivity of oxygen. Table 9*44 Prandtl number of oxygen. Table 9.50 Vapor of oxygen. Table 1,30 Conversion factors. Temperature interconversion table.

iii - i , ,

. SUMMARY

The tables of thermal properties of molecular oxygen prepared for the NBS-NACA series are grouped together here for convenience in use. These tables include thermodynamic functions for the gas, both real and in the hypothetical ideal gas state, the transport properties of the gas, and the vapor pressure of the liquid. The ideal gas properties are given in tables 9*10 and 9.11. These include specific heat at constant pressure, enthalpy, entropy and the free energy function. For possible use with them, tables 10,10 and 10.11, giving the same properties for atomic oxygen, are also included. The thermodynamic properties for molecular oxygen are given in tables 9. IS to 9.32 and include density, the or PV/RT, entropy, enthalpy, specific heat at constant pressure, the ratio of specific or Cp/C and v , the velocity of sound at very low frequency. For tables 9.1S to

9.32, the tabular entries correspond to of 0.01, .1, .4,

.7, 1, 4, 7, 10, 40, 70 and 100 atmospheres. The temperature range covered is from 100°K or slightly higher, up to 3000°K. The method of correlation of the PVT data allows the calculation of approximate values for much higher than used in obtaining the experimental data. This is due to the determination of a reasonable representation of interaction between molecules, based on an over-all fitting of the available data.

-1- K

The vapor pressure for liquid oxygen is given in table 9*50 "with

values at every 5 degrees from 55° K to 150°K for rapid use for these

temperatures or "when rough interpolated values are adequate. In a

second part of the table, values of log^o? are tabulated more closely

with uniformly spaced values of l/T, permitting very accurate inter-

polation.

The viscosity, thermal conductivity and Prandtl number are

given in tables 9»39, 9*42, and 9*44 respectively. The viscosity is

tabulated for atmospheric pressure over the temperature range 100°

to 2000°K using the treatment of Hirschfelder, Bird and Spotz [17]

for the Lennard-Jones 6-12 potential with the parameters s/k = 100 °K

b cm^ "^chosen to the and Q ® 54.1 fit experimental data approxi- mately over their entire range. The thermal conductivity was calcu-

lated from a purely empirical equation fitted to the experimental data, and the Prandtl number was computed in a straight-forward manner from these and the specific heat values.

• 2 < I INTRODUCTION

This set of mutually consistent tables of thermodynamic prop-

erties of gaseous oxygen has been computed with the data of state

represented by a pressure series xdiose temperature dependent co-

efficients and their derivatives were used to calculate the derived

thermodynamic properties. As the experimental PVT data are more

abundant than other relevant data, cover a wider range of tempera-

ture and pressure^ and are usually dependable, the

forms an appropriate starting point for the calculation of the

entire field of thermodynamic properties.

In the representation of the PVT data for the NBS-NACA Tables, the objective was taken of covering adequately the limited range of

pressure from zero to a maximum of 100 atmospheres and of tempera- ture from a minimum of 100° K upward through the atmospheric and

experimental range with a suitable extrapolation to high tempera- tures, but omitting the effect of dissociation. A discussion of the

effects of dissociation is given in an earlier report [333 • As the tables were to be tabulated in terms of pressure for convenience of use, it seemed appropriate to make the correlation directly in terms

of pressure. For most of the range of pressure and temperature de-

sired, the simple equation 2 = = 3 Z PV/RT 1 + B-jP + C-^ + DXP appeared to be adequate. Here the coefficients B^_, C^, and D^, are functions of the temperature and are related to the virial

coefficients in the analogous equation in powers of reciprocal

-3- . As the equation was found not to fit as well as desired at the lowest temperatures for elevated pressures, the table entries

have been limited to low pressures at low temperatures.

The pressure corrections to the various thermodynamic prop-

erties were determined theoretically from the correlation of the data of state. These were combined with values of properties for the ideal gas to obtain the complete real gas properties as given in tables 9.22 to 9.32. Many details concerning the actual compu- tations will be found in later sections of this report and in the discussions of tables 9.20 to 9.32. Details concerning the calcu- lation of the thermodynamic functions for the ideal gas will be found in the references given in tables 9.10 and 9.H.

The tables are given in dimensionless form and conversion factors to some frequently used units are given at the end of each table. The pressure intervals were chosen to facilitate Lagrangian interpolation of the tables. When linear interpolation in pressure is strictly valid, values for intermediate pressures have in some cases been omitted. Deviation plots have been included which indi- cate the agreement or discordance of the experimental data. The plots are also useful for showing the range and abundance or paucity of the experimental data for oxygen.

The tables were prepared in loose-leaf form to permit their prompt distribution to research workers. Close proximity between the tables and related conversion factors, text material and

-4- deviation plots was sought. For convenience in preparation and use the existing loose leaf tables are brought together as the conclud- ing por ion of this report. The body of the report contains a gen- eral review of the experimental data and additional miscellaneous tables and charts pertaining to the correlation procedure and the final quality of the representation.

-5- II SYl'SBOLS

Symbols Definitions Units and Dimensions

A Abbreviation for Angstrom, unit of 10"^cm length

—1 - ' a Sound velocity at low frequency m sec , ft sec

a Sound velocity at standard condi- 314*02 m sec"ij- 0 tions 1032.9 ft sec“^

B Second virial coefficient in the cm^ mole"-'- l/V series - a function of temperature

(r) Second virial coefficient function uimens ionless = B/b 0

Coefficient of P in the pressure atm"-'- series for PV/RT

2 2 2 b Stand B»t TdB/dT and T d B/dT cm-^ nole"

b Characteristic parameter of the cm.3 mole"-'- o Lennard-Jones interaction potential

b for pairs alone as distinct cm^ mole'"''- Q 54*7 from pairs in larger clusters

b b for pairs within a cluster 40,10 cm-^ mole**^ 3 Q of three

1 2 C Third virial coefficient in the (cm^ mole"- -) l/V series, a function of temperature

Third virial coefficient function Dimensionless 9 - C/bg in simple theory

Coefficient of P2 in the pressure atm”2 series for PV/RT

c at constant pressure various p

-6- Symbols Definitions Units and Dimensions

G° Heat capacity at constant various pressure for the ideal gas

C Heat capacity at constant various V volume

C° Heat capacity at constant various V volume for the ideal gas

D Fourth virial coefficient in (cm^ mole”^)^ the l/V series, a function of temperature

D Coefficient of p’ the pressure atm"’ 1 in series for PV/RT

E for one mole of various gas [S is also used for the fifth virial coefficient]

%v° Internal energy for one mole of gas in various standard ideal gas state at 0°K. Seine as Hq, the enthalpy for the same condition#

A]?° The heat of formation for one various mole of a substance in the standard state from its con- stituents in their standard states at 0°K. For atomic o:^ygen, equals half the dis- sociation energy for diatomic o:xygen.

F Free energy per mole various

i?o Free energy per mole in standard various state [Ideal gas at one atmos- phere for gaseous substances]

H Enthalpy per mole various

H° Enthalpy per mole in standard various state [Ideal gas at one atmos- phere for gaseous substances]

-7- Definitions Units and Dimensions

Enthalpy per mole in standard ideal various gas state. ’'Same as Eq* n Equilibrium, constant for a (atm) chemical reaction

Symbol for degrees 1j Boltzmann constant for propor- *38048 X 1CT erg deg tionality of energy to tem- perature

1 1 1 Thermal conductivity cal cm”- - sec” “C"

Thermal conductivity at 5.867X10“- cal cm”- 1 273 .16° K and one atmos- sec”-*- “C” phere pressure

1 Molecular weight 32 gm mole”

2 1 Avogadro 7 s number 6.02283 X 10 3 mole”

Symbol for (one atom of, or atomic) oxygen

Pressure atm, dyne cm”2

Atmospheric pressure 1 atm; IOI325O dynes cm”2

Subscript indicating constant pressure

1 1 per mole 82 . 0567 cm^atm °K~ mole” 1.9G71S cal deg”1mole”1 8. 31439 abs deg^mole”1

Classical distance of closest 3.5I A from B intermolecular approach at 3,499 A from rcj zero energy according to Lennard-Jones potential

Entropy for one mole various KK

Symbols Definitions Units and Dimensions

S° Entropy for one mole in various standard state [Ideal gas at one atmosphere for gaseous substances]

T Absolute temperature degrees K degrees R

T Temperature at standard 273. 16° 0 conditions

V Volume per mole cni^ mole"**-

V Function in theory of Yiscosity Bimens ionless

Y Subscript indicating constant volume

w. Function in theory of viscosity Dimensionless

X Mole fraction Dimensionless

z Compressibility factor Dimensionless

Zo Compressibility factor at .99905 273 .l6 °K and one atmosphere

Isentropic expansion coefficient, Dimensionless -V /dP\ = -V fdP\ y oc P Hs P Wt 6

y Ratio of specific heats, CD/CV Dimensionless

s IlkxLmum energy of binding ergs betxireen molecules with a Lennard-Jones potential

s/k Characteristic parameter of the deg K Lennard-Jones interaction potential

s/k for pairs alone 116° K s2/k

s /k s/k for pairs -within a cluster 124. 7° 3 of three

-9- Symbols Definitions Units and Dimensions

Viscosity poises, >1 gm sec"-*- cm”-'-

Ho Viscosity at 273 *16°K and 1919*2 X 10 ‘ poises one atmosphere

2 -1 V Kinematic viscosity, T|/p cm sec

v0 Kinematic viscosity at 273*l6°K .13430 cra^ sec"-^- and one atmosphere

Density mole cirT^ P f gm cm“3 also Amagat units, etc.

Density at 273.l6°K and one p0 4.46564X10”5mole cm“3 atmosphere 1.42900:a0”3g Cm"3

T A reduced temperature, kT/s Dimensionless Ill TIIE KKPEREIENTAL DATA OF STATE FOR OXTGEN

Tlie experimental PVT data for oxygen extending to elevated pressure are indicated in Figure 1, The direct experimental values of Z are represented in the form of V(Z-l) plotted as a function of density, -with temperatures in degrees Kelvin indicated adjacent to the plotted points. The deviations of the present correlation from the experimental points are evident by simple inspection of the graph.

The procedure used in the present correlation in representing the second and third virial coefficients, related to and in the pressure series, has been outlined in Ref. [ 32 ]. The method is so arranged as to permit use of such data as are available on the pres- sure dependence of internal energy, enthalpy, specific heat and sound velocity for the fitting of the second virial coefficient and has been arranged to permit fitting of Joule-Thomson data and PVT data for both second and third virial coefficients.

The data for oxygen at the ice point and room temperature seem quite dependable -with measurements by Anagat [2], Holbom and Otto

[IS], Kuypers and Kamerlingh C'nnes [22,25], and van Urk and Nijhoff

[29]. The data of Amagat had their present usefulness mainly as an indication of the general trend toward higher pressure. The data of Holborn and Otto, as indicated by Gragoe [ 7 ], are subject to correction for the effect of stretching of the container at elevated pressure and for individual pressures and temperatures occurring in

-11- their evaluation of the amount of substance present for individual measurements. The points as plotted in figure 1 are thus corrected and differ slightly from their reported numbers.

The adjustments made in selecting the Lennard-Jones parameters for pairs and clusters of three included some adjustment of the C-j_ for failure to achieve the best possible low temperature fit of the

B-j-, The limitation to low pressure values at the low temperatures arises partly from this imperfection of representation. The primary objective in the present correlation was to represent the higher and intermediate temperature data for extrapolation to much higher tem- peratures. The present choice of parameters was a result of these requirements. A set of parameters more appropriate for the low temperature region by itself could similarly be arrived at.

In terms of the virial coefficients for 6-12 Lennard-Jones

v( 0 ) potentials as tabulated in the dimensionless form B ' (T*) and

( 0 ) C (t) by Bird, Spotz and Hirschfelder [43, the coefficients and

C-, were represented by

B “ b B RT 1 2 ^ ('T'2)/ and 0 2 2 = ( ) (0) Oi bj [C (r ) - 4 (d (t )) ]/(et) + 3 b 3 3 I

7*2 13 where “ RT/E 2 an^^3 kT/e^

“ R with Eq/h 116°K, b2 = 54.7 cm^ nole”

3 “ 3 ', and e^A 124. 7° I, and b^ = 46 . 18 cm mole’’

was represented empirically as

- 6 6 5 3 13rj0/T D-l -483.037 T-4- + 251430 T-5 - 24.618 X 10 T" - 38.42OTf T" e .

-12- PVT data in the low temperature region have been represented -with a density series using B and C only, by Claitor and Crawford [5] and by Hall and Ibele [15]. The density is intrinsically more suitable as a variable in this temperature region, as the pressure becomes partic- ularly inappropriate near the critical point.

IV COMPARISON OF DERIVED QUANTITIES

WITH THE EXPERIMENTAL DATA

Experimental data on heat capacity, entropy, enthalpy, sound velocity, etc., are too limited in extent to provide a tabulation of these properties directly. The tabulated values for these quantities are based on the correlation of the data of state and on the proper- ties for the ideal gas. Thermodynamic properties thus calculated from good PVT data can be expected to agree well with good direct experi- mental data for the various quantities. This section presents a com- parison of derived thermodynamic quantities with corresponding exper- imental data.

One single determination of the dependence of the internal energy of gaseous oxygen upon the pressure is given in the work of Rossini and Frandsen [26] for the pressure range zero to 40 atmospheres at

1 1 2S°C. Their value was -6.51 atm”- - mole”- -. The corresponding theoretical value for the dependence at zero pressure according to

1 1 the present correlation is -6.41^ joule atm”- - mole”- -. The average value over the range zero to 40 atmospheres obtained by combining

-13- values in Tables 9.10, 9*20 and 9.22 is approximately -6.55 joules

1 atm”- - mole"-*-. The average value as obtained hj Meyers [ 23 ] based on

his correlation of PVT data for oxygen is-6.47 joules atm"-*- mole"-*-.

The specific heat at constant pressure near atmospheric pressure

was measured by Henry [ 16 ] using a flow method involving measurement

of the lack of symmetry of temperature along a uniformly heated flow

tube. He claimed an accuracy of no more than one percent except at

20°C where an accuracy of l/2 percent was suggested. His results,

given as specific heat at constant volume, have been read from his

graph and are shown in Figure 1 of Table 9.24 as departures from the

table values after reconversion to give the measured specific heat

at constant pressure. His smoothed table of values has similarly

been used to compute values for constant pressure which are shown

in this graph by the dashed curve.

Values for the specific heat of gaseous oxygen were reported

jj by Eucken and v, Lude [ 10 ], obtained with the method of Lummer and

Pringsheim based on the isentropic cooling during expansion. In

this procedure, the formula

= C R [Z + T ( 02/ dT) ] (d In P/d In T ) 0 px I-' D

t? applies. Eucken and v. Lude used PVT data of Holbom and Otto to

evaluate the linear dependence on pressure of Z + t ( t>z/ in)

Points indicating their reported values of Cp at one atmosphere and

302. o°K, 3ol.2°IC and 47^. 9° H are shom in Figure 1 of Table 9.24. Values for the specific heat of o;;ygen obtained by Wacker, Cheney and Scott [30] with a flow calorineter at -30°C, 40.04°C and 90°C are also shown in this figure.

Values for the specific heat of oxygen computed from the sound velocities observed by Shilling and Partington [27] have also been included. These show large departures from theoretical values at elevated temperatures.

Measurements of the specific heat of gaseous oxygen at constant pressure were reported by Workman [34] for 26*3 and 60°C for pressures

from 10 kg/cm^ to 130 kg/cm , or from 9.63 atm to 125,8 atm. In figure 2 of Table 9.24 his results are shown converted to the form of the ratio of specific heat observed to the specific heat of the ideal gas. The curves adjacent to the experimental points are the corres- ponding theoretical values based on the present correlation of the PVT data.

Measurements on the velocity of sound in gaseous oxygen in the temperature range 77°K to 90° K have been reported on by Keesom, van

Itterbeek and van Larameren [20] and by van Lammeren [28], While the theoretical values agree fairly well with their results, the compari- son is omitted from the present report on the basis that the PVT data on which the present tables are based are for higher temperatures.

Values for the velocity of sound in oxygen were obtained by

Shilling and Partington [27] and by King and Partington [21] using a

Kundt f s tube. Their results are shown in Figure 1 of Table 9.32 as percent departures from the table, using sound velocity (a) directly

-15- as measured and (b) relative to the velocity of sound in air, -with the plotted points based on this observed ratio combined -with the velocity in air at one atmosphere as given in Table 2.32 of the present series of MBS-KACA tables. It may be seen that the depar- tures from the theoretical values are reduced somewhat by making the comparison on the basis of the ratio of the velocity of sound in oxygen to that in air.

The heat of vaporization of liquid o:ygen is shown in figure 2, taken from the report by Furukawa and McCoskey [13] on air, oxygen, and . Their new measurements as adjusted to the nearest tenth of degree in temperature, using the thermochemical , give the values:

1773 »0 cal mole”?' I727.0 cal mole** 1674.2 cal mole"*.. 1622.9 cal mole™ and at the boiling point of 90.19°k, 6824.3 abs j mole”~, or

1631.2 cal mole ^ by interpolation.

A comparison of the calorimetrically determined entropy for gaseous oxygen at the boiling point with the entropy as calculated statistically from spectroscopic data is shown in table 9.01. The calorimetric data are from Giauque and Johnston [14], with the adjustment to the newer values of boiling point and shorn for the calorimetric value and with the entropy based on the values of table 9.10® The estimated correction for non-ideality

-16- at the boiling point on the basis of the extrapolation of the present

P and P coefficients is also given* Although the previous comparison of calorimetric and spectroscopic entropy -was fairly satisfactory, in that the discrepancy 'was only ,06 entropy units with an uncertainty given as 0.1 entropy units, the new comparison gives an even closer agreement, to about ,02 entropy und.ts.

-17- V CALCULATION OF THE TABLES

The thermodynamic quantities tabulated in this report were com-

puted numerically from the coefficients of the equation of state » The following formulas were used;

Z = PV/RT = 1 + BjP + C^P2 + D-jP3

2 S/R = 3°/R - k In P - (B TdB-j/dT)? -1& (Op + TdC-|/dT)P 1 + - 3 1/3 (D1 + TdDj/dT)?

= - ’I)P - 2 H/RT H°/RT T (d3-,/c l/2 T (dC1/d’T)P

- T 1/3 (dDiL/dT)p3 2 2 2 C /R = Cp/R - [2TdB-]/dT + T d B- /dT ]P |

2 2 2 2 - 1/2 I^TdCp/dT + T d C1/dT ]P

- [2TdD-j/dT + T2d2D /dT2 ]p3 1/3 1

2 [Z + T (az/3T)p'J Cp-CV „

e cz - p ( sz/a p) ] 2 3 ' = [1 + (B1'fTdB1/dT) P + (Cp+TdCp/dT)? + (Di+TdDi/dt)P f 2 3 [ 1 - C-,P - 2 D1P ]

-IS- VI CONCLUSION

The uncertainty of the tabulated density and compressibility

and of the various derived properties for oxygm is discussed in

the text adjacent to each table. The region in which the data are

most dependable is probably near room temperature. The extensive

data below room temperature are thought to be nearly as dependable.

For the higher temperatures there is some lack of agreement between

the results of Holborn and Otto and of Amagat for oxygen, so that

this region may be regarded as particularly less certain. In the

region immediately above and below the ice point the correlation

is fitted fairly closely to the data, with an uncertainty probably

not exceeding 0.1 percent in PV/RT or about 10 percent of the

difference between real and ideal values. The uncertainty is larger

at both higher and lower temperatures due to imperfections of theory

and data. The derived pressure corrections to thermodynamic proper-

ties are in general less accurate, because in the differentiation

• process errors are propagated with a large increase. The correspond-

ing experimental determinations are frequently inaccurate. The know-

ledge of the properties of oygen can be improved by better experi-

mental measurements., Increase of the experimental range, and by

improvement of applicable theory.

-19- VII REFERENCES

t? n tr [1] H. Alt, Uber die Verdampfungswarmendes flussigen Sauerstoffs und flussigen Stickstoffs und deren Anderung mit der Temperatur, Ann. Physik 12, 739(1906).

Memoi.*es T elasticity et la [2] E, H. Amagat , sur 1 dilatabilite^ des

fluides jusqu’aux tres hautes pressions, Ann. chim. phys. 29 . 63(1393).

jj n [3] H. Barschall, Uber die Verdampfungswarme des Sauerstoffes, Z. Elektrochem. 12, 345(1911).

[4] R. B. Bird, E. L. Spotz and J. 0. Hirschfelder. The Third Virial

Coefficient for Lion-Polar Gases, J. Chem. Phys. 13 . 1395(1950).

[5] L. C. Claitor and D. B. Crawford, Thermodynamic Properties of Onygen, Nitrogen and Air, Preprint American Society of Mechani- cal Engineers, Tome Scientific School, University of Pennsylvania, p. 3# Nov. 19 (1943).

[6] K. Clusius and F. Konnerbz, Ergebnisse der Tieftemperatur- forsetting - VI. Kb lorimetrische Messungen der Verdampfung si jarme [9] des Sauerstoffs bei normalem Druck some des Aethylens und Propylens unterhalb und oberhalb vom Atmospharendruck, Z. Naturforsch. 4A.« 117(1949).

[7] C. S. Cragoe, Slopes of pv Isotherms of He, Ne, A, Up, Np and O2 at 0°C, J. Research Nat. Bur. Standards 26, 495(1941) RP-1393.

[3] L. I. Dana, The Latent Heat of Vaporization of Liquid Onygen- Nitrogen Mixtures, Proc. Am. Acad. Arts Sci. 60, 241(1925).

J. Dewar, Studies with the Liquid Hydrogen and Air Calorimeters,

Proc. Roy. Soc. (London), 761 . 325(1905).

[10] A. Eucken and K. v. Lude, Die spezifische Warme der Gase b^i mittleren und hohen Temperaturen. I. Die spezifische Warme der Gase: Luft, Stickstoff, Sausrstoff, Kohlenoxyd, Kohlensaure, Stickoxydul und Methan zwischen 0° und 220°C. Z, physik. Chem. 12, 413(1929).

tf [11] A. Eucken, Uber das thermische Verhalten einiger Komprimierter und Kondensierter Gase bei tiefen Temperaturen, Verhandl. deut. physik. Ges. 13, 4(1916).

-20- . • »

:i n [ 12 ] A. Frank and K. Clusius, Prazisionsmessungen der Verdampfungswarme der C-ase Op, IIpS, PHo, A, COS, GH/ und CHoD, Z. physik, Chem, m, 395(1939).

[13] G. T. Furukawa and R. E. McCoskey, The Condensation Line of Air and the Heats of Vaporization of Oxygen and Nitrogen, Technical Report to National Advisory Committee For Aeronautics, Report 1775, National Bureau of Standards (1952).

[14] W, F. Giauque and H, L. Johnston, The Heat Capacity of Oxygen from 12°K to its Boiling Point and its Neat of Vaporization. The Entropy from Spectroscopic Data, J. Am. Chem, Soc, 51, 2300(1929).

[15] N. A, Hall and W. E. Ibele, Thermodynamic Properties of Air, Nitrogen and Oxygen as Imperfect Gases, Technical Paper of the University of Minnesota Institute of Technology, Engineering E:qperiment Station, Technical Paper No, 35, December (1951)

[16] P. S. H. Henry, The Specific Heats of Air, Oxygen, Nitrogen from

20°C to 370°C, Proc. Roy, Soc, (London) A133 , 492(1931).

[17] J. 0. Hirschfelder, R. B, Bird, and E. L, Spots, Viscosity and other physical properties of gases and gas mixtures, Trans, ASME A3, 921(1949). n [18] L. Holborn and J. Otto, Uber die Isothermen einiger Gase zwischen 400° und -183°, Z. Physik 23>, 1(1925).

[19] W. H. Keesom, The Heat of Vaporization of Hydrogen, Commun, Phys. Lab, Univ. Leiden, No, 13 7e (1914)

[20] W. H. Keesom, A. van Itterbeek, and J. A, van Lammeren, Measure- ments about the velocity of sound in oxygen gas, Proc. Acad.

Sci. Amsterdam 3/-., 995(1931)) Leiden Comm. 216 d.

[21] F. E. King and J. R. Partington, Measurements of Sound Velocities in Air, Oxygen, and at Temperatures from 900°C to 1200° C •with Special Reference to the Temperature Coefficients of Molecular Heats, Phil. Mag. £, 1020(1930).

[22] H. A. Kuypers and H, Kamerlingh Onnes, Isothermes de substances diatomiques et de leurs melanges binaires XXII. Isothermes de l T oxygene a 0° et 20°C. Leiden Comm. No. 165a (1923). Also see ref. [25]

-21- .

[23] C. H. Meyers, Pressure-Volume-Temperature Data for Oxygen,

J. Research Nat. Bur. Standards 40 . 457(1943) RP-I89I.

[24] G. P.Nijhoff and W. H. Keesom, Isotherms of di-atomic substances and tneir binary mixtures XXXIII. Isotherms of oxygen between

-40° C and -152 » 5° C and pressures from 3 to 9 atmospheres. Leiden Comm. No. 179b (1925)*

[25] H. K. Cnnes and H. A. Kuypers, Isotherms of diatomic substances and their binary mijrtures. XXV. On the isotherms of oxygen at low temperatures. Leiden Comm. No, 169a (19?U)*

[26] F. D. Rossini and M. Frandsen, The Calorimetric Determination of the Intrinsic Energy of Gases as a Function of the Pressure. Data on Oxygen and its Mixtures with Carbon Dioxide to 40 Atmospheres at 23° J, Research Nat. Bur. Standards C , £, 733(1932) HP-503.

[27] W. G. Shilling and J. R. Partington, Measurements of the Velocity of Sound in Air, Nitrogen and 0:iygen, with Special Reference to the Temperature Coefficients of the Molecular Heats, Phil. Mag. 6, 920(1928).

[28] J. A. van Lammeren, Second virial coefficient and specific heats Comm. No. of oxygen, Leiden Supplement 77° , also Physica 2, 333(1935).

[29] A. Th. van Urk and G. PJJijhoff, Isotherms of diatomic substances and their binary mixtures. XXVII. On the isotherms of oxygen at 20°, 15.3° and 0°C. leiden Comm. 169c (1925).

[30] P. F. Lacker, R. K. Cheney and R. B. Scott, Heat Capacities of Gaseous Oxygen, Isobutane, and 1-butene from -3O 0 to 90°. J. Research Natl. Bur. Standards 2$, 651-9(1947) HP-1804.

[31] G. Witt, Uber die Verdampfungswarme flussiger Luft, Arkiv Mat. Astron. Fysik 2> No. 32(1912).

[32] H. W. Woolley, The Representation of Gas Properties in Terms of Molecular Clusters, J. Chem. Phys. 21, 236(1953)*

[33] H. W. Woolley, The Effect of Dissociation on the Thermodynamic properties of Pure Diatomic Gases, Report 1884,. National Bureau of Standards, (1952).

E. J. Workman, [34] The Variation of the Specific Heats (C ) of Oxygen, Nitrogen and Hydrogen with Pressure, Phys. Rev. *1345(1931)

-22- cAMiS£AF:

moles/cc

HEAT OF VAPOR!£ATSON, B.T.U. !b"'

®K 2.

FIG.

TEMPERATURE,

24

TABLE 9.01 Entropy of Oxygen Vapor at Boiling Point

Calculation Using 90,13°K as Boilin/t Point (1)

S for liquid at 90.13°X 22.49U u. (1)

at 90. 13 8 K = 1620.0/90.13 10.07 a)

S for vap. 40.57 (1)

S° spect. for gas 40.679 s°~s = ,:i E.

T ’ Calculation Using 90,19° as Boi]2 1 r; Point (2)

S for liquid at 90.13°X 22.490 E. u. (1)

~ „ 12.96X. 06 (^ ^ ^ ^or -'-^-Euid .009 from (1) 90 . 19°K 90 .] 3 90:15 S for liquid at 90.19°X 22.507

A3 ar at 90.19°K = 1631.2/90.19 10.006 (3)

S for vap. 40,593

S° spect* for gas 40.604 S°-S = .091 E. U.

Eerthelot correction, S°-S = *17 V e U.

o Entropy correction using P and P terrns of present correlation

'= (S°-S) = .100 P + . 004s P or .105 E. U, for P 1 atm 7 U # J. 7 i'i.

( 1 ) Criauque and Johnston (2) Hoge, Table 9.50-

( 3 ) Furukana and IlcCoskey

-25-

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Charles Sawyer, Secretary E. U Condon, Director

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 9.10 Molecular Oxygen (Ideal Gas State)

July 1949

Specific Heat, Enthalpy, Entropy — C°/R, (H° E°)/RT0 , S°/R

compiled by Harold W. Woolley

FOREWORD

This is one of a series of tables of Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propul- sion and the high speeds attained thereby have emphasized the importance of accurate data on thermal properties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal Properties of Gases to make a critical compilation of existing pub- lished and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are antici- pated as new data become available.

The dimensionless character of the tables and their general format should facilitate calculations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpublished data. Information and other correspondence regarding these tables should be addressed to Joseph Hilsenrath, Heat and Power Division, National Bureau of Stand- ards. This table is also available on IBM punched cards. o Lr° H°- E Cp ( o) S° °K KX). s °R °K p °R R RT R R RT0 R 0 4 A 5.1542 25.7140 720 400 3.6212 no 1327 896 738 12.7490 18 410 3.6322 5.2869 25.8036 876 10 3.5423 -278 0.1222 24447 113 1332 1291 3.6435 5.4201 25.8912 756 20 3.5145 0.2513 15.1937 36 420 115 1336 859 - 68 1285 14043 25.9771 774 16.5980 54 430 3.6550 5.5537 841 30 3.5077 - 0.3798 10276 118 1340 33 1283 5.6877 26.0612 792 3.5044 0.5081 17.6256 72 440 3.6668 1345 826 40 - 15 1283 7860 119 26.1438 810 0.6364 18.4116 90 450 3.6787 5.8222 810 50 3.5029 1282 6345 120 1349 6 3.6907 5.9571 26.2248 828 60 3.^ 023 0.7646 19.0461 108 460 122 1353 795 4 1282 5376 26.3043 846 3.5019 0.8928 19.5837 126 470 3.7029 6.0924 780 70 1282 4698 122 1358 3 3.7151 6.2282 26.3823 864 80 3.5016 1.0210 20.0535 144 480 123 1362 768 1 1282 4121 26.4591 882 3.5015 1.1492 20.4656 162 490 3.7274 63644 754 90 1 1282 3692 122 1367 6.5011 26.5345 900 100 3.5014_ 1-2774 20.8348 180 500 3.7396 1371 742 1 1282 3336 124 918 3.5013 21.1684 198 510 3.7520 6.6382 26.6087 730 110 0 3048 123 1376 3.7643 6.7758 26.6817 936 120 3.5013_ 1*5337 21.4732 216 520 122 1380 718 1 £ 2802 26.7535 954 130 3.5012, 1.6619 21.7534 234 530 3.7765 6.9138 707 1 f8 2595 122 1385 3.5013 1.7 9 22.0129 252 540 3.7887 7.0523 26.8242 972 140 0 01 1282 2416 121 1389 696

3.5013. 1.9183 22.2545 270 550 3.8008 7.1912 26.8938 990 150 2 1281 2259 121 1394 686 160 3.5015 2.0464 22.4804 288 560 3.8129 7.3306 26.9624 1008 2 1282 2123 119 1398 676 170 3.5017 2.1746 22.6927 306 570 3.8248 7.4704 27.0300 1026 3 1282 2002 118 1402 666 180 3.5020 2.3028 22.8929 324 580 3.8366 7.6106 27.0966 1044 5 1282 1894 117 1407 657 190 3.5025 2.4310 23.0823 342 590 3.8483 7.7513 27.1623 1062 7 1283 1796 116 1411 648

3.5032 2.5593 23.2619 360 600 3.8599 7.8924 27.2271 1080 200 10 1282 1710 114 1415 639 3.5042 2.6875 23.4329 378 610 3.8713 8.0339 27.2910 1098 210 14 1283 1630 113 1419 630 3.5056 2.8158 23.5959 396 620 3.8826 8.1758 2713540 1116 220 17 1284 1559 111 1423 622 3.5073 2.9442 23.7518 414 630 3.8937 8.3181 27.4162 1134 230 22 1284 1493 110 1428 614 3.5095 3.0726 23.9011 432 640 3.9047 8.4609 27.4776 1152 240 27 1286 1433 108 1431 607 250 3.5122 3.2012 24.0444 450 650 3.9155 ^MO 27.5383 1170 33 1286 1378 107 1436 598 3.5155 3.3298 24.1822 468 660 3.9262 8.74 76 27.5981 1188 260 38 1288 1328 105 9 591 3.5193 3.4586 24.3150 486 670 3.9367 8.8915 27.6572 1206 270 45 1289 1280 103 1443 584 3.5238 3.5875 24.4430 504 680 3.9470 9.0358 27.7156 1224 280 50 1291 1238 101 44 577 3.5288 3.7166 24.5668 522 690 3.9571 9.18 0 27.7733 1242 290 56 1293 1197 101 5 1450 570

3.5344 3.8459 24.6865 540 700 3.9672 9.3 25 5 27.8303 1260 300 63 1295 1160 98 1454 564 310 3.5407 3.9754 24.8025 558 710 3.9770 9.4709 27.8867 1278 69 129? 1125 96 f8 557 3.5476 4.1051 24.9150 576 720 3.9866 9.6 167 27.9424 1296 320 75 1300 1093 95 14614 6 550 330 3.5551 4.2 3 51 25.0243 594 730 3.9961 9.7628 27.9974 1314 80 1303 1062 93 4 fc 545 3.5631 25.1305 612 740 4.0054 9 9093 28.0519 1332 340 86 4.3654 1306 1035 91 1468 538

3.5717 4.4960 25.2340 750 4.0145 10.0561 28.1057 1350 350 90 1309 1007 630 90 1471 532 3.5807 4.6269 25.3347 648 760 4.0235 10.2032 28.1589 1368 360 95 1313 982 88 1475 527 3.5902 4.7582 25.4329 770 4.0323 10.3507 28.2116 1386 370 100 1316 959 666 86 1478 521 380 3.6002 4.8898 25.5288 684 780 4.0409 10.4985 28.2637 1404 103 1320 936 85 1481 515 3.6105 5.0218 25.6224 4.0494 10.6466 28.3152 1422 390 107 1324 916 702 790 83 1484 510

400 3.6212 5.1542 25.7140 720 800 4.0577 10.7950 28.3662 1440

CONVERSION FACTORS

To Convert Tabulated Values of To The Dimensions Indicated Below Multiply By

" _1 C° Q<> 1 1 cal mole °K" ( or°C ) P s 1.98719

R R _1 1 1 cal g °K" ( or°C" ) 0.0620996

joules " -1 1 1 g °K~ ( or °C" ) 0.259825

(lb )" 1 1 1 Btu mole °R” (or°F" ) 1.98588 " Btu lb 1 1 1 °R" ( or °F" ) 0.0620587

2 o c°p C° (h°-e°) °K K-X) S °R °K >R R RT0 R R RT0 R A A A A A A 800 4.0577 10.7950 28.3662 1440 2900 4.7824 45.2601 34.0470 393 7464 2172 120 8765 819 5220 850 4.0970 11.5414 28.6134 1530 2950 4.7944 46.1366 34.1289 357 7532 2352 118 8786 807 5310 900 4.1327 12.2946 28.8486 1620 3000 4.8062 47.0152 34.2096 5400 325 7595 2243 115 8809 795 950 4.1652 13.0541 29.0729 1710 3050 4.8177 47.8961 34.2891 K 490 296 7652 2145 114 8829 784 1000 4.1948 13.8193 29.2874 1800 3100 4.8291 48.7790 34.3675 271 7703 2053 111 8850 774 5b80

1050 4.2219 14.5896 29.4927 1890 3150 4.8402 49.6640 34.4449 250 7751 1970 uo 8869 763 5670 1100 4.2469 15.3647 29.6897 1980 3200 4.8512 50.5509 34.5212 229 7795 1893 07 8889 753 5760 1150 4.2698 16.1442 29.8790 2070 3250 4.8619 51.4398 34.5965 214 7836 1821 1Q 8909 743 5850 1200 4.2912 16.9278 30.0611 2160 3300 4.8724 52.3307 34.6708 200 7873 1756 103 8929 734 5940 1250 4.3112 17.7151 30.2367 2250 3350 4.8827 53.2236 34.7442 188 7908 1695 1Q2 8947 724 6030 1300 43300 18.5059 30.4062 2340 3400 4.8929 54.1183 34.8166 179 7943 1638 8965 715 6120 1350 4.3479 19.3002 30.5700 2430 3450 4.9028 55.0148 34.8881 172 7974 1584 8982 706 6210 1400 4.3651 20.0976 30.7284 2520 3500 4.9125 55.9130 34.9587 164 8005 1535 9002 698 6300 1450 4.3815 20.8981 30.8819 2610 3550 4.9220 56.8132 35.0285 6390 160 8035 1488 9018 689 1500 4.3975 21.7016 31.0307 2700 3600 4.9312 57.7150 35.0974 155 8064 1444 9033 680 6480

1550 4.4130 22.5080 31.1751 2790 3650 4.9403 58.6183 35.1654 6570 152 8091 1404 9050® 673 1600 4.4282 23.3171 313155 2880 3700 4.9491 59.5233 35.2327 6660 149 8119 1364 °“ 665 1650 4.4431 24.1290 31.4519 2970 3750 4.9578 60.4301 35.2992 147 8147 1329 g0 657 6750 1700 4.4578 24.9437 31.5848 3060 3800 4.9662 613384 35.3649 146 8172 1294 g09g 650 6840 1750 4.4724 25.7609 31.7142 3150 3850 4.9744 62.2482 35.4299 6930 144 8200 1262 9U2 642 1800 4.4868 26.5&09 31.8404 3240 3900 4.9825 63.1594 35.4941 143 8227 1232 9127 635 1850 4.5011 27.4036 31.9636 3330 3950 4.9903 64.0721 35.5576 7110 142 8252 1202 9141 628 1900 4.5153 28.2288 32.0838 3420 4000 4.9979 64.9862 35.6204 7200 142 8277 1175 9160 622 1950 4.5295 29.0565 32.2013 3510 4050 5.0054 65.9022 35.6826 7290 141 8304 1148 9171 615 2000 4.5436 29.8869 32.3161 3600 4100 5.0126 66.8193 35.7441 140 8329 1124 9178 608 7380

2050 4.5576 30.7198 32.4285 5.0197 67.7371 35.8049 139 8356 1100 3690 4150 9190 601 7470 2100 4.5715 31.5554 32.5385 3780 4200 5.0265 68.6561 35.8650 7560 139 8381 1077 9204 595 2150 4.5854 32.3935 32.6462 5.0332 69.5765 35.9245 139 8406 1056 3870 4250 9218 590 7650 2200 4.5993 33.2341 32.7518 3960 4300 5.0397 70.4983 35.9835 7740 137 8430 1035 9234 583 2250 4.6130 34.0771 32.8553 4050 5.0460 71.4217 36.0418 137 8456 1015 4350 9244 577 7830

2300 4.6267 34.9227 32.9568 4140 4400 5.0521 72.3461 36.0995 7920 137 8482 997 9254 571 2350 4.6404 35.7709 33.0565 4230 5.0580 73.2715 36.1566 8010 136 8508 978 4450 9261 566 2400 4.6540 36.6217 33.1543 4320 4500 5.0638 74.1976 36.2132 8100 134 8530 961 9270 559 2450 4.6674 37.4747 33.2504 4550 5.0693 75.1246 36.2691 8190 134 8555 945 4410 9282 555 2500 4.6808 38.3302 33.3449 5.0746 76.0528 36.3246 8280 132 8580 928 4500 4600 9299 548

2550 4.6940 39.1882 33.4377 5.0797 76.9827 36.3794 8370 131 8605 912 4590 4650 9308 544 2600 4.7071 40.0487 33.5289 4700 5.0847 77.9135 36.4338 8460 129 8627 898 4680 9310 538 2650 4.7200 40.9114 33.6187 4770 4750 5.0896 78.8445 36.4876 8550 128 8651 884 9315 534 2700 4.7328 41.7765 33.7071 5.0943 79.7760 36.5410 8640 126 8675 869 4860 4800 9326 528 2750 4.7454 42.6440 33.7940 4950 4850 5.0987 80.7086 36.5938 8730 125 8698 856 9337 523

2800 4.7579 43.5138 33.8796 4900 5.1028 81.6423 36.6461 8820 124 8720 844 5040 9347 519 2850 4.7703 44.3858 33.9640 5130 4950 5.1068 82.5770 36.6980 8910 121 8743 830 9352 513 2900 4.7824 45.2601 34.0470 5220 5000 5.1109 83.5122 36.7493 9000

CONVERSION FACTORS To Convert Tabulated Values of To The Dimensions Indicated Below Multiply By

-1 H° - E° cal mole 542.821 RT _1 0 cal g *6.9632 _1 joules g 70.9742 -1 Btu (lb mole ) 976.437

Btu lb -1 30.5137

3 ,

MOLECULAR OXYGEN

THE PROPERTIES TABULATED The thermodynamic properties (Specific Heat, Entropy, and Enthalpy) of molecular oxygen in the ideal gas state are given in dimensionless

form. The properties Cp/R, (H°-E° ) /RT . , and S°/R are tabulated as func- Q tions of temperature, which is given in degrees K and in degrees R. The values are based on the tables given by Woolley [l] and are for the normal isotopic mixture.

RELIABILITY OF THE TABLES The calculations for 0 are based in general on rather precise spec- 2 troscopic data, except for some of the high energy states, so that the tabulated values should be reliable to the next to the last digit given except at temperatures near 5000°K, where the uncertainties may approach

Cj/R, in S°/R, and 0.005 in (H°-E“)/RT . 0.003 in 0.0005 0 The values of the thermodynamic properties given in this table should not be used for the actual gas at those elevated temperatures and lowered pressures at which an appreciable part of the gas is dissociated. At a pressure of one atmosphere and a temperature of 3600 °K the enthalpy of thf actual partially dissociated oxygen is approximately twice as great as that of the pure molecular f orm tabulated . At 0.01 atmosphere a similar condition is attained at 2800°K. More extensive information on the thermo- dynamic properties of partially dissociated oxygen will be found in table 9.2 of this series.

IKTERPOLAT I ON The validity of linear interpolation varies throughout this table The error does not exceed one eighth of the second difference which can be obtained by inspection from the first differences tabulated. Where more precise interpolated values are desired, a four point Lagrangian inter- polation may be used [2] .

CONVERSION FACTORS The functions in this table have been expressed in dimensionless form in order that they may be converted readily to any system of units. Conversion factors are listed for the most often used units. For vqlues of R and RT not listed in this table and for other conversion factors fi see Tables* 4-^20— 1.30 of this series. The symbol R denotes the gas coristant and T is 273 . 16° Kelvin . The calorie used in the conversion fac- q tors is the thermochemical calorie and unless otherwise specified, the mole is the gram - mole.

REFERENCES: [1]. H. W. Woolley, Thermodynamic functions of molecular oxygen in the

ideal gas state, J. Research NBS 40. 163 ( 1948)RP1864

f2] . Tables of Lagrangian Interpolation Coefficients (Columbia University Press. New York, N.Y., 1944).

4 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Charles Sawyer, Secretary E. U. Condon, Director

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 9.11 Molecular Oxygen

July 1950

Free Energy

-(F°-E°)/RT

compiled by Harold W. Woolley

FOREWORD

This is one of a series of tables of Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of accurate data on thermal

properties of wind-tunnel and jet-engine gases. It is the purpose of' the project on Thermal Properties of Gases to make a critical compilation of existing published and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are anticipated as new data become available.

The dimensionless character of the tables and their general format should facilitate cal- culations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpub- lished data. Information and other correspondence regarding these tables should be ad- dressed to Joseph Hilsenrath, Heat and Power Division, National Bureau of Standards. This table is also available on IBM punched cards. Table 9.11 Molecular Oxygen Free Energy

2 Table 9.11 Molecular OxV

3 .

TABLE 9.11 MOLECULAR OXYGEN: FREE ENERGY FUNCTION

THE PROPERTY TABULATED

In this table a f unct ion of the , F° , that is convenient in the calculation of chemical equilibrium is presented for molecular oxygen in the ideal gas state. The function

is the dimensionless quantity - (F° — Eg ) /RT , where E° is the energy of the ideal gas at 0°K, R is the universal gas constant and T is the absolute temperature. The negative free energy function is tabulated as a function of the temperature which is given in degrees Kelvin and degrees Ran- kine. The values are consistent with the values of enthalpy and entropy given in Table 9.10 of

this series, and with those of reference [l] , according to the definition of Gibbs free energy, F = H - TS

RELIABILITY OF THE TABLE

The values given are considered to be very reliable, being uncertain by less than one unit in the third decimal place up to the highest temperatures.

INTERPOLATION

The validity of linear interpolation varies throughout this table depending upon the number of figures desired. The error pr oduced by linear interpolation does not exceed one-eighth of the second difference. Where more precise values are desired, a four-point Lagrangian interpolation

may be used [2] .

CONVERSION FACTORS, CONSTANTS, AND DEFINITIONS OF SYMBOLS

The f unct ion in this table has been expressed in dimensionless form. In order that it may be converted readily to any system of units, conversion factors are listed for the frequently used units. The following constants have been used in this compilation; the universal gas constant -1 -1 = R = 1.98719 cal mole deg ; the molecular weight of oxygen 32.000; the thermochemical calorie = 4.1840 abs. joules. Unless otherwise specified the .mole is the gram-mole. For other conver- sion factors, constants r and def in-it ion-s see Table 1.30 of this series.

CONVERSION FACTORS

To Convert Tabulated Multiply To Having the Dimensions Indicated Below Value of By

0 1 1 1 - (F - E°)/RT - (F° - E° )/T cal mole* °K" (or °C- ) 1 .98719

1 1 1 cal g- °K“ (or “C' ) 0.0620996

1 i 1 joules g' °K' (or '’C' ) 0.259825

1 1 1 Btu (lb mole)- “R* (or '’F* ) 1 .98588

1 1 -1 Btu lb' °R" (or °F ) 0.0620587

REFERENCES

[l] Harold W, Woolley, Thermodynamic functions for molecular oxygen in the ideal gas state, J. Research NBS 40. 163 (1948) RP1864.

[?] "Tables of Lagrangian Interpolation Coef f icien ts **, Columbia University Press, New York, 1944.

4

- U. S. GOVERNMENT PRINTING OFFICE : 1950 O 89464 5 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Charles Sawyer, Secretary E. U Condon, Director

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 10.10 Atomic Oxygen (Ideal Gas State)

July 1950

Specific Heat, Enthalpy, Entropy — C°JR, (H° E°)/RTn , S°/R

compiled by Harold W. Woolley

FOREWORD

This is one of a series of tables of Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propul- sion and the high speeds attained thereby have emphasized the importance of 'accurate data on thermal properties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal Properties of Gases to make a critical compilation of existing pub- lished and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are antici- pated as new data become available.

The dimensionless character of the tables and their general format should facilitate calculations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpublished data. Information and other correspondence regarding these tables should be addressed to Joseph Hilsenrath, Heat and Power Division, National Bureau of Stand- ards. This table is also available on IBM punched cards. Specific Heat, Enthalpy, Entropy Table 10.10 Atomic Oxygen (Ideal Gas State)

H°- E ( °o) S°

RT0 R

* A A 3.9330 20.1246 720 400 2.5836 945 638 18 410 2.5802 4.0275 20.1884 738 10 2.5000 0.09152 103601 17330 _ „ 944 621 9 9153 2.5769 4.1219 20.2505 756 20 2.5009 0.18305 12.0931 36 420 _ , 943 605 171 9177 10162 _. 42162 205110 774 30 2.5180 0.27482 13.1093 54 430 25738 q 941 592 512 9302 7306 205702 2.5692 036784 13.8399 72 440 25709 _ 45103 941 578 792 40 726 9536 5810 2a

2.6418 0.46320 14.4209 90 450 2.5681 - 4.4044 20.4280 810 50 724 9806 4881 26 939 563 2.7142 0.56126 14.9090 108 460 2.5655 - 4.4983 20.4843 828 60 589 10049 4231 25 939 553 2.7731 0.66175 153321 126 470 2.5630 4.5922 20.5396 846 70 414 10233 3732 - 23 938 539 2.8145 0.76408 15.7053 144 480 2.5607 - 4.6860 20.5935 864 80 250 10354 3331 22 938 529 2.8395 0.86762 16.0384 162 490 2.5585 - 4.7798 20.6464 882 90 115 10420 2998 20 936 516

100 2.8510 0.97182 163382 180 500 2.5565 _ 4.8734 20.6980 900 13 1044 2719 936 507 2.8523 1.0762 16.6101 198 510 .5545 _ 4.9670 20.7487 918 no - 54 1044 2480 935 495 2.8469 1.1806 16.3581 216 520 .5527 _ 5.0605 20.7982 936 120 -100 1040 2275 934 487 2.8369 1.2846 17.0856 234 530 2.5509 _ 5.1539 20.8469 954 130 -131 1036 2098 933 476 2.8238 13882 17.2954 252 540 .5492 _ 5.2472 20.8945 972 140 -148 1032 1943 933 467

2.8090 1.4914 17.4897 270 550 2.5476 53405 20.9412 990 150 -156 1025 1808 - 15 932 459 2.7934 1.5939 17.6705 288 560 2.5461 5.4337 20.9871 1008 160 -157 1020 1689 - 15 932 451 2.7777 1.6959 17.8394 306 570 2.5446 5.5269 21.0322 1026 170 -153 1014 1583 - 14 931 442 2.7624 1.7973 17.9977 324 580 2.5432 5.6200 21.0764 1044 180 -146 1008 1490 - 13 931 435 2.7478 1.8981 18.1467 342 590 2.5419 5.7131 21.1199 1062 190 -138 1004 1406 - 13 930 426

2.7340 1.9985 18.2873 360 600 2.5406 5.8061 21.1625 1080 200 -134 999 1327 - 12 930 420 2.7206 2.0984 18.4200 378 610 2.5394 5.8991 213045 1098 210 -125 994 1262 - 12 930 412 2.7081 2.1978 18.5462 620 23382 5.9921 21.2457 1116 220 -117 989 1202 396 - 11 929 406 2.6964 22967 18.6664 630 2.5371 6.0850 21.2863 1134 230 -109 985 1147 414 - 11 928 399 2.6855 23952 18.7811 432 640 23360 6.1778 213262 1152 240 -102 981 1096 - 10 928 394

250 2.6753 2.4933 18.8907 450 650 2.5350 6.2706 213656 1170 95 978 1046 - 10 928 387 2.6658 2.5911 18.9953 468 660 2.5340 63634 21.4043 1188 260 89 974 1004 - 9 928 381 270 2.6569 2.6885 19.0957 486 670 2.5331 6.4562 21.4424 1206 83 971 966 - 10 927 375 2.6486 2.7856 19.1923 504 680 23321 6.5489 21.4799 1224 280 77 968 928 - 9 927 370 290 2.6409 2.8824 19.2851 522 690 2.5312 6.6416 21.5169 1242 71 965 895 - 8 927 365

2.6338 2.9789 193746 2.5304 6.7343 21.5534 1260 300 67 963 861 540 700 8 926 359 310 2.6271 3.0752 19.4607 558 710 2.5296 6.8269 21.5893 1278 22 961 833 8 926 353 320 2.6209 3.1713 19.5440 2.5288 6.9195 21.6246 1296 58 958 806 576 720 7 925 349 330 2.6151 3.2671 19.6246 594 730 23281 ' 7.0120 21.6595 1314 54 957 780 926 344 340 2.6097 3.3628 19.7026 612 23274 ' 7.1046 21.6939 1332 51 954 756 740 925 339

350 2.6046 3.4582 19.7782 630 2.5267 7 - 1971 21.7278 1350 48 953 733 750 6 924 335 360 2.5998 3.5535 19.8515 2.5261 “ 7.2895 21.7613 1368 44 951 712 648 760 925 330 370 2.5954 3.6486 19.9227 2.5254 , 73820 21.7943 42 949 691 666 770 924 326 1386

380 2.5912 3.7435 19.9918 2.5248 , 7.4 744 21.8269 1404 39 948 674 684 780 924 321 390 2.5873 3.8383 20.0592 702 2.5242 “ 7.5668 21.8590 1422 37 947 654 790 924 318

400 2.5836 3.9330 20.1246 720 800 23237 7.6592 21.8908 1440

CONVERSION FACTORS

To Convert Tabulated Mult iply To Having the Dimensions Indicated Below Value of By

-1 1 1 C°/R , S°/R c° . s° cal rrole °K“ (or °C" ) 1 .98719 p p g’ 1 1 0 _1 cal "r (or C ) 0. 124199

g" 1 1 _1 joules “r (or °C ) 0.519650

-1 "3 1 1 Btu (lb mole) ( or “F" ) 1 .98588

1 1 1 Btu lb' °R" (or °F- ) 0. 1241 18

2 Table 10.10 Atomic Oxygen (Ideal Gas State) Specific Heat, Enthalpy, Entropy

O S _S_ J K °R °K R RT0 R R R A A A A A 800 2.5237 _ 7.6592 21.8908 25182 27.8705 252091 26 4618 1529 1440 3000 4611 417 5400 850 2.5211 8.1210 22.0437 25197 283316 25.2508 _ 22 4614 1441 1530 3050 4615 410 5490 900 2.5189 8.5824 22.1878 25213 28.7931 252918 18 4608 1361 1620 3100 4617 403 5580 2.5171 9.0432 22.3239 2.5229 29.2548 253321 950 _ 16 4605 1291 1710 3150 4620 398 5670 1000 2.5155 9.5037 22.4530 1800 3200 2524 7 29.7168 253719 5760 _ 14 4603 1226 4624 392

2.5141 9.9640 22.5756 25265 30.1792 25.4111 1050 4601 1169 1890 3250 4626 386 5850 1100 2.5129 10.4241 22.6925 1980 3300 2.5284 30.6418 25.4497 5940 j 4599 1117 4629 380 1150 2.5118 10.8840 22.8042 2.5304 31.1047 25.4877 6030 in 4597 1069 2070 3350 4633 375 1200 2.5108 o 1x3437 22.9111 2160 3400 2.5325 31.5680 25.5252 6120 4595 1025 4636 369 1250 2.5100 11.8032 23.0136 2250 3450 25346 32.0316 25.5621 6210 7 4594 985 4640 365

1300 2.5093 12.2626 23.1121 2.5368 32.4956 25.5986 _ 7 4593 947 2340 3500 4645 360 6300 1350 2.5086 ' 12.7219 23.2068 2430 25391 32.9601 25.6346 _ 4592 912 3550 4650 355 6390 1400 2.5080 13.1811 23.2980 2.5414 33.4251 25.6701 l 4591 880 2520 3600 4655 351 6480 2.5074 13.6402 233860 25438 33.8906 25.7052 1450 _ , 4589 350 2610 3650 4659 346 6570 1500 2.5070 14.0991 23.4710 2700 3700 2.5463 343565 25.7398 6660 _ 4 4588 822 4664 342

2.5066 14.5579 23.5532 2.5488 34.8229 25.7740 1550 _ , 4588 797 2790 3750 4668 338 6750 1600 2.5063 15.0167 23.6329 2.5513 352897 25.8078 _ , 4588 772 2880 3800 4672 333 6840 1650 2.5060 15.4755 23.7101 2.5539 35.7569 25.8411 _ , 4587 748 2970 3850 4677 330 6930 1700 2.5057 15.9342 23.7849 3900 2.5566 36.2246 25.8741 7020 _ , 4585 726 3060 4681 326 1750 2.5054 163927 23.8575 3150 3950 2.5593 36.6927 25.9067 7110 _ 2 4585 706 4687 322

1800 2.5052 , 16.8512 23.9281 3240 2.5621 37.1614 25.9389 7200 _ 4585 686 4000 4692 319 2.5051 173097 23.9967 25649 37.6306 25.9708 7290 1850 _ , 4586 668 3330 4050 4698 314 1900 2.5049 17.7683 24.0635 3420 4100 2.5677 38.1004 26.0022 7380 0 4585 651 4703 312 2.5049 “ 183268 24.1286 2.5706 38.5707 26.0334 1950 4585 634 3510 4150 4709 308 7470 2000 2.5048 18.6853 24.1920 3600 4200 -25 735 39.0416 26.0642 7560 J 4584 618 4714 305

2050 2.5049 19.1437 24.2538 3690 4250 2.5764 39.5130 26.0947 7650 n 4585 604 4719 302 2100 2.5049 19.6022 243142 2.5794 39.9849 26.1249 ? 4586 589 3780 4300 4724 298 7740 2.5051 20.0608 243731 25824 40.4573 26.1547 2150 , 4587 576 3870 4350 4730 295 7830 2200 2.5053 20.5195 24.4307 2.5853 40.9303 26.1842 7920 , 4587 563 3960 4400 4735 293 2250 2.5055 20.9782 24.4870 4050 4450 2.5883 41.4038 262135 8010 3 4587 551 4741 289

2300 2.5058 21.4369 24.5421 2.5913 41.8779 26.2424 8100 , 4587 539 4140 4500 4747 286 2350 2.5062 21.8956 24.5960 25944 423526 26.2710 8190 3 4587 528 4230 4550 4752 284 2.5067 , 223543 24.6488 2.5974 42.8278 262994 8280 2400 4588 517 4320 4600 4758 281 2.5072 . 22.8131 24.7005 2.6005 433036 263275 8370 2450 4588 506 4410 4650 4764 278 2.5078 23.2719 24.7511 2.6036 43.7800 263553 2500 4591 497 4500 4700 4769 276 8460

2.5084 23.7310 24.8008 2.6066 44.2569 263829 2550 4592 487 4590 4750 4774 273 8550 2.5092 24.1902 24.8495 2.6097 44.7343 26.4102 8640 2600 4593 478 4680 4800 4780 271 2.5100 24.6495 24.8973 2.6128 45.2123 26.4373 8730 2650 4596 469 4770 4850 4784 268 2.5109 25.1091 24.9442 2.6158 45.6907 26.4641 8820 2700 4597 461 4860 4900 4789 266 2.5119 25.5688 24.9903 2.6189 46.1696 26.4907 8910 2750 4599 453 4950 4950 4793 263

2.5130 26.0287 25.0356 2.6219 46.6489 26.5170 9000 2800 4601 5040 5000 2.5142 26.4888 25.0800 2850 4603 438 5130 2.5155 26.9491 25.1238 2900 4606 430 5220 2.5168 27.4097 25.1668 2950 4608 423 5310 3000 2.5182 27.8705 252091 5400

CONVERSION FACTORS

3 , i s .

TABLE 10.10 ATOMIC OXYGEN (IDEAL GAS STATE)

THE PROPERTIES TABULATED These tables give in dimensionless form as functions of temperature in degrees Kelvin and degrees Rankine, the following thermodynamic prop- erties of atomic oxygen in the ideal gas state: the specific heat at

constant pressure, Cp; the enthalpy, H° ; and the entropy, S° . The zero reference point of the enthalpy is taken as the ideal gas internal energy, Eq at absolute zero. The tabulated quantities are made dimensionless

by dividing by R or RT , where R is the universal gas constant and T is the absolute temperature of the ice point. The tables are based on those given in reference 1 with some extension and sub tabulation

RELIABILITY OF THE TABLE

The values in this table are considered to be very reliable. It ap-

pears probable that any inaccuracies introduced in the s ub t ab ul a t i on would be of the order of 0.0001.

I NTERP0LAT I ON The validity of linear interpolation varies throughout this table depending upon the number of figures desired. The error produced by linear interpolation does not exceed one-eighth of the second difference. Where more precise values are desi red a four-point Lagrangian interpolation may be used [2] .

CONVERSION FACTORS, CONSTANTS, AND DEFINITIONS OF SYM30LS

The functions in this table have been expressed in dimensionless form in order that they may be converted readily to any system of units. Conversion factors are listed for the frequently used units. The fol- lowing constants have been used in this compilation: the gas constant -1 -1 R = 1.98719 cal mole deg ; the atomic weight of oxygen = 16.0000;

T = 273. 16 K; the thermochemical calorie = 4.1840 abs. joules. Unless 0 otherwise specified the mole is the gram-mole. For other conversion factors, c o-n-st-cnrts. —and-de-£i_nl 1 on see table 1.30 of this series.

REFERENCES

[1] "Selected Values of Chemical Thermodynamic Properties, " National Bureau of Standards.

[2] "Tables of Lagrangian Interpolation Coefficients," (Columbia Univer- sity Press, New York, N.Y., 1944).

4

U. S. GOVERNMENT PRINTING OFFICE: 1950 O - 887338 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Charles Sawyer, Secretary E. U. Condon, Director

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 10.11 Atomic Oxygen July 1950

Free Energy

-(F°-E°0 )IRT

compiled by Harold W. Woolley

FOREWORD

This is one of a series of tables of '’Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of accurate data on thermal properties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal Properties of Gases to make a critical compilation of existing published and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are anticipated as new data become available.

The dimensionless character of the tables and their general format should facilitate cal- culations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpub- lished data. Information and other correspondence regarding these tables should be ad- dressed to Josejih Hilsenrath, Heat and Power Division, National Bureau of Standards. This table is also available on IBM punched cards. Table 10.11 Atomic Oxygen Free Energy

i F°~K) °K RT °R °K RT °R

A 400 17.4388 ““ 720 7.86 10 01 17329 18 410 17.5051 738 20 9.5930 10140 36 420 17.5697 630 756 30 10.6070 54 430 17.6327 774 \™2Q9 Z 40 113279 72 440 17.6943 2 792 50 n.8903 90 450 17.7544 810 4635 ™587 60 123538 ZZ 108 460 17.8131 ” 828 70 12.7497 126 470 17.8706 846 80 13.0963 ™ 144 480 17.9267 864 90 13-4050 162 490 17.9818 HI 882

, 100 13.6836 ? 39 180 500 18.0356 900 no 13.9375 198 510 18.0883 918 f32 “ 6 120 14 A 707 216 520 18.1399 936 130 143863 ™ 234 530 18.1906 954 4968 140 14.5867 \° 252 540 18.2 4 0 972 m 2 48

150 !4.7738 18.2 8 8 1754 270 550 8 47fi 990 160 14.9492 288 560 183366 1008 170 15.1143 306 570 183835 1026 5 4 ^ 180 15.2702 324 580 18.4295 1044 4 5 190 15.4177 342 590 18.4748 1062 J/oo ^ 200 15.5577 13288 360 600 18.5192 436 1080 210 15.6905 378 610 18.5628 1098 f69 438 220 15.8174 396 620 18.6058 42? 1116 230 15.9388 382 414 630 18.6480 419 1134 240 16.0550 18.6 8 9 432 640 5 408 1152

250 16.1664 18.73 0 450 650 3 403 1170 260 16.2732 468 660 18.7706 Z 1188 270 163759 98998; 486 670 18.8102 Z 1206 280 16.4748 504 680 18.8492 1224 * 384 290 16.5702 18.8876 0 522 690 37g 1242

16.6622 300 fiBR 540 700 18.9255 377 1260 310 16.7510 859 558 710 18.9627 Z 1278 320 16.8369 576 720 18.9995 Jr, 1296 330 16.9202 594 8Q7 730 19.0356 HI 1314 340 17.0009 612 740 19.0713 1332 ^ 332

350 1 7.0792 “ 630 750 19.1065 M7 1350 360 17J552 19.1412 7 648 760 1368 370 173291 718 666 770 19.17 5 5 337 1386 380 ! 73009 19.2092 899 684 780 334 1404 390 173708 Z 702 790 19.2426 1422 400 17.4388 720 800 19.2755 1440

2 I able 10.11 Atomic Oxygen Free Energy

1 o 1 °K °R RT °K RT °R

800 19.2755 4 1440 3000 22.6714 5400 ™4f9 850 19.4339 ^ 1530 3050 22.7133 5490 900 19.5830 1620 3100 22.7546 5580 ™ ,*0l 950 19.7237 1710 3150 22.7952 ™ 5670 1000 19.8569 1800 3200 22.8352 5760

1050 19.9 83 1890 3250 22.8745 5850 5 1205“ 387 1100 20.1040 1980 3300 22.9132 5940 1150 20.2190 2070 3350 22.9514 JJ?; 376 6030 1200 203289 2160 3400 22.9890 6120 ® 370 1250 20 4343 2250 23.0260 3450 365 6210

1300 20.5354 2340 23.0 6 2 97? 3500 5 36Q 6300 1350 20.6326 2430 3550 23.0985 6390 334 1400 20.7260 2520 3600 23.1339 2 6480 1450 20.8164 2610 3650 23.1689 6570 ^ 25 1500 20.9034 2700 3700 23.2034 6660 ^ 3Al

1550 20.9876 23.2 3 7 2790 3750 4 336 6750 1600 21.0692 789 2880 3800 23.2710 6840 f ‘ 1650 21.1481 2970 3850 233042 27 6930 21.2245 1700 ;; 3060 3900 233369 324 7020 1750 212987 3150 3950 233693 7110 72^ 3 19

1800 2 1 3 7 0 3240 4000 23.4012 ... 7200 8 701™ 21.4409 ,: 1850 3330 4050 23.4327 7 7290 1900 21.5090 3420 4100 23.4639 7380 ^ “J8 1950 21.5734 £ 3510 4150 23.4947 7470 23.52 5 2000 21.6400 630 3600 4200 1 300 7560

23.5551 2050 21.7030 4 3690 4250 297 7650 21.7644 4300 23.5848 7740 2100 30Q 3780 294 2150 21.8244 3870 4350 23.6142 29Q 7830 23.64 3 2200 21.8830 3960 4400 2 287 7920 4450 23.6719 8010 2250 21.9402 530 4050 284 23.7003 8100 2300 21.9962 4? 4140 4500 8 22.0509 4230 4550 23.7284 8190 2350 '533 "27^ 2400 22 J 045 4320 4600 23.7562 8280 22.1569 4410 4650 23.783 7 8370 2450 5 34 4700 23.8 1 0 8460 2500 22.2083 503 4500 9 269 23.8378 8550 2550 22.2586 494 4590 4750 26? 23.8645 8640 2600 223080 484 4680 4800 263 4850 23.8908 8730 2650 223564 475 4770 262 4860 4900 23.9170 8820 2700 22.4039 466 259 4950 23.9429 8910 2750 22.4505 458 4950 256

9 5000 23.9685 9000 2800 22.4 6 3 449 5040 22.5412 5130 2850 44 , 22.5 8 5 5220 2900 3 434 2 8 2950 22.6 7 427 5310 3000 22.6714 5400

3 y . -

TABLE 10.11 ATOMIC OXYGEN: FREE ENERGY FUNCTION

THE PROPERTY TABULATED

In this table a function of the Gibbs free enerqy, F°, that is convenient in the calcula- tion of chemical equilibrium is presented for atomic oxygen in the ideal gas state. The func- tion is the dimensionless quantity — (F° - E°)/RT, where E° is the energy of the ideal gas at 0°K, R is the universal gas constant and T is the absolute temperature. The negative free en- ergy function is tabulated as a function of the temperature which is given in degrees Kelvin and degrees Rankine. The values are consistent with the values of enthalpy and entropy given in Ta- ble 10.10 of this series, according to the definition of Gibbs free energy, F = H — TS, For use with these tables the recommended value of E° for atomic oxygen, referred to the standard state of gaseous molecular oxygen at 0°K is 58.586 kcal/mole. This is based on the value for the heat of formation of atomic oxygen at 0°K [1].

RELIABILITY OF THE TABLE

The tabulated values are thought to be very reliable, probably within 2 units in the last decimal place.

INTERPOLATION

The validity of linear interpolation varies throughout this table depending upon the number of figures desired. The error produced by linear interpolation does not exceed one-eighth of the second difference. Where more precise values are desired, a four-point Lagrangian interpola- tion may be used [2].

C0NVER5I0N FACTORS, CONSTANTS, AND DEFINITIONS OF SYMBOLS

The function in this table has been expressed in dimensionless form. In order that it may be converted readily to any system of units, conversion factors are listed for the frequently used units. The following constants have been used in this compilation: the gas constant R = 1.98719 -1 -1 = = cal mole deg ; the atomic weight of oxygen 16.000; the thermochemical calorie 4.1640 abs joules. Unless otherwise specified the mole is the gram-mole. For other conversion factors, c^en—

- s-t-a n t s -an d- - del in ir-t-i-orH; see Table 1.30 of this series.

CONVERSION FACTORS

To Convert Tabulated Mul t ipl To Having the Dimensions Indicated Below Value of By

1 _1 1 - (F° - E°) /RT - (F° - E° )/T cal mole* °K (or “C* ) 1.98719

g* 1 1 1 cal “K" (or “C* ) 0. 124 1 99

g* 1 1 1 joules °K“ (or “C* ) 0.51 9650

1 1 1 3tu (lb mole)* “R* (or °F“ ) 1 .98588

1 1 1 Btu lb* “R* (or °F* ) 0. 124 1 1 8

REFERENCES

[1] "Selected Values of Chemical Thermodynamic Properties", National Bureau of Standards.

[2] "Tabl es o f Lagrangian Interpolation Coefficients", Columbia Un iversity Press , New York, 1944 .

4 U. S, Department of Commerce National Bureau of Standards

The NBS-NACA Tables of Thermal Properties

of Gases

Table 9.13 Density of Molecular Oxygen p/p 0

by

Harold W. Woolley

Reissue 1953

Table, 9* IS Density of Oxygen

Pressure

1 atm .1 atm atm atm — .01 .4 .7 T T °K °R 100 ,02730 I.IOI36 1.94076 ISO '-249 .27350 -2499 -10220 -I8306 no .02481 .24851 .99916' 1.75770 190 207 2079 8461 15069 120 .02274 .22772 .91455 1.60701 216 175 1757 7125 12642 130 .02099 .21015 .84330 1.48059 234 150 1505 6087 10772 140 .01949 .19510 .78243 1.37287 252 130 5261 1304 | 9293 150 .01819 .18206 .72982 1.27994 270 113 1140 ! 8IO3 160 .01706 .17066 .68387 4595 1.19891 288

101 1005 4048 ! 7130 170 .01605 .16061 .64339 1.12761 306 89 894 3594 6323 180 .01516 .15167 .60745 1.06438 324 80 799 3211 5648 190 .01436 .14368 .57534 1.00790 342 71 719 2888 5075 200 .OI365 .13649 .54646 .95715 36O 65 650 2612 4586 210 .01300 .12999 .52034 .91129 378 60 592 2372 4165 220 .01240 .12407 .49662 .86964 396 53 540 2166 3799 230 ,on87 .n867 .47496 .83165 414- 50 494 1983 3480 240 .On37 .11373 .45513 .79685 432 45 455 1825 3199 250 .01092 .10918 .43688 .76486 450 42 421 1684 2952 260 .01050 .10497 .42004 .73534 46s 389 1558 2732 270 .01011 39 .10108 .40446 .70802 486 36 361 1447 2536 280 .00975 .09747 .38999 .68266 504 34 336 1347 2360 290 0 00941 .09411 .37652 .65906 522 ! 31 314 1256 2202 300 .00910 .09097 .36396 .63704 540 30 293 1176 2060 310 0 00880 .08804 .35220 .61644 558 27 276 1102 1930 320 .00853 .08528 .34118 .59714 576 26 258 1034 1812 330 .00827 .08270 .33084 .57902 594 24 243 974 1706 340 .00803 .08027 »32no .56196 612 23 23O 919 1608 350 .00780 .07797 .31191 .54588 630 22 216 867 1518 360 .OO758 .07581 .30324 .53070 648 20 205 820 14.36 370 .00738 .07376 .29504 .51634 666 20 194 I36I 380 .00718 .07182 .28727 777 .50273 684 18 I85 737 1290 390 .00700 .06997 .27990 .48983 702 18 174 700 1226 400 .00682 .06823 .27290 .47757 720 16 167 666 1166 410 .00666 .06656 .26624 .46591 738 16 158 634 1110 420 .00650 .06498 .25990 .45481 756 15 152 605 1053 430 .OO635 .06346 .25385 .44423 774 15 144- 1010 440 .00620 .06202 .24808 577 .43413 792 14 138 552 966 450 .00606 .06064 .24256 .42447 810 | 18 Density of Oxygen p/p,

Pressure .01 atm ,1 atm .4 atm .7 atm T T •'fe °K °R 810 450 .00606 23 .06064 -131 .24256 -527 460 .00593 .23729 828 no .05933 127 505 .O58O6 846 470 .00531 22 121 .23224 484 864 480 .OO569 .5685 .22740 9-7 7 i 22 116 464 /-7 32/ 490 .05569 .22276 .38980 882 .00557 n 111 446 7g( 500 .00546 .05453 .21830 .33200 900 21 107 423 749 510 .OO535 .21402 918 10 .05351 103 412 .37451 721 520 .00525 .05243 .20990 o36730 936 10 99 396 693 530 .00515 .05149 .20594 .36037 954 10 95 381 667 540 .OO505 .05054 .20213 .35370 972. 9 92 368 643

550 .00496 n .04962 .19345 .34727 990 89 354 62.1 56O .00487 .4373 .19491 .34106 1008 3 85 342 593 570 .00479 .04783 .19149 .33508 1026 3 83 330 573 530 .00471 .04705 .18819 .32930 1044 3 80 319 558 590 . 00463 .04625 .I85OO .32372 1062 3 77 309 540 600 .00455 .04548 .18191 ,31332 1080 3 74 293 522 610 .00447 .04474 .17893 .31310 1098 7 73 289 505 620 .00440 .04401 .17604 .3O8O5 1116 7 69 279 439 630 .00433 .04332 .17325 .30316 1134 7 68 271 474 640 .00426 O 04264 .17054 .29842 1152 3 66 262 459 650 .00420 .04198 .16792 .29333 II70 7 63 255 445 660 .00413 I .04135 .16537 .28938 1138 62 246 432 670 .00407 .04073 .16291 .28506 1206 6 60 240 419 680 .00401 .04013 .16051 .28087 1224 6 58 233 408 690 .00395 .03955 .15818 .27679 1242 5 57 226 395 700 .00390 .03898 .15592 .27284 1260 6 54 219 384 710 .00384 c .03344 .15373 .26900 1273 54 214 374 720 .00379 1 .03790 .15159 .26526 1296 52 207 363 730 .00374 C .03733 .14952 .26163 133-4 50 202 354 740 .00369 .03688 .14750 .25809 1332 5 49 197 344 750 .00364 _ .03639 .25465 1350 48 *^53 192 335 760 .OO359 l .03591 • 143 ol .25130 47 326 1368 770 .00354 f .03544 .14175 .24804 1386 45 iso 318 780 .00350 I! .03499 .13993 .24486 45 177 310 1404 790 .00345 .03454 .13816 .24176 1422 1 43 ^ 302 800 .00341 .03411 .13643 .23874 1440

-2- Table 9* IS Density of Oxygen

Pressure .01' atm .1 atm .4 atm .7 atm" T T °K °R

300 » OO34I .03411 1440 _?0 -200 .13643 -802 .23874 -1405 350 .00321 ri .03211 .12841 ,22469 1530 179 7U 1248 900 *00303 .O3O32 .12127 .21221 1620 tb 159 638 1117 950 .00237 .02873 .11489 .20104 1710 t 144 574 1005 1000 .00273 .02729 .10915 .19099 1300 53 130 520 909 1050 .00260 .02599 .10395 .13190 1890 -] 2 118 472 327 1100 .00248 72 .02481 .09923 .17363 1980 103 432 755 1150 .00237 .02373 .09491 .16608 2070 10 99 395 692 1200 .00227 .02274 .09096 .15916 2160 q 91 364 636 1250 .00218 ,02183 .08732 .15280 2250 | 34 336 583

1300 .00210 .14.692 2340 g .02099 73 ,08396 344 544 .OSO85 1350 .00202 1 .02021 72 289 O 24348 505 2430 1400 .00195 7 .01949 57 .07796 263 .13643 471 2520 .01882 2610 1450 .00188 5 .07528 251 .13172 439 1500 .00182 .01319 .07277 .12733 2700 6 5 s 235 410

.00176 c .01761 r r .07042 1550 220 ,12323 3 2790 1600 .00171 6 .01706 g .06322 207 ,11933 362 2830 I65O .OOI65 .01654 .06615 2970 4 A 0 194 ,11576 3il0 1700 .00161 r .01605 46 .06421 184 .11236 Si 3060 .OOI56 .06237 o 1750 l .01559 43 173 10915 304 3150

1300 .00152 , .01516 44 .06064 464 o 10611 286 3240 1350 .00148 7 .03475 39 O 05900 ]_cc .IO325 272 3330 1900 .00144 a .01436 37 .05745 147 ,10053 258 3420 1950 .00140 I .01399 39 .05598 440 •*09735 245 3510 2000 .OOI36 36OO 3 .01364 33 ,05458 434 .09550 233

.OOI33 0 2050 3 .01331 31 . 5324 126 .09317 221 3690 2100 .00130 3 .01300 34 .05193 424 .09096 212 3780 2150 .00127 3 .01269 29 .05077 115 .08884 202 3870 2200 .04962 -]-)-] 3960 .00124 3 .01240 27 .08632 493 405O 2250 .00121 2 .01213 27 .O485I 403 .03439 434

2300 .00119 .01186 .04746 .03305 4140

-3- Table 9.13 Density of Oxygen

Pressure

e 01 atm .1 atm .4 atm .7 atm T T °K °K 2300 .00119 .01186 .04746 0O83O5 4140 o p -101 -177 2350 0OOH6 ' .01161 "p/ .04645 .08128 4230 l 97 169 2400 .00114- o .OH37 p' .04548 .07959 4320 * 93 I63 2450 .00111 .01114 .04455 .07796 .4410 pp 89 I56 2500 .00109 .01092 .04366 .07640 4500 2 22 85 149

2.550 o 00107 .01070 o04281 rtp .07491 4590 p pn 144 2600 . .00105 .01050 .04193 .07347 4680 p ^ 139 2650 .00103 .01030 .04119 Li .07208 4770 p 133 2700 e .00101 .01011 O 04043 X, .07075 4860 p ^ 129 2750 .00099 .00992 .03969 .06946 4950 2 ^ ^ 124 2800 .00097 -I .03893 .06822 5040 .00975 17 68 120 2850 .00096 .00953 .03830 .06702 5130 p 66 115 2900 .00094 o .00941 .03764 ,06587 5220 7/ 64 112 2950 .00092 .00925 .03700 .06475 ^ LL 62 108 5310 3000 .00091 .00910 ^ .03638 .06367 5400 Table 9. IS Density of Oxygen

Pressure

1 1 1 atm 4 atm 7 atm 10 atm T T °K °R 100 2.79257 180 26816 no 2.5244.1 10.755 198 21916 _ no6 120 2.30525 9.649 -17.86 216 I83I8 860 *.1051 130 2.12207 8.709 ’ 16.009 24.0 234 15563 702 1421 '24 140 I.96644 0.087 14.588 ( 21.56 252 13390 59i n50 1 186 150 1.83246 7.496 13.430 19«?0 270 n665 506 964 152 160 1.71581 6.990 : 12.474 18.18 288 10252 438 023 126 170 1.61329 6.552 11.651 16.92 306

9002 i 100 180 1.52247 6.168 304 10,930 713 15.04 324 0108 340 626 190 1.44139 5.828 10.312 14.90 94 342 7279 3035 5536 027 200 1.36860 5.5245 9.7504 14.073 36O 6575 2727 4949 210 1.30285 5. 2518 9.2635 13.339 734 378 5960 2463 4450 : 656 220 1.24317 5.OO55 8.OIO5 12.683 396

2237 4026 ; 230 1.18874 5443 4.7013 0.4159 12.091 592 414 4904 2042 3662 240 1.13890 4.5776 0.0497 11.555 536 432 4501 1072 3347 400 250 1.09309 4.3904 7.7150 II0O67 450 4224 1723 3072 447 260 I.O5OS5 4.2181 10.620 468 3909 1590 7.4070 2030 412 270 1.01176 4.0591 7.1240 10.208 486 3628 1473 2617 379 280 .97540 9H8 6.8631 9.029 504 3376 3. 1369 2420 352 290 .94172 6,6203 522 3149 3.7749 1275 22575 9.477 326 300 .91023 2946 3.6474 n9o 6.39455 21063 9.151 004 540 310 6.I83 92 55S .88077 2760 3.5234 U15 19697 0.047 284 320 O.563 .05317 2592 3.4169 1046 5.90695 10456 266 576 330 .02725 3.3123 5.00239 0.297 2430 903 17343 250 594 340 .00207 3.2340 5.62896 8o047 6.12 2299 926 I.63I8 235

350 .77900 3.12143 7.812 630 2170 0730 5.46570 15305 221 36O 5.3H93 648 .75010 2053 3.03405 0256 14532 7.591 209 370 2.95149 5.16661 7.302 666 .73765 1945 7016 13747 197 380 .71020 7.105 684 1044 2.87333 7412 5.02934 13020 187 390 .69976 2.79921 4.09006 6.990 702 1751 7036 12367 177 400 .68225 2.72 6.8212 720 1666 885 6680 4.77519 11749 1684 410 6.6528 73S .66559 1507 2.66197 6369 4.65770 11176 1603 420 .64972 2.59028 1513 6060 4.54594 10652 6.4925 1525 756 430 .63459 2.53760 4.43942 6,3400 1443 5790 10159 3456 774 440 .62016 2.47970 4.33783 6,1944 792 1380 5530 9699 1388

450 .60636 2 . 42440 4.24084 6.O556 810

- 5- !!:

Table 9*18 Density of Chgrgen p/p0 Pressure

1 1 atm 4 atm 7 atm 10 atm T T °K °R

450 ,60636 2 « 42440 4 . 24034 310 -1319 -5289 '9273 460 2.37151 4,148.11' 328 .59317 1263 5060 8874 470 .53054 2.32091 4.05937 846 1210 4848 8497 480 * u 364 .56844 2.27243 3.97V+0 2 / H-J "| 1161 4651 8I5O 1 ( 490 .55683 2.22592 3.89290 5-5517 332 1115 4463 7316

500 .54563 2.18129 3. 900 1070 4286 81474 5.4459 1074 7510 j 510 .53498 2.13843 3.73964 5*3385 913 1030 4121 7217 1031 520 ,52468 2.09722 3.66747 1 5*2354 936 990 3963 6941 993 530 2.05759 3.59306 ! 5c 1361 954 .5W8 953 3818 6685 955 540 .50525 2.01941 3.53m 5.0406 972 920 3673 6437 1 920 \ 550 .49605 1.93263 3.46634 4*9486 990 886 3544! 6205 887 56O .48719 1.94719 3.40479 1 4.8599 1003 355 3420 5986 855 .47864 1026 570 1.91299 3.34493 ! 4*7744 825 3302 5761 826 580 .47039 1.37997 3.28712 4.6918 1044 798 3190 5531 797 590 .46241 1.84807 | 3.23131 4.6m 1062 771 3084 770 ; 5395 600 .45470 1.81723 3.17736 4*5351 1080 745 2981 5215 746 610 .44725 1.78742 3,12521 4.4605 1098 722 2886 5047 720 620 .44003 1.75356 3.07474 4.3885 1116 698 2793 4386 693 630 .43305 1.73063 3.02588 4.3187 1134 677 2706 4734 676 640 .42628 1.70357 2.97854 4.25:11 1152 656 2623 4538 655 650 .41972 1.67734 2.93266 4.1856 1170 636 2541 4447 635 660 .41336 1.65193 2.88819 4. mi 1188 617 2467 4313 615 670 .40719 1.62726 2.84506 4.0606 1206 599 2393 4187 598 630 .40120 I.6O333 2,80319 4.0003 1224 581 2325 4062 58O 69O .39559 1.58008 2.76257 3.9428 1242 565 2258 3950 564 700 .38974 1.55750 2,72307 3.8864 1260 549 2193 3835 543 710 o38425 1.53557 2.68472 3.8316 12.78 534 2135 3731 532 720 .37391 1.51422 2,64741 3.7734 1296 519 2074 3627 517 730 .37372 1.49348 2.61114 3.7267 1314 505 2018 3529 504 740 .36867 1.47330 2.57535 3.6763 I332 491 1965 3434 490 750 .36376 1c45365 2.54151 3.6273 1350 479 1912 3345+ 477 760 .35897 1.43453 2.50807 3.5796 1368 466 I863 3257 465 770 .35431 1.41590 2.47550 3.5331 1386 455 1815 3172 453 780 .34976 1.39775 2.44378 3.4373 14-04 442 1770 3093 441 790 .34534 1.38005 2.41285 3.4437 1422 432 1723 3016 431 800 .34102 1.36282 2.38269 3.4006 1440

-6- Table .18 Density of Oxygen p/p0 Pressure 1 atm 4 atm 7 atm 10 atm T T °K °R 800 .34102 1.36282 2.38269 3.4006 1440 -2006 -8016 -14009 '-1999 85O .32096 1.28266 2.24260' 3.2007 1530 1783 7123 12451 1776 900 *30313 1.21143 2.11809 3.0231 1620 1595 6373 III39 1590 950 .28718 1.14770 2.00670 2.8641 1710 1436 5735 10024 3430 1000 .27282 1. 09035 I.9O646 2.7211 1800 1299 5189 9070 1294 1050 .25983 1.03846 1.81576 2.5917 1890 1181 4717 8245 1176 1100 .24802 * 99129 1*73331 2.4741 1980 1078 4308 7527 1074 1150 .23724 ® 94821 I.658O4 2.3667 2070 988 3949 6901 9842 1200 .22736 .90872 1.58903 2.26828 2160 909 3632 6348 9058 1250 .21827 .87240 1.52555 2.17770 2250 840 3353 5861 8361 1300 .20987 083887 I.46694 2.09409 2340. 777 3105 5426 7742 1350 .20210 .80782 1.41258 2.01667 2430 722 2883 5040 7191 1400 .19488 .77899 1.36228 1*94476 2520 672 26&4 4692 6695 1450 .18816 .75215 I.3I536 I.8778I 2610 627 2505 6248 1500 .18189 .72710 1.27157 4379 1.81533 2700 586 2344 4097 5847 1550 .17603 .70366 1.23060 1.75686 2790 550 2198 3841 5480 1600 .681 68 I.I92I9 1.70206 2880 *17053 517 2064 36O8 5150 I65O .16536 .66104 lo 15611 1.65056 2970 486 1943 3397 4846 1700 .I6O5O .64161 lo 12214 1.60210 3060 459 1832 3202 4570 1750 .15591 .62329 1.09012 1,55640 3150 433 1730 3025 4316

| 1800 .15158 409 .60599 1637 1.05987 2861 1.51324 4084 3240 I85O .58962 1.03126 1,47240 333O .14749 388 1550 2711 3867 1900 .I436I 369 .57412 1472 1.00415 2572 1.43373 3671 3420 1950 .13992 1.39702 351C 349 .55940 1397 .97843 2443 3487 2000 .13643 ,95400 1.36215 36OO 333 .54543 1330 2325 3319 2050 .13310 1.32896 3690 317 .53213 1266 .93075 2213 3159 2100 .12993 302 .51947 1208 .90862 2112 1.29737 3012 3780 2150 .12691 .88750 1.26725 3870 288 *50739 1152 20.14 2.876 2200 0I24O3 .86736 1,23849 3960 276 .49587 1101 1926 2749 2250 .42127 .84810 1 ,21100 40.50 264 .48486 1054 1842 2627

2300 .LL863 .47432 .82968 1.18473 4140 Table 9*13 Density of Oxygen 0 Pressure .1 atm 4 atm 7 atm 10 atm T °K °R 4140 2300 ,11363 2 -2 o 47432 -1009 .32968 -1763 1.13473 -2518 0 11611 S1205 4230 2350 "pfp 0 46423 966 9 1690 2412. 2400 4320 .11369 232 *45457 927 *79515 1621 2314 2450 e.11137 o 44530 o lo 11229 4410 2J2 390 77394 1557 2222 2500 e 4500 10915 21 .43640 856 *76337 1496 1.09007 2135

255O ,01700 cv 1.06372 4590 205 .42734 22 *74341 1437 2052 2600 *10495 .41962 o 1.04820 4630 193 ^gi 73404 1334 1975 2650 *10297 ,72020 1.02845 191 .41171 762 1332 1902 4770 2700 .10106 .70638 1*00943 4360 134 .40409 Lc 1235 1833 .09922 2750 177 *39674 4os 069403 1238 .99110 1768 4950

2300 *33966 c 68165 0 5040 .09745 171 683 1195 97342 1706 2350 .33233 .66970 5130 *09574 165 660 1153 .95636 1647 2900 *09409 5220 159 .37623 637 .65317 1115 .93939 1590 2950 .09250 .36936 064702 154 616 1077 .92399 1538 5310 3000 .09096 .36370 .63625 .90861 5400 Table 9® 13 Density of Oxygen p/p0 Pressure 10 atm 40 atm 70 atm 100 atm T T °K °R I5O 270 19.70 _ 151 160 13.18 93.0 288 126 -141 170 16 * 92 83.9 234.0 306 108 92 490 180 ±5 . 34 74.7 165.0 324 94 79 -256 335. -94 190 34.90 67.8 139.4 241. 342 827 54 I64 42 200 62.4 343.0 36O U.073 734 43 117 193o6 257 210 53.1 111.3 13.339 656 37 90 172.9 175 373 220 12.683 102.3 592 54.4 31 73 155.4 131 396 230 12.091 536 51.3 274 95.0 60 112.3 104 414 240 11.555 488 48.56 242 39.0 5H 131.9 849 432 H0O67 250 447 46.14 216 33.89 446 123 .41 722 450 260 10.620 116.19 468 412 43.93 193 79.43 3905 622 270 10.208 42.05 436 379 176 75.525 3490 109.97 547 280 9.329 352 40.29 160 72.035 3124 104.50 483 504 290 33.69 68. 911 522 9.477 326 3459 2829 99.67 433

300 9.151 304 37.231 1347 66.082 2567 95.34 391 540 310 8.347 284 35.884 3L245 63.515 2357 91.43 356 553 •320 8.563 266 34 0639 1154 61.158 2161 87.87 3252 576 33O 3.297 250 33.485 1075 58.997 2003 34.618 2999 594

612. 340 8.047 235 32.410 1002 56.994 1852 31.619 2757

7.812 630 350 221 31.403 938 55.142 1726 73o862 2553 36O 7.591 209 30.470 880 53.416 I6O5 76.309 2375 643 666 370 7.332 197 29.590 828 51.8.11 1510 73.934 2219 380 7.135 187 28.762 780 50.301 1412 71.715 2032 634 390 6.993 177 27.982 736 43.839 1332 69.633 1943 702

400 6.8212 1634 27.246 696 47.557 1252 67 c 690 1827 720 410 6.6528 1603 26.550 661. 46.305 1183 65.863 1721 733 420 6.4925 1525 25.889 626 45.122 1124 64»142 1634 756 430 i 6.3400 3456 25.263 596 43.993 1059 62.508 1534 774 440 ' 6.19/4 24.667 42.939 60.974 792 1388 567 j 1008 1461

450 i 6.0556 24.100 41.931 59.513 310

“9- Table 9® IS Density of Oxygen p/pr Pressure

’ 10 atm 40 atm 70 atm 100 atm T T °K °R 6.0556 24.100 810 450 -132S -540 41.931 -960 59.513 -1379 460 5.9220 23.56O 40.971 58.134 828 1269 516 915 1326 470 5.7959 23.044 40,056 56.803 846 1216 493 870 1249 480 5.6743 22.551 39.136 55.559 864 1166 471 333 1192 490 5.5577 22.030 3So353 54.367 882 1118 452 797 1150 500 5*4459 21.623 37.556 53.217 900 1074 433 758 1089 510 5.3335 21.195 36.793 52.128 913 1031 415 733 1042 520 5.2354 20.780 36.065 51.086 936 993 399 697 998 530 5.1361 20.381 35.363 50.038 954 955 333 672 966 540 5.0406 19.998 34.696 49.122 972 920 3686 645 917 550 4.9486 19.6294 34.051 48.205 990 887 3551 624 888 560 4.8599 19.2743 33.427 47.317 1008 855 3421 596 348 570 4.7744 18.9322 32.331 46.469 1026 826 3299 576 823 580 4. 6918 18.6023 32.255 45 * 646 10/(4 797 3132 553 787 590 4.6121 18.2841 31.702 44.859 1062 770 3074 537 761 600 4.5351 17.9767 31.165 44.098 1080 746 2969 517 739 610 4.4605 17.6798 30.648 1098 720 2873 500 43.359 716 620 4.3885 17.3925 30.148 42.643 1116 698 2777 485 685 630 4.3187 17.1148 29.663 41.958 1134 676 2638 469 656 640 4,2511 16.8460 29.194 41,302 1152 655 2601 635 650 4.I856 16.5359 28.745 40.667 1170 635 2523 438 620 660 4.1221 16.3336 28, 307 40.047 1188 615 2447 426 606 670 4.0606 16,0889 27.881 39.441 1206 598 2373 410 534 680 4.0008 15.8516 27.471 38,857 1224 58O 2302 400 563 690 3,9428 15.6214 27.071 33.294 1242 564 2234 337 547 700 3.8864 15.3980 26,684 37.747 1260 548 2171 07/, 531 710 3.8316 15.1809 26.308 37.216 1278 532 2109 517 720 3.7784 14.9700 25.943 or6 36.699 1296 517 2053 503 730 3.7267 14.7647 25.537 36.196 1314 504 1995 489 740 3.6763 14.5652 25.241 35,707 1332 490 1940 473 750 3.6273 14.3712 24.907 35.234 1350 477 1890 327 463 76O 3.5796 14.1822 24.580 34.771 1368 465 I838 317 445 770 3.5331 13.9934 24.263 34.326 1386 453 1790 311 440 780 3.4878 13.8194 23.952 33.386 1404 441 1748 303 429 790 3.4437 13 » 6446 23.649 33.457 1422 431 1700 294 412 800 3.4006 13.4746 23.355 33.045 1440

-10- Table 9.18 Density of Oxygen p/p0

1 10 atm 40 atm 70 atm 100 T T °K °R 800 3.4006 13.4746 23.355 33.045 1440 -1999 -7904 -1367 1929 85O 3 ,2007 12.6842 21.988 31.116 1530 1776 7019 1232 1712 900 3 0 0231 11.9823 20.776 29.404 1620 1590 6276 1084 1526 950 2,8641 11.3547 19.692 27.878 1710 1430 5646 1000 2.7211 10.7901 18,717 975 26.505 1373 1800 1294 5103 881 1242 1050 2.5917 10.2793 17.836 25.263 1890 II.76 4643 802 1132 1100 2.4741 9. 8150 17.034 24.131 1980 1074 4239 1032 1150 2.3667 9.3911 16.301 733 23.099 2070 9842 3887 670 1200 2.26828 9.0024 15.631 22.154 945 2160 9058 3576 619 872 1250 2.17770 8 0 6448 15,012 21.282 2250 8361 3303 569 802 1300 2.09409 8.3U5 14.443 20.480 2340 7742 3058 528 1350 2.01667 8.0087 13.915 19.735 745 2430 7191 2840 492 694 1400 1.94476 7.7247 13.423 19.041 2520 6695 2646 458 646 1450 1.87781 7.4601 12.965 18.395 2610 6248 2470 426 601 1500 1.81533 7.2131 12.539 17.794 2700 5847 2311 399 565 1550 1.75686 6.9820 12.340 17.229 2790 5480 2167 376 529 1600 1.70206 6.7653 11.764 16.700 2880 5150 2036 352 496 I65O I.65O56 6.5617 11.412 16.204 2970 4846 1917 332 469 1700 1.60210 6.37OO 11.080 15.735 3060 4570 1308 313 442 1750 1.55640 6.1892 10,767 15.293 3150 4316 1708 295 419 1800 1,51324 6.0184 10.472 34.874 3240 4084 1616 280 I85O 1.47240 5.3568 10.192 34.479 395 3330 3867 1531 265 374 1900 1.43373 5.7037 9.927 34.105 3420 3671 1453 252 357 1950 1.39702 5 0 5584 9.675 13.748 3510 3487 1382 239 338 2000 1.36215 5.4202 9.436 13.410 36OO 3319 1314 228 322 2050 1.32096 5.2338 9.208 13. 088 3690 3159 1251 217 307 2100 1.29737 5.1637 8.991 12.781 3780 3012 1194 206 293 2150 1.26725 5.0443 8.785 12.488 3870 2876 1340 198 280 2200 1.23849 4.9303 8.587 12.208 3960 2749 1089 190 267 2250 1.21100 4 * 823.4 8.397 11.941 4050 2627 1041 180 255

2300 1.18473 4.7173 8.217 11.686 4340

11- Table 9.18 Density of Oxygen p/p0 Pressure 10 atm 40 atm 70 atm 100 atm T T °K °R 2300 1.18473 4.7173 8.217 11.686 4140 -2518 -998 173 245 2350 1.15955 4.6175 8.044 11.441 4230 2412 957 166 235 2400 1.13543 4.5218 7.878 11.206 4320 2314 918 159 226 2450 1.11229 4.4300 7.719 10.980 4410 2222 881 153 217 2500 1.09007 4.3419 7.586 IO.763 4500 2135 847 147 208 2550 1.06872 4.2572 7.419 10.555 4590 2052 814 141 200 2600 1.04820 4.1758 7.278 10.355 4680 1975 784 136 194 2650 1.02845 4.0974 7.142 10.161 4770 1902 755 132 18 5 2700 1.00943 4.0219 7.010 9.976 4860 I833 728 126 179 275O .99110 3.9491 6.884 4950 1768 701 122 173 2800 .97342 3.8790 6.762 9.624 5040 1706 678 117 167 2850 .95636 3.8112 6.645 9.457 5130 1647 654 114 161 2900 .93989 3.7458 6.531 9.296 5220 1590 631 110 155 2950 .92399 3.6827 6.421 9.141 5310 1538 611 106 151 3000 .90861 3.6216 6.315 8.990 5400

-12- Table 9® IS Density of Molecular Oxygen

The Property Tabulated

The density relative to standard conditions, p/pq, of molecu- lar oxygen is tabulated as a function of temperature m degrees Kelvin and Rankine and as a function of pressure in standard atmos- pheres. Standard conditions are one atmosphere of pressure and

0°C(273®l6°K) • The tabulated herein were computed from the equation T Z P 0 0

where P is the pressure in atmospheres, T is the Kelvin temperature, Z is the compressibility factor given in Table 9®20 of this series 1 and TqZq/Pq= 272 . 901 ° K atm” .

Reliability of the Table

The values presented in this table are derived from the values of compressibility in Table 9®20 and have identical errors when expressed relative to the values tabulated. On the basis of the estimated errors for that table, this table has entries that may be in error by 6 in the next, to the last place but many entries are more precise. At low pressures and high temperatures, the values are subject to considerable change due to dissociation.

Interpolation

The error produced by linear interpolation does not in general exceed one eighth of the second difference. If greater accuracy is desired four or five point Lagrangian interpolation may be used. An alternative method is to interpolate in the table of compressi- bility to obtain Z at the desired temperature and pressure and then

to calculate p/pq by the above formula 0

-13 ' 5

Conversion Factors

The function in this ta.ble has been expressed in dimension- less form. In order that it may be converted readily to any system of units, values of are listed for frequently used units. For conversion factors not listed here see Table I.3O of this series.

To convert tabu- Having the dimensions Multiply lated value of To indicated below by

10~3 Q. Q. P g cm“3 1.42900 x \ 0 mole cm"3 4.46564 x 10“

g liter“^ I.42904 ” lb in 3 5.16262 x 10"

lb ft”3 .0892101 U, S. Department of Commerce National Bureau of Standards

The NBS-NACA Tables of Thermal Properties

of Gases

Table 9,20 Compressibility Factor for Molecular Oxygen Z=PV/RT

by

Harold W* Woolley

Reissue 1953

L

Table 9.20 Compressibility Factor for Oxygen Z=PV/RT

Pressure .01 atm .1 atm .4 atm .7 atm 1 atm T T °K °R

100 .99970 , .99781 .99114 .98431 .97724 180 50 206 371 553 110 .99983 .99831 .99320 .98802 .98277 198 1 36 146 259 375 120 .99867 .99466 .99061 .98652 216 .99987 2 26 107 188 272 130 .99893 .99249 .98924 234 .99989 2 20 .99573 Uv80 142 204 140 .99913 .99653 .99391 .99128 252 .99991 2 16 62 109 156 150 .99929 .99715 .99500 .99284 270 .99993 12 49 86 123 160 .99994 .99941 .99764 .99586 .99407 288 JLV10 39 68 98 170 .99995 .99951 .99803 .99654 .99505 306 u8 31 55 78 ISO .99996 .99959 .99834 .99709 .99583 324 6 25 45 65 190 .99996 .99965 .99859 .99754 .99648 342 5 21 37 53

200 .99997 .99970 £ .99880 .99791 .99701 36O •LU18 31 44- 210 .99997 .99975 .99898 .99822 .99745 378 q 15 26u 37 220 .99998 .99978 .99913 .99848 .99782 396 q 13 22 32 230 .99998 .99981 .99926 .99870 .99814 414 q 10 -LO1 8 27 240 .99998 .99984 .99936 .99888 .99841 432 2 9 16 23 250 .99999 .99986 .99945 .99904 .99864 450 O8 14 19 260 .99999 .99988 .99953 .99918 .99883 468 7 12 17 270 .99999 .99990 .99960 .99930 .99900 486 J— 15 280 .99999 .99992 .99966 r .99941 .99915 504 2 Q7 13 290 .99999 .99993 .99971 .99950 .99928 522 5 8 11 300 .99999 .99994 .99976 .99958 .99939 540 4 7 10 310 .99999 .99995 .99980 .99965 A .99949 558 q 9 320 1.00000 .99996 .99983 .99971 .99958 576 3 5 8 330 1.00000 .99997 .99986 .99976 C .99966 594 jq J 7 340 1.00000 .99997 .99989 .99981 .99973 612 3 4 6 350 1.00000 .99998 .99992 .99985 .99979 630 5 360 1.00000 .99998 .99994 .99989 .99984 648 370 1.00000 .99999 .99996 .99993 .99989 666 380 1.00000 .99999 .99998 .99996 .99994 684 4 390 1.00000 1.00000 .99999 .99998 .99998 702 3 400 1.00000 1.00000 1.00000 1.00001 1.00001 720 410 1.00000 1.00000 1.00002 1.00003 1.00004 738 420 1.00000 1.00001 1.00003 1.00005 1.00007 756 430 1.00000 1.00001 1.00004 1.00007 1.00010 774 440 1.00000 1.00001 1.00005 1.00008 1.00012 792

450 1.00000 1.00002 1.00006 1.00010 1.00014 810 Table 9.20 Compressibility Factor for Oxygen Z-PV/RT

Pressure

1 . 01 atm .1 atm .4 atm .17 atm 1 atm 1 T T K R 450 1.00000 1.00002 1.00006 1.00010 1.00014 810 460 1.00000 1.00002 1.00006 1.00011 1.00016 828 470 1.00000 1.00002 1.00007 1.00012 1.00018 846 480 1.00000 1.00002 1.00008 1.00013 1.00019 864 490 1.00000 1.00002 1.00008 1.00014 1.00020 882

500 1.00000 1.00002 1.00009 1.00015 1.00022 900 510 1.00000 1.00002 1.00009 1.00016 1.00023 918 520 1.00000 1.00002 1.00010 1.00017 1.00024 936 530 1.00000 1.00002 1.00010 1.00017 1.00025 954 540 1.00000 1.00003 1.00010 l.OOOlg 1.00025 972

550 1.00000 1.00003 1.00010 1.00018 1.00026 990 560 1.00000 1.00003 1.00010 1.00019 1.00027 1008 570 1.00000 1.00003 1.00011 1.00019 1.00027 1026 580 1.00000 1.00003 1.00011 1.00020 1.00028 1044 590 1.00000 1.00003 1.00011 1.00020 1.00028 1062

600 1.00000 1.00003 1.00012 1.00020 1.00029 1080 610 1.00000 1.00003 1.00012 1.00020 1.00029 1098 620 1.00000 1.00003 1.00012 1.00021 1.00030 1116 63O 1.00000 1.00003 1.00012 1.00021 1.00030 1134 640 1.00000 1.00003 1.00012 1.00021 1.00030 1152

650 1.00000 1.00003 1.00012 1.00021 1.00030 1170 660 1.00000 1.00003 1.00012 1.00021 1.00030 1188 670 1.00000 1.00003 1.00012 1.00021 1.00031 1206 680 1.00000 1.00003 1.00012 1.00021 1.00031 1224 690 1.00000 1.00003 1.00012 1.00022 1.00031 1242

700 1.00000 1.00003 1.00012 1.00022 1.00031 1260 710 1.00000 1.00003 1.00012 1.00022 1.00031 1278 720 1.00000 1.00003 1.00012 1.00022 1.00031 1296 730 1.00000 1.00003 1.00012 1.00022 1.00031 1334 740 1.00000 1.00003 1.00012 1.00022 1.00031 1332

750 1.00000 1.00003 1.00012 1.00022 1.00031 1350 76O 1.00000 1.00003 1.00012 1.00022 1.00031 1368 770 1.00000 1.00003 1.00012 1.00022 1.00031 1386 780 1.00000 1.00003 1.00012 1.00022 1.00031 1404 790 1.00000 1.00003 1.00012 1.00022 1.00031 1422

800 1.00000 1.00003 1.00012 1.00022 1.00031 1440

-2- Table 9.20 Compressibility Factor for Oxygen z=pv/rt

Pressure

1 ; .01 atm .1 atm .4 atm .7 atm 1 atm T T o °K °R 800 1.00000 1.00003 1.00012 1.00022 1.00031 1440 850 1.00000 1.00003 1.00012 1.00021 1.00031 1530 900 1.00000 1.00003 1.00012 1.00021 1.00030 1620 950 1.00000 1.00003 1.00012 1.00021 1.00029 1710 1000 1.00000 1.00003 1.00012 1.00020 1.00029 1800

1050 1.00000 1.00003 1.00011 1.00020 1.00028 1890 1100 1.00000 1.00003 1.00011 1.00019 1.00027 1980 1150 1.00000 1.00003 1.00011 1.00019 1.00027 2070 1200 1.00000 1.00003 1.00010 1.00018 1.00026 2160 1250 1.00000 1.00003 1.00010 1.00018 1.00025 2250

1300 1.00000 1.00002 1.00010 1.00017 1.00025 2340 1350 1.00000 1.00002 1.00010 1.00017 1.00024 2430 1400 1.00000 1.00002 1.00009 1.00016 1.00023 2520 1450 1.00000 1.00002 1.00009 1.00016 1.00023 2610 1500 1.00000 1.00002 1.00009 1.00015 1.00022 2700

1550 1.00000 1.00002 1.00009 1.00015 1.00022 2790 1600 1.00000 1.00002 1.00008 1.00015 1.00021 2880 I65O 1.00000 1.00002 1.00008 1.00014 1.00020 2970 1700 1.00000 1.00002 1.00008 1.00014 1.00020 3060 1750 1.00000 1.00002 1.00008 1.00014 1.00020 3150

1800 1.00000 1.00002 1.00008 1.00013 1.00019 3240 I85O 1.00000 1.00002 1.00007 1.00013 1.00019 3330 1900 1.00000 1.00002 1.00007 1.00013 1.00018 3420 1950 1.00000 1.00002 1.00007 1.00012 1.00018 3510 2000 1.00000 1.00002 1.00007 1.00012 1.00017 36OO

2050 1.00000 1.00002 1.00007 1.00012 1.00017 3690 2100 1.00000 1.00002 1.00007 1.00012 1.00017 3780 2150 1.00000 1.00002 1.00006 1.00011 1.00016 3870 2200 1.00000 1.00002 1.00006 1.00011 1.00C16 3960 2250 1.00000 1.00002 1.00006 1.00011 1.00016 4O5O

2300 1.00000 1.00002 1.00006 1.00011 1.00015 4140

-3- Table 9.20 Compressibility Factor for Oxygen Z=PV/RT

Pressure

' 1 .01 atm .1 atm .4 atm .7 atm 1 atm T n T °K °R 2300 1.00000 1.00002 1.00006 1.00011 1.00015 4140 2350 1.00000 1.00001 1.00006 1.00010 1.00015 4230 2400 1.00000 1.00001 1.00006 1.00010 1.00015 4320 2450 1.00000 1.00001 1,00006 1.00010 1.00014 4410 2500 1.00000 1.00001 1.00006 1.00010 1.00014 4500

2550 1.00000 1.00001 1.00005 1.00010 1.00014 4590 2600 1.00000 1.00001 1.00005 1.00009 1.000:4. 4630 2650 1.00000 1.00001 1.00005 1.00009 1.00013 4770 2700 1.00000 1.00001 1.00005 1.00009 1.00013 4860 2750 1.00000 1.00001 1.00005 1.00009 1.00013 4950

2300 1.00000 1.00001 1.00005 1.00009 1.00013 5040 2350 1.00000 1.00001 1.00005 1.00009 1.00012 5130 2900 1.00000 1.00001 1.00005 1,00009 1.00012 5220 2950 1.00000 1.00001 1.00005 1.00003 1.00012 5310 3000 1.00000 1.00001 1.00005 1.00003 1.00012 5400

-4- Table 9.20 Compressibility Factor for Oxygen Z=PV/RT

1 atm 4 atm 7 atm 10 atm T °K R 100 .97724 180 553 110 .98277 .9227 198 375 200 120 .93652 .9427 .891 216 272 126 27 130 .93924 .9553 .9179 .876 234 204 89 174 28 140 .99128 .9642 .9353 .9043 252 156 66 124 193 150 .99284 .9 38 .9477 .9236 270 123 51 94 141 160 .99407 .9/59 .9571 .9377 288 93 40 109 170 .99505 .9799 .9044 73 .9486 306 78 33 58 85 ISO .99583 .9832 .9702 .9571 324 65 26 47 69 190 .99648 .9858 .9749 .9640 342 53 21 39 56 200 .99701 .98796 .97830 .96956 36O 44 180 319 461 210 .99745 .93976 .93199 .97417 378 37 150 266 334 220 .99732 .99126 .98465 .97801 396 32 127 225 324 230 .99334 .99253 .93690 .98125 414 27 108 190 274 240 .99841 .99361 .98880 .98399 432 23 92 163 234 250 .99364 19 .99453 80 .99043 140 .93633 200 450 260 .99333 .99533 .99133 .93833 468 17 69 121 173 270 .99900 .99602 .99304 .99006 486 15 59 104 151 280 .99915 .99661 .99408 504 13 52 92 .99157 131 290 .99923 .99288 11 .99713 46 .99500 80 114 522

300 .99939 .99580 .99402 10 .99759 40 70 100 540 310 .99949 .99799 .99650 .99502 558 9 35 62 88 320 .99958 .99334 .99712 .99590 576 8 31 54 78 330 .99966 .99865 .99766 .99668 594 7 23 49 70 340 .99973 .99893 .99315 .99738 612 6 25 43 61

350 .99979 .99918 .99858 .99799 630 5 22 33 54 36O .99934 .99940 .99396 .99853 648 5 19 34 49 370 .99989 .99959 .99930 .99902 666 5 17 30 43 380 .99994 .99976 .99960 .99945 684 4 16 27 39 390 .99998 .99992 .99937 .99934 702 3 14 25 35 400 ,.00001 1.00006 1.00012 1.00019 720 3 12 22 31 410 .00004 1.00018 I.OOO34 I.00050 738 3 12 19 28 420 .00007 1.00030 I.OOO53 I.OOO78 756 3 10 18 25 430 .00010 1.00040 1.00071 1.00103 774 2 9 16 23 440 .00012 1.00049 1.00087 1.00126 792 2 8 14 20 450 .00014 I.OOO57 1.00101 1.00146 810

- 5- Table ^.20 Compressibility Factor for Oxygen z=pv/rt

Pressure 1 1 atm 4 atm 7 atm 10 atm T t-3 r\ O °K W

Q. 450 1.00014 I.OOO57 1.00101 1.00146 0 H 8 13 19 0} 460 1.00016 I.OOO65 L 1.00114 I.OOI65 K> O 12 16 <» 470 1.00018 1; 00071 1.00126 1.00181 O-P* 6 10 (» MPOI»0 480 1.00019 1.00077 I.OOI36 1.00196 IS 6 10 14 490 1.00020 1.00083 1.00146 1.00210 C» CO- 5 8 12 500 1.00022 1.00088 1.00154 1.00222 O ft 11 H 510 1.00023 1.00092 1.00162 7 1.00233 0 i 7 O'O^O^vO 520 a . 00024 1.00096 1.00169 A 1.00242 0 7 ViU) *1.00025 1.00251 530 1.00099 1.00175 A ft

' 540 4L .00025 1.00103 1.00181 1.00259 -P! W-p-005-0 5 7 550 1.00026 1.00106 1.00186 1.00266 7 0\0 t 56O 1.00027 1.00108 1.00190 . 1.00273 A OOoSvO 570 1.00027 1.00110 -1.00194 1.00279 K JO-p-OCO-O 580 ' 1.00028 1.00112 •1.00198 1.00284 7 J. OnJ^W 590 1.00028 1.00114 1.00201 1.00288 4 » 600 1.00029 1.00116 1.00204 1. Q0292 610 1.00029 1.00117 1.00206 1.00296 vO

PHpOO 620 41.00030 1.00119 1.00208 1.00299 HrO-p-ONCQ-O

1 630 1.00030 1.00120 1.00210 1.60302 VP>

640 1.00030 1.00121 1.00212 1.00304 Vn

650 1.00030 1.00122 1.00214 I.OO3O6 O 660 1.00030 1.00122 1.00215 I.OO3O8 OP!

CM» 67O 1.00031 1.00123 1.00216 1.00309 I0I0S0HHO 680 1.00031 1.00123 1.00217 1.00310 -MO 690 1.00031 1.00124 1.00217 1.00311 MP-

700 1.00031 1.09124' 1.00218 1.00312 O' 710 A. 00031 1.9(2124 1.00218 I.OO3I3

720 1.90031 1.(50125 1.00219 I.OO3I3 M-P-CTnOO-O HvO-

740 1.00031 1.00125 1.00219 I.OO3I3 U)

750 1.00031 1.00125 1.00219 I.OO3I3 OVJi 76O 1.00031 1.00125 1.00219 I.OO3I3

770 1.00031 1.00125 1.00219 I.OO3I3 W-p-OCQ-O

780 1.00031 1.00125 1.00218 I.OO3I3 MOW 790 1.00031 1.00125 1.00218 1.00312

800 1.00031 1.00124 1.00218 1.00311 1440

—6— Table 9*20 Compressibility Factor for Oxygen Z=PV/RT

Pressure 1 1 atm 4 atm 7 atm 10 atm T T o o KTr R

800 1.00031 1.00124 1.00218 1.00311 1440 850 1.00031 1.00123 1.00215 I.OO3O7 1530 900 1.00030 1.00121 1.00211 1.00302 1620 950 1.00029 1.00118 1.00207 1.00295 1710 1000 1.00029 1.00115 1.00202 1.00288 1800

1050 1.00028 1.00112 1.00197 1.00281 1890 1100 1.00027 1.00109 1.00192 1.00274 1980 1150 1.00027 1.00107 1.00187 1.00267 2070 1200 1.00026 1.00104 1.00182 1.00260 2160 1250 1.00025 1.00101 1.00177 1.00253 2250

1300 1.00025 1.00098 1.00172 1.00246 2340 1350 1.00024 1.00096 1.00167 1.00239 2430 1400 1.00023 1.00093 I.OOI63 1.00233 2520 1450 1.00023 1- 00091 1.00159 1.00227 2610 1500 1.00022 1.00088 I.OOI55 1.00221 2700

1550 1.00022 1.00086 1.00151 1.00216 2790 1600 1.00021 1.00084 1.00147 1.00210 2880 I65O 1.00020 1.00082 1.00143 1.00205 2970 1700 1.00020 1.00080 1.00140 1.00200 3060 1750 1.00020 1.00078 I.OOI36 1.00195 3150

1800 1.00019 I.OOO76 I.OOI33 1.00190 3240 1850 1.00019 1.00074 1.00130 1.00186 3330 1900 1.00018 1.00072 1.00127 1.00181 3420 1950 1.00018 1.00071 1.00124 1.00177 3510 2000 1.00017 1.00069 1.00121 1.00173 36OO

2050 1.00017 1.00068 1.00119 io 00170 3690 2100 1.00017 1.00066 1.00116 1.00166 3780 2150 1.00016 I.OOO65 1.00114 1.00162 3870 2200 1.00016 I.OOO63 1.00111 1.00159 3960 2250 1.00016 1.00062 1.00109 I.OOI56 4050

2300 1.00015 1.00061 1.00107 1.00152 4140

-7- Table 9.20 Compressibility Factor for Oxygen z=pv/rt

1 atm 4 atm 7 atm 10 atm 1 T T n ft °K R 2300 1.00015 1.00061 1.00107 1.00152 4140 2350 1.00015 1.00060 1.00104 1.00149 4230 2400 1.00015 I.OOO58 1.00102 1.00146 4320 2450 1.00014 I.OOO57 1.00100 1.00143 4410 2500 1.00014 I.OOO56 1.00098 1.00141 4500

2550 1.00014 I.OOO55 1.00097 I.OOI38 4590 2600 1.00014 1.00054 1.00095 I.OOI35 4680 265O 1.00013 I.OOO53 1.00093 1.00133 4770 2700 1.00013 I.OOO52 1.00091 1.00130 4860 2750 1.00013 1.00051 1.00090 1.00128 4950

2800 1.00013 1.00050 1.00088 1.00126 5040 2850 1.00012 1.00049 1.00087 1.00124 5130 2900 1.00012 1.00049 1.00085 1.00122 5220 2950 1.00012 1.00048 1.00084 1.00119 5310 3000 1.00012 1.00047 1.00082 1.00117 5400 Table 9.20 Compressibility Factor for Oixygen z=pv/rt

Pressure ^ 10 atm 40 atm 70 atm 100 atm T T °K °R 100 180 110 198 120 216 130 234 140 252

150 .9236 270 14I 160 .9377 .696 288 170 94S6 109 .765 69 .525 306 118 180 .9571 85 .812 47 .643 .452 324 69 35 73 143 190 .9640 .847 .721 .595 342 56 26 55 92

200 , .96956 6l .8734 209 .7764 408 .6871 641 360 210 .8172 .7512 .97417 .0943 169 315 468 370 220 .97001 o .9112 .8487 .7900 396 2a 1Ci g 250 357 2 230 .90125 274 »9 5° !ic .8737 203 .0337 280 414 240 .8940 .8617 432 .90399 234 *9365 97 168 228

250 .98633 200 *9462 822 .9108 341 .8845 188 450 260 .98833 .95442 .9249 46S 172 703 119 .9033 158 270 .99006 .96345 .9368 .9191 486 nil 606 103 135 280 .9675! .9326 .99157 131 524 .9471 88 115 504 290 .99288 * 99235 .9559 .9441 522 114 456 77 100 300 .99402 100 .97731 398 .9636 66 .9541 07 540 310 .99502 .90129 .9702 .9628 550 88 350 ,9 77 320 .99590 78 .90479 308 .9761 .9705 68 576 33O .99668 70 .90707 272 .9812 r 6 .9773 61 594 340 .99730 .99059 .9858 .9834 612 61 241 40 53

c. .9087 630 350 .99799 .99300 213 .9098 36 47 360 64S .99053 ? 9 .99513 -mo .9934 31 .9934 42 370 .99902 74 666 .99702 1?4 .9965 29 .9976 30 380 .99945 .99073 .9994 1,0014 684 39 25 35 390 1.00026 1.0019 1.0049 702 .99904 35 ^3 23 30

400 1.00019 01 1.00161 o 1.0042 1.0079 720 2 20 27 410 I.00050 1.00280 1.0062 1.0106 QQ 18 24 730 420 1.00078 1.00389 1.0080 1.0130 23 03 17 23 756 430 1.00103 1.00487 23 87 1.0097 14 1.0153 19 774 440 1.00126 1.00574 1.0111 1.0172 792 20 73 13 18 450 1.00146 I.OO652 1.0124 1.0190 810

-9- Table 9.20 Compressibility Factor for Oxygen z=pv/rt

Pressure n 1 10 atm 40 atm 70 atm 100 atm T T o T O-n K R 450 1.00146 I.OO652 1.0124 1.0190 810 19 71 12 15 460 I.OOI65 1.00723 I.OI36 1.0205 828 1 6 63 11 16 470 1.00181 1.00786 1.0147 1.0221 846 15 12 480 1.00196 1.00843 57 I.OI56 9 1.0233 864 14 51 0 11 490 1.00210 1.00894 I.OI65 9 1.0244 882 12 48 8 12 500 1.00222 1.00942 1.0173 1.0256 900 11 41 OL Q 9 918 510 1.00233 Q 1.00983 1.0179 1.0265 J 36 7 8 520 1.00242 O 1.01019 1.0186 r 1.0273 936 9 33 5 7 530 1.00251 1.01052 1.0191 1.0280 954 8 31 8 540 1.00259 1.01083 1.0196 5 1.0288 972 7 27 4 5

550 1.00266 1.01110 1.0200 1.0293 ' 990 7 24 r Oi 560 1.00273 1.01134 1.0205 5 1.0299 1008 O4 21 57O 1.00279 I.OII55 1.0208 3 I.O3O3 4 1026 C 19 58O 1.00284 6 1.01174 1.0211 3 1.0308 5 1044 4 16 2 590 1.00288 1.01190 1.0213 1.0311 3 1062 4 15 3 3 600 1.00292 1.01205 1.0216 1.0314 1080 13 610 1.00296 1.01218 1.0218 1.0318 1098 12 620 1.00299 1.01230 1.0220 1.0322 1116 10 630 1.00302 1.01240 1.0222 1.0324 1134 Oft 640 1.00304 1.01248 1.0224 1.0324 1152 6

650 1.00306 1.01254 1.0224 1.0324 1170 6 660 I.OO3O8 1.01260 6 1.0225 1.0325 1188 670 1.00309 1.01266 h 1.0226 I.O327 1206 680 1.00310 1.01270 1.0226 1.0328 3 1224 690 1.00311 1.01273 2 1.0227 1.0328 1242

700 1.00312 1.01275 1.0227 1.0328 1260 710 I.OO3I3 1.01276 1.0227 1.0328 1278 720 I.OO3I3 1.01277 1.0227 1.0328 1296 730 I.OO3I3 1.01278 1.0227 1.0328 1314 740 I.OO3I3 1.01278 10.227 1.0328 1332

750 I.OO3I3 1.01277 1.0226 I.O327 1350 76O I.OO3I3 1.01276 1.0226 1.0327 1368 770 I.OO3I3 1.01273 1.0225 I.O325 1386 780 I.OO3I3 I.OI27O 1.0225 I.O325 1404 790 1.00312 1.01269 1.0225 I.O325 1422

800 1.00311 I.OI265 1.0224 I.O323 1440

-10- £

Table 9*20 Compressibility Factor for Oxygen Z=PV/RT

Pressure -t r^T^atm“ 40 atm 70 atm 100 atm T T o °K °R

800 lo 1,01265 1 » 0224 00311 j 0 1*0323 _r 1440 850 1.00307 r 1.01247 0; 1.0221 “i 1,0318 9 1530 1.0216 “4 1620 900 1.00302 4 1,01223 “27 1,0312 950 l o 00295 1,01X96 1,0211 ”i 1.0304 1710 i° 1000 1*00288 1,01167 I30 1,0206 I? 1,0296 1 1800

1050 1,00281 „ 1,01137 1,0200 1,0288 7 1890 1100 1,00274 1,01107 4, 1.0195 "r 1,0281 a 1980 “ "? 3 OIO76 1,0190 "r 2070 1150 1,00267 7 1 3 1,0273 1200 1,00260 1,01047 on 1,0184 ”, 1,0265 2160 ”4 1250 1,00253 1,01018 Ip' 1,0180 I| 1,0258 Ig 2250 " 1 1300 1,00246 1.00991 1.0174 7 p 7 p 1,0250 ? 2340 1350 1.00239 1.00964 1.0169 “V 1,0243 ”/ 2430 5 J I.OI65 1400 1,00233 < 1*00933 I" 7 1,0237 1 2520 / 1 , 2610 1450 1,00227 00934 57 1,0161 7 1*0231 7 1500 1,00221 1,00890 1.0156 1.0224 2700 "5 Ip^ I7 1 ^

1550 1,00216 / 1,00867 pp 1.0152 1,0219 , 2790 1600 1,00210 1,00845 1.0149 1,0213 "/ 2880 pp ; I65O 1,00205 i 1,00823 1,0145 1,0207 2970 pp ; 1700 1,00200 1,00803 “; 1,0141 1,0202 “4 3060 0 p 1750 1.00195 1,00783 1.0138 1.0197 3150 I 5 :18 1^ zi

1800 1,00190 , 1.00765 Io 0l34 0 1*0193 , 3240 I85O 1,0188 1.00186 1,00747 Ijo 1,0131 ^ 7 3330 1900 1.00181 ”? 1,00728 7 1,0128 "4 1.0183 ”? 3420 “7 7 1950 1,00177 1,00711 1,0.125 "7 1.0179 7 3510 2000 1,00173 1,00696 1,0122 1,0175 36OO ,4 Il

2050 1,00170 1.00681 8 1.0119 0 1.0171 . 3690 “?, 2100 1,00166 1,00666 1,0167 ”7 1,011? p 3780 2150 1,00162 “'1 I.OO652 ”77 I0OII4 “p 1,0164 3S7O 2200 "77 1.0161 “7 1,00159 p 1.00638 1.0112 p 3960 2250 1,00156 1,00624 1^7 1.0110 1^ 1,0157 I 4050 2300 1,00152 1,00610 1.0107 I.OI53 4140

11- Table 9.20 Compressibility Factor for Oxygen Z=PV/RT

Pressure 1 10 atm 40 atm 70 atm 100 atm 1 T n_ °K R

23OO 1.00152 1.00610 10 1.0107 9 1.0153 0 4140 ~{ “7 2350 1.00149 1.00593 1.0105 9 1.0150 4230 2400 1.00146 1.00586 1.0103 1.0147 4320 "77 2450 1.0014-3 3 1.00575 1.0101 1.0U4 “is 4410 2500 1.00141 I.OO564 “2 1.0099 “2 1.0142 4500

1.00138 I.OO553 2550 1.0097 9 1.0139 Q 4590 2600 1.0136 “7 4680 1.00135 “l 1.00543 “tn 1.0095 9 265O 1.00133 “Z 1.00533 1.0093 1.0134 4770 “tn T ~ 2700 1.00130 1.00523 1.0092 1.0131 3 4360 “ 0 2750 1.00128 I.OO5I4 ' 1,0090 1.0129 “g 4950

2800 1.00126 I.OO5O5 1.0089 1,0127 5040 ” 9 9 2350 1.00124 1.00496 ' 1.0037 "7 1.0125 5130 9 “ “ 2900 1.00122 1.00483 1.0036 1.0122 "7 5220 ~ ~~ 2950 1.00119 ^ 1.00479 “ 4 1.0084 1.0120 5310 3000 1.00117 1.00471 1.0033 1.0118 5400

-12 - Table 9.20 Compressibility Factor for Molecular Oxygen

The Property Tabulated

The dimensionless compressibility factor, Z = PV/RT, for molecular oxygen is tabulated in terms of temperature in degrees Kelvin and Rankine. The values are those which would exist if there were no disso- ciation within the range covered® The effect of dissociation can be estimated using formulas discussed in reference [ 9 ]. The tables are computed from the virial equation:

2 Z = 1 + BP + CP + DP3

The coefficients B and C were calculated from the Lennard-Jones potential, using constants as parameters®

The parameter values for the second virial coefficients, B, were obtained by a graphical method which permits the simultaneous fit of data on the Joule-Thomson coefficient and on the pressure dependence of PV/RT, [1] - [6], internal energy, specific heat, and velocity of sound. The experimental third virials, C, were fitted using the second virial coefficient parameters only for a cluster of two and graphically deter- mined values of the parameters for a cluster of three, according with the fact that the equilibrium constant for the formation of a cluster of three is K„ = (2B^ - C/2)/(RT)2. The modification of the usual Lennard-Jones [ 7 ] "treatment was undertaken in an effort to provide a more applicable model for o:xygen, than is afforded by the unmodified theory.

Reliability of the table

The compressibility values tabulated herein are considered reliable to approximately one unit in next to the last place tabulated for most entries. Below 300°K the reliability decreases to about 3 units in the next to the last tabulated place. Figures 1 and 2 show the departures of experimental from the tabulated values.

Interpolation

The validity of linear interpolation in both temperature and pressure varies throughout the table. The error produced thereby does not, in general, exceed one-eighth of the second difference. First differences in the temperature direction are given for assistance in interpolation where they seem helpful. The pressure intervals have been chosen to facilitate three and four point Lagrangian interpolation [S] in each decade. Use of this method is recommended when errors produced by linear interpolation approach the uncertainty of the table.

-13- j

Conversion Factors

The compressibility factor is dimensionless, Values of the gas constant R are listed for frequently used units in order to facilitate the use of this table in calculating, by means of the equation Z = PV/RT, the pressure P, the specific volume V, (or the denisyt p = l/v), or the temperature T, when any two of these are known. The values given below are based on a molecular weight of 32 * 000 .

Values of R for Oxygen

For temperatures in degrees Kelvin

2 2 atm Kg/cm mm Hg lb/in

3 g/cm 2.56427 2 . 64948 1943 . 85 37.6847

mole/cm3 82.0567 84.7032 62363 .I 1205*91

mole/liter 0,0820544 0.0847809 62,3613 I .20587

. lb/ft3 0,0410756 0.0424403 31,2175 0.603647

lb mole/ft 3 1*33442 1.35309 993.959 19.3167

For temperatures in degrees Rankine

2 atm Kg/ era- mm Hg lb/in

g/cm3 1.42459 1.47193 1082,69 20,9358

mole/cm3 45.5370 47.1017 34646.1 669.947

mole/liter 0.0455357 0,0471004 34.6451 0.669928

3 lb/ft 0.0223197 0.0235780 17.3430 0.335359

3 lb mole/ft O.73023I 0.754495 554.976 10.7315 L —

-14- ,

REFERENCES

[1] G. P. Baxter and H. W. Starkweather, The density of oxygen and its compressibility below one atmosphere, Proc. Nat. Acad. Sci. 12, 699-703(1926).

?» [2] W. Heuse and J. Otto, Uber eine Neubestimmung des Grenzwartes der Ausdehnungs-und Spannungskoeffizienten von , Wasserstoff und Stickstoff, Ann. Physik, series 2, 1012(1929).

SJ [3] L. Holbom and J. Otto, Uber die Isothermen einiger Gase zwischen 400° und -183°, Z. Physik, 33, 1(1925).

[4] H. Kammerlingh Qmnes and H. A. Kuypers, Isotherms of Oxygen at low temperatures, Commun. Lab. Leiden No. 169a (1925).

C 5] G. P. Nijhoff and W. H. Keesom, Isotherms of diatomic substances and their binary mixtures, XXXIII, Isotherms of oxygen between -40° and -152. 5° and pressures from 3 to 9 atmospheres, Commun. Lab. Leiden No. 1791 (1925).

[6] A. Th. van Urk and G. P. Nijhoff, Isotherms of oxygen at 20°, 15.6°, and 0°, Commun. Lab. Leiden No. 169c (1925).

[7] R. B. Bird, E. L. Spotz, and J. 0. Hirschfelder, The third virial coefficient for non-polar gases, J. Chem. Phys. “18, 1395-1402 (1950).

[8] "Tables of Lagrangian Interpolation Coefficients", Columbia University Press, New York, N. Y. (1944).

[9] H. W. Woolley, "The effect of dissociation on the thermodynamic properties of pure diatomic gases". Report No. 1884, National Bureau of Standards, October 15, 1952.

-15-

DEPARTURE

%

DEPARTURE

%

Uo S. Department of Commerce National Bureau of Standards

The NBS - NAC.A Tables of Thermal Properties of Gases

Table 9, 22 Enthalpy and Entropy of Oxygen

(FI - Eg)/RT S/R 0 ,

by

Harold W. Woolley

June 1953

Table 9.22/1 - Enthalpy of Molecular Oxygen (H E§)/RT 0 Pressure

i ?

01 atm . 1 atm 4 atm 7 atm 1 atm T

°R

100 1. 2772 lc 2752 I. 2687 lc 2625 I. 254 180 1282 1285 1294 1300 132 110 1. 4054 lc 4037 I. 3981 I. 3925 I. 3865 198 1281 1284 1292 1298 1310 120 1. 5335 lc 5321 1 5273 I. 5223 I. 5175 216 1283 1284 1290 1296 1302 130 1. 6618 lc 6605 I. 6563 lc 65 1 9 I. 6477 234 1282 1283 1288 1293 1298 140 1. 7900 I. 7888 I. 7851 1, 7812 lc 7775 252 1282 1284 1287 1293 1295

150 1. 9182 1281 1 9172 1282 I. 9138 1286 lc 9105 1288 lc 9070 1292 270 1-60 2. 0463 1282 2, 0454 1283 2. 0424 1285 2. 0393 1289 2. 0362 288 170 2. 1745 1282 2o 1737 1283 2. 1709 1286 2. 1682 1288 2c 1654 1290 306 180 2. 302? 1282 2. 3020 1282 2c 2995 1284 2. 2970 1286 2. 2944 1289 324 190 2. 4309 1283 2. 4302 1284 2c 4279 1286 2c 4256 1288 2. 4233 1290 342

200 2. 5592 2c 5586 2. 5565 2. 5544 2. 5523 360 1282 1282 1284 1285 1287 210 2. 6874 2. 6868 2. 6849 2. 6829 2c 6810 378 1283 1284 1285 1287 1288 220 2. 8157 2. 8152 2c 8134 2c 8116 2. 8098 396 1284 1284 1286 1287 1288 230 2. 9441 2. 9436 2, 9420 2. 9403 2. 9386 414 1284 1285 1285 1287 1288 240 3. 0725 3c 0721 3c 0705 3c 0690 3c 0674 432 1287 1286 1288 1288 1289

250 3. 2012 3. 2007 3c 1993 3. 1978 3c 1963 450 1286 1286 1287 1288 1290 260 3. 3298 3, 3293 3c 3280 3, 3266 3, 3253 468 1288 1289 1289 1290 1291 270 3. 4586 3c 4582 3c 4569 3c 4556 3c 4544 486 1289 1289 1290 1291 1291 280 3. 5875 3. 5871 3c 5859 3c 5847 3c 5835 504 1291 1291 1292 1293 1294 290 3. 7166 3„ 7162 3. 7151 3c 7140 3c 7129 522 1293 1293 1294 1294 1295

300 3. 8459 3c 8455 3c 8445 3. 8434 3c 8424 540 1295 1296 1296 1297 1297 310 3c 9754 3c 9751 3c 9741 3c 9731 3c 9721 558 1297 1297 1298 1298 1299 320 4= 1051 4. 1048 4c 1039 4. 1029 4. 1020 576 1300 1300 1300 1302 1302 330 4, 2351 4. 2348 4, 2339 4. 2331 4. 2322 594 1303 1303 1304 1304 1304 340 4c 3854 4. 3651 4. 3643 4, 3635 4. 3626 612 1306 1306 1307 1307 1308

350 4c 4960 4, 4957 4c 4950 4, 4942 4. 4934 630 1309 1310 1309 1310 1311 360 4, 6269 4. 6267 4c 6259 4. 6252 4c 6245 648 1313 1313 1314 1314 1314 370 4. 7582 4. 7580 4= 7573 4. 7566 4c 7559 666 1316 1316 1316 1317 1317 380 4. 8898 4c 8896 4c 8889 4. 8883 4. 8876 684 1320 1320 1321 1321 1321 702 390 5. 0218 1324 5c 0216 1324 5 0210 1324 5. 0204 1324 5c 0197 1326 720 400 5. 1542 1327 5c 1540 1327 5. 1534 1328 5. 1528 1328 5c 1523 1328 410 5. 2869 5c 2867 5 5, 2856 5c 2851 738 1332 1332 2862 1332 13 3 $ 1333 758 420 5c 4201 1336 5c 4199 1336 5. 4194 1336 5. 4189 1337 5c 4184 1337 774 430 5, 5537 1340 5. 5535 1340 5c 5530 1341 5c 5526 1340 5c 5521 1341 792 440 5c 6877 1345 5c 687 5 1346 5c 6871 1345 5c 6866 1346 5, 6862 1346

450 5c 8222 5c 8221 5. 8216 5. 8212 5c 8208 810

1 Table 9.22/1 Enthalpy of Molecular Oxygen (H-E^/RTq Pressure

1 . 01 atm . 1 atm . 4 atm . 7 atm 1 atm T T °K °R

450 5, 8222 1349 5. 8221 1349 5. 8216 1350 5. 8212 1349 5. 8208 1349 810 460 5. 9571 1353 5. 9570 1353 5. 9566 1353 5. 9561 1354 5. 9.557 1354 828 470 6. 0924 1358 6. 0923 1358 6. 0919 1358 6. 0915 1359 6. 0911 1359 846 480 6. 2282 1362 6. 2281 1362 6. 2277 1362 6. 2274 1362 6, 2270 1363 864 490 6. 3644 1367 6. 3643 1367 6. 3639 1368 6. 3636 1368 6 3633 1367 882

500 6. 5011 6. 5010 6. 5007 6. 5004 6. 5000 900 1371 1371 1371 1371 1372 510 6. 6382 6. 6381 6. 6378 6. 6375 6. 6372 918 1376 1376 1376 1376 1377 520 6. 7758 6, 7757 6. 7754 6. 7751 6. 7749 936 1380 1380 1380 1381 1380 530 6. 9138 6. 9137 6, 9134 6. 9132 6. 9129 954 1385 1385 1386 1385 1386 540 7. 0523 7. 0522 7. 0520 7. 0517 7. 0515 972 1389 1389 1389 1390 1389

550 7. 1912 7. 1911 7. 1909 7. 1907 7.1904 990 1394 1394 1394 1394 1395 560 7. 3306 7. 3305 7. 3303 7 3301 7. 3299 1008 1398 1398 1398 1398 1398 570 7. 4704 7. 4703 7. 47 01 7. 4699 7. 4697 1026 1402 1402 1403 1403 1403 580 7. 6106 7. 6105 7. 6104 7. 6102 7. 6100 1044 1407 1407 1407 1407 1407 590 7, 7513 7. 7512 7. 7511 7. 7509 7. 7507 1062 1411 1411 1411 1411 1412

600 7. 8924 7. 8923 7. 8922 7. 8920 7. 8919 1080 1415 1416 1415 1416 1415 610 8. 0339 8. 0339 8. 0337 8. 0336 8. 0334 1098 1419 1419 1419 1419 1420 620 8. 1758 8. 1758 8. 1756 8. 1755 8. 1754 1116 1423 1423 1423 1423 1423 630 8. 3181 8. 3181 8. 3179 8. 3178 8. 3177 1134 1428 1428 1429 1429 1429 640 8. 4609 8. 4609 8. 4608 8. 4607 8. 4606 1152 1431 1431 1431 1431 1431

650 8, 6040 8. 6040 8. 6039 8. 6038 8 6037 1170 1436 1436 1436 1436 1436 660 8. 7476 8. 7476 8. 7475 8. 7474 8. 7473 1188 1439 1439 1439 1439 1440 670 8. 8915 8. 8915 8. 8914 8. 8913 8. 8913 1206 1443 1443 1443 1444 1443 680 9. 0358 9. 0358 9. 0357 9. 0357 9. 0356 1224 1447 1447 1447 1447 1447 690 9. 1805 9. 1805 9. 1804 9. 1804 9, 1803 1242 1450 1450 1450 1450 1451

700 9. 3255 9. 3255 9. 3254 9 3254 9. 3254 1260 1454 1454 1455 1454 1454 710 9. 4709 9. 4709 9. 4709 9. 4708 9. 4708 1278 1458 1458 1458 1458 1458 720 9. 6167 9. 6167 9. 6167 9. 6166 9. 6166 1296 1461 1461 1461 1462. 1462 730 9. 7628 9. 7628 9. 7628 9. 7628 9 7628 1314 1465 1465 1465 1465 1465 740 9. 9093 9. 9093 9. 9093 9. 9093 9. 9093 1332 1468 1468 1468 1468 1468

750 10. 0561 10. 0561 10. 0561 10. 0561 10 0561 1350 1471 1471 1471 1471 1471 760 10. 2032 10. 2032 10. 2032 10. 2032 10. 2032 1368 1475 1475 1475 1475 1476 770 10. 3507 10. 3507 10. 3507 10. 3507 10 3508 1386 1478 1478 1478 1479 1478 780 10. 4985 10. 4985 10. 4985 10. 4986 10. 4986 1404 1481 1481 1481 1481 1481 790 10. 6466 10. 6466 10. 6466 10. 6467 10. 6467 1422 1484 1484 1485 1484 1484

800 10. 7950 10. 7950 10. 7951 10. 7951 10. 7951 1440

- 2 - Table 9. 22/1 Enthalpy of Molecular Oxygen (H-Eq)/RTq Pre ssu re

1 ,01 . 1 . . 7 1 atm atm . 4 atm atm atm T T °K °R

800 10,7950 10.7950 10.7951 10.7951 10.7951 1440 7464 7464 7464 7465 7465 850 11,5414 11.5414 11.5415 11.5416 11.5416 1530 7 532 7532 7531 7531 7533 900 12,2946 12.2946 12.2946 12.2947 12.294 : S 1620 7595 7595 7597 7597 7596 950 13.0541 13.0541 13.0543 13.0544 13,0545 .1710 7652 7653 7652 7653 7653 1000 13,8193 13.8194 13.8195 13.8197 13,8198 1800 7703 7703 7703 7703 7704 1050 14.5896 14.5897 14.5898 14.5900 14.5902 1890 77-51 7751 7752 7751 7751 1100 15.3647 15.3648 15.3650 15.3651 15.3653 1980 7795 7795 779.5 7796 7796 1150 16.1442 16.1443 16.1445 16.1447 16.1449 2070 7836 7836 7836 7836 7 836 1200 16.9278 16.9279 16.9281 16.9283 16,9285 2160 7873 7873 7873 7874 1250 17.7151 17.7152 17.7154 17.7156 17.7159 2250 790 $ 7908 7908 7909 7908 1300 18.5059 18.5060 18.5062 18 5065 18,5067 2340 7943 7943 7943 7943 7944 1350 19.3002 19.3003 19,3005 19.3008 19.3011 2430 7974 7974 7975 7974 7974 t 1400 20 ,4)976 20.0977 20.0980 20,0982 20.0985 2520 8005 8005 8005 8005 8005 1450 20.8981 20.8982 20,8985 20.8987 20 8990 2610 8035 8035 8035 8036 8035 1500 21.7016 21.7017 21.7020 8064 8064 8064 21.7023 8064 21,7025 8065 2700 1550? 22.5080 22.5081 22.5084 22.5087 22 5090 2790 8091 8091 8091 8091 8091 1600 23.3171 23.3172 23.3175 23.3178 23.3181 2880 8119 8119 8119 8119 8119 1650 24.1290 24.1291 24.1294 24,1297 24.1300 2970 8147 8147 8147 8147 8147 1700 24,9437 24.9438 24,9441 24,9444 24.9447 3060 8172 8172 8173 1*750 8172 8172 25.7609 8200 25.7610 8200 25,7613 8200 25.7616 8201 25.7620 8200 3150 1800 26.5809 26.5810 26.5813 26.5817 26.5820 3240 8227 8227 8227 8227 8227 1850 27.4036 27.4037 27.4040 27.4044 27.4047 3330 8252 8252 8252 8252 8252 1900 28,2288 28.2289 28,2292 28,2296 28.2299 3420 8277 8277 8278 8277 8277 1950 29.0565 29.0566 29.0570 F29.0573 29.0576 3510 8304 8304 8304 8304 8304 2000 29.8869 29,8870 29.8874 29.8877 29.8880 3600 8329 8329 8329 8329 8330 2050 30.7198 30.7199 30 7203 30,7206 30.7210 3690 8356 8356 8356 8356 8356 2100 31. 5554 31,5555 31,5559 31.5562 31.5566 3780 8381 8381 8381 8381 8381 2150 32.3935 32.3936 32,3940 32.3943 32,3947 387 0 8406 8406 8406 8406 8406 2200 33.2341 33.2342 33.2346 33.2349 33.2353 3960 8430 8430 8430 8430 8430 4050 2250 34.0771 8456 34.0772 8456 34.0776 8456 34.0779 8456 34 0783 8456 2300 34 9227 34.9228 34.9232 34.92,35 34,9239 4140

- 3 - i

- Table 9. 22/1 Enthalpy of Molecular Oxygen (H Eg)/RT0 Pressure

' . 01 atm . 1 atm . 4 atm . 7 atm latm T T

°K °R

34.9227 34.9228 34.9232 4140 2300 8482 8482 8482 34.9235 8483 34,9239 8482 2350 35.7709 35.7710 35.7714 35. 77i 35.7721 4230 8508 8508 8508 a 85Q8 8 5 08 36,6226 36 6229 432-0- 2400 36.6217 8530 36.6218 8530 36.6222 8530 8530 8530 37.4759 4410 2450 37.4747 8555 37.4748 8555 37.4752 8555 37.4756 8555 8555 2500 38.3307 38.3314 4500 38.3302 8580 38.3303 8580 8580 38.3311 8580 g580

2550 39.1882 39.1883 39.1887 39. 39.1894 4590 8605 8605 8605 ,1891 8605 8606 2600 40.0487 40.0488 40,0492 40.0500 4680 8627 8627 8627 40.0496 g627 8627 2650 40.9114 40.9115 40.9119 40,9l27 4770 8651 8651 8651 40.9123 g651 g651 2700 41.7765 41.7766 41.7770 4860 8675 8675 8675 41.7774 8675 41.7778 8B75 2750 42,6453 4950 42.6440 8698 42.6441 8698 42.6445 8698 42.6449 gegs 8698

2800 43.5138 43.5151 5040 8720 43.5139 8720 43.5143 8720 43.5147 g720 8720 2850 44.3858 44.3859 44.3863 44. 387 5130 8743 8743 8743 44.3867 g743 8743 45.2606 45.2614 5220 2900 45.2601 8765 45.2602 8765 8765 45.2610 87g5 8765 46.1371 46. 5310 2950 46.1366 8786 46.1367 8786 8786 46.1375 87g6 1379 87g6 3000 47,0152 47.0153 47.0157 47,0161 47.0165 5400

- 4 - 1

Table 9. 22/ Enthalpy of Molecular Oxygen (H - E° )/RTq Pressure

1 1 1 atm 4 atm 7 atm 10 atm T T °K °R

100 1. 254 132 180 110 1. 3865 1310 1. 315 148 198 120 1. 5175 1302 1. 4628 1393 lc 394 156 216 130 1. 6477 1. 6021 1. 5505 lc 505 234 1298 1360 1449 1 44 140 1. 7775 1295 1. 7381 1340 I. 6954 1400 lc 649 147 252

150 1. 9070 1292 1. 8721 1329 I. 8354 1373 I, 7963 1427 270 160 2. 0362 1292 2. 0050 1324 lc 9727 1356 lc 9390 1395 288 170 2. 1654 2„ 1374 2c 1083 2c 0785 306 1290 1315 1344 1 37 5 180 2. 2944 1289 2. 2689 1311 2c 2427 1335 2c 2160 1360 190 2. 4233 1290 2. 4000 1308 2c 3762 1329 2c 3520 1351 342

200 2. 5523 2. 5308 2. 5091 2. 4871 360 1287 1305 1322 1340 210 2. 6810 2. 6613 2c 6413 2c 6211 378 1288 1302 1319 1334 220 2. 8098 2. 7915 2. 7732 2c 7545 396 1288 1302 1315 1329 230 2 . 9386 2„ 9217 2. 9047 2c 8874 414 1288 1300 1312 1325 240 3. 0674 3. 0517 3c 0359 3c 0199 432 1289 1300 1310 1323

250 3. 1963 1290 3. 1817 1299 3c 1669 1310 3c 1522 1319 450 260 3. 3253 1291 3o 3116 1299 3c 2979 1308 3c 2841 1318 468 270 3. 4544 1291 3. 4415 1301 3c 4287 1309 3c 4159 1315 486 280 3- 5835 1294 3-57 16 1301 3c 5596 1308 3c 5474 1317 504 290 3. 7129 1295 3. 7017 1302 3c 6904 1309 3c 6791 1317 522

300 3. 8424 1297 3. 8319 1303 3. 8213 1309 3c 8108 1316 540 310 3. 9721 1299 3. 9622 1305 3c 9522 1312 3c 9424 1316 558 320 4. 1020 1302 4 . 0927 1307 4c 0834 1313 4c 0740 1319 576 330 4. 2322 1304 4o 2234 1310 4, 2147 1314 4c 2059 1320 594 340 4. 3626 1308 4„ 3544 1312 4c 3461 1317 4c 3379 1322 612

350 4. 4934 4. 4856 4c 4778 4c 4701 630 1311 1315 1320 1323 360 4. 6245 4. 6171 4c 6098 4c 6024 648 1314 1319 1322 1327 370 4. 7559 4. 7490 4c 7420 4c 7 351 666 1317 1321 1326 1 329 380 4. 8876 4. 8811 4c 8746 4c 8680 684 1321 1325 1328 1332 390 5o 0197 5„ 0136 5c 0074 5c 0012 702 1326 1328 1332 1337

400 5. 1523 1328 5c 1464 1332 5. 1406 1335 5c 1349 1338 720 410 5. 2851 1333 5c 2796 1336 5c 2741 1339 5c 2687 1342 738 420 5. 4184 1337 5c 4132 1340 5c 4080 1343 5c 4029 1346 7 56 430 5, 5521 1341 5c 5472 1344 5c 5423 1346 5. 5375 1349 774 440 5. 6862 1346 5c 6816 1348 5c 6769 1352 5c 67 24 1354 792

450 5. 8208 5c 8164 5c 8121 5. 8078 810

- 5 - 4

- Table 9. 22/1 Enthalpy of Molecular Oxygen (H Eg}/RT0

_ Pressure f 1 atm 4 atm 7 atm 10- atm

T 5- T °K °R

450 5. 8208 5. 8164 5. 8121 5- 8078 810 y 349 1352 1354 l 357 460 5. 5. 9516 5. 9475 94 828 9557 ^ 354 1357 1359 35 2361 846 470 6.0911 1359 6. 0873 1361 6. 0834 1363 6 0796 1366 864 480 6 - 2270 1363 6. 2234 1365 6. 2197 1367 6. 2162 2369 490 6. 6. 3599 6. 3564 6 o 3 <3 3 882 3633 2367 1369 1372 1 37

500 6- 5000 2372 6. 4968 2374 6 ° 4936 1376 6. 4905 2378 900

510 6 . 637 6. 6 ” 6312 6° 6283 918 2 2 377 6342 2378 1380 2382 520 6, 7749 2380 6 - 7720 1383 6, 7692 2385 6 ° 7665 1386 936 530 6. 9129 6 » 9103 6 * 9077 6 “ 905 954 2386 1387 1389 J 1391 ° 972 540 7 “ 0515 1389 7 - 0490 1391 7 - 0466 1393 7 ° 44 ^ 1395

550 7, 1904 7. 1881 7. 1859 7. 1837 990 1395 1397 1397 1 399 560 7. 3299 7. 3278 7. 3256 7 . 3236 1008 1398 1400 1402 1403 570 7 . 4697 7. 4678 7. 4658 7. 4639 1026 1403 1404 1405 1407 580 7 . 6100 7. 6082 7. 6063 7. 6046 1044 1407 1409 •1411 1412 590 7 . 7507 7. 7491 7. 7474 7. 7458 1062 1412 1412 1414 1415

600 7. 8919 7. 8903 7. 8888 7. 8873 1080 1415 1417 1418 1420 610 8, 0334 8, 0320 8. 0306 8. 0293 1098 1420 1421 1422 1423 620 8. 1754 8, 1741 8. 1728 8. 1716 1116 1423 1425 1426 1427 630 8. 3177 8. 3166 8. 3154 8. 3143 1134 1429 1429 1431 1432 640 8. 4606 8. 4595 8. 4585 8. 4575 1152 1431 1433 1433 1435

650 8. 6037 1436 8, 6028 ^437 8. 6018 1439 8. 6010 1440 1170 660 8„ 7473 1440 8. 7 465 2441 8, 7457 1441 8. 7450 1442 1188 670 8, 8913 1443 8. 8906 1444 8 . 8898 1446 1447 1206 680 9. 0356 1447 9. 0350 1448 9. 0344 1449 9. 0339 1450 1224 690 9, 1803 1451 9 ’ 1798 1452 9. 1793 1452 9. 1789 1453 1242

700 9. 3254 9. 3250 9, 3245 9. 3242 1260 1454 1455 1457 1.457 710 9. 4708 1458 9. 4705 1459 9. 4702 1460 9o 4699 1461 1278 720 9. 6166 1462 9. 6164 1462 9. 6162 1463 9. 6160 1464 .1296 730 9. 7628 1465 9. 7626 1466 9. 7625 1467 9. 7624 1468 1314 740 9. 9093 1468 9. 9092 1469 9. 9092 1470 9. 9092 1471 1332

750 10. 0561 10. 0561 10. 0562 10. 0563 1350 1471 1473 1473 1474 760 10. 2032 10. 2034 10. 2035 10. 2037 1368 1476 1476 1477 1477 770 10. 3508 10. 3510 10. 3512 10. 3514 1386 1478 1479 1479 1481 780 10. 4986 10. 4989 10. 4991 10. 4995 1404 1481 1482 1483 1483 790 10. 6467 10. 6471 10. 6474 10. 6478 1422 1484 1485 1486 1487 800 10.7951 10.7956 10.7960 10.7965 1440

- 6 - 1

Table 9. 22/ 1 - Enthalpy of Molecular Oxygen (H Eg)/RT0 Pressure

* 1 atm 4 atm 7 atm T T °K °R

800 10, 7951 10. 7956 10. 7960 10. 7965 1440 7465 7468 7471 7475 850 11. 5416 11. 5424 11. 5431 11. 5440 1530 7533 7536 7539 7 541 900 12, 2949 12. 2960 12. 2970 12. 2981 1620 7596 7598 7601 7603 950 13. 0545 13. 0558 13. 0571 13. 0584 1710 7653 7655 7657 7659 1000 7704 13. 8213 7706 13. 8228 7708 13. 8243 7710 1800

1050 14. 5902 14. 5919 14. 5936 14. 5953 1890 7751 7753 7755 77.57 1100 15. 3653 15. 3672 15. 3691 15. 3710 lt86 7796 7797 7799 7801 1150 16. 1449 16. 1469 16. 1490 16. 1511 2070 7836 7838 7839 7840 1200 16. 9285 16. 9307 16. 9329 16. 9351 2160 7874 7875 7876 7878 17. 17. 17. 17. 1250 7159 7908 7182 7910 7205 7911 7229 791.2 .2250

1300 18. 5067 18. 5092 18. 5116 18. 5141 2340 7944 7944 7946 7947 1350 19. 3011 19. 3036 19. 3062 19. 3088 2430 7974 7976 7976 7977 1400 20. 0985 20. 1012 20. 1038 20. 1065 2520 8005 8006 8007 8008 1450 20. 8990 20. 9018 20. 9045 20, 9073 2610 8035 8036 8037 80*38 1500 8065 21.7 054 8065 21. 7082 8066 21. 7111 8067 2700

1550 22. 5090 22. 5119 22. 5148 22. 5178 2790 8091 8092 809 3 8 09 3 1600 23. 3181 23. 3211 23. 3241 23. 327 2880 8119 8120 8121 8121 1650 24. 1300 24. 1331 24. 1362 24. 1392 2970 8147 8148 • 8148 8149 1700 24. 9447 24. 9479 24. 9510 24. 9541 3060 8173 8173 8173 8174 1750 25. 7620 25. 7652 25. 7683 25. 7715 3150 8200 8200 8202 82011 1800 26. 5820 26. 5852 26. 5885 26. 5917 3240 8227 8228 8228 8229 1850 27. 4047 27. 4080 27. 4113 27. 4146 3330 8252 8253 8253 8253 1900 28. 2299 28. 2333 28. 2366 28. 2399 3420 8277 8277 8278 8279 1950 29. 0576 29. 0610 29. 0644 29. 0678 3510 8304 8305 8305 8305 2000 29. 8880 29. 8915 29. 8949 29. 8983 3600 8330 8329 8330 8331

f 2050 30. 7210 30. 7244 30. 7279 30. 7314 3690 8356 8357 8357 8357 2100 31. 5566 31. 5601 31. 5636 31. 5671 3780 8381 8381 8381 8382 2150 32. 3947 32. 3982 32. 4017 32. 4053 3870 8406 8407 8407 8407 2200 33. 2353 33. 2389 33. 2424 33. 2460 3960 8430 8430 8431 8431 2250 34. 0783 34. 0819 34. 0855 34. 0891 4050 8456 8456 8457 8457

2300 34.9239 34. 9275 34. 9312 34. 9348 4140

- 7 ~ - Table 9. 22/1 Enthalpy of Molecular Oxygen (H Eq)/RTq Pressure

1 1 1 atm 4 atm 7 atm 10 atm T T °K °R

2300 34. 9239 34. 9275 34. 9312 34. 9348 4140 8482 8483 8482 8483 2350 35. 7721 35. 7758 35. 7794 35. 783.1 4230 8508 8508 8509 8509 2400 36. 6229 36. 6266 36. 6303 36. 6340 4320 8530 8530 8530 8530 2450 37. 4759 37. 4796 37. 4833 37. 4870 4410 8555 8556 8556 8556 2500 38. 3314 38. 3352 38. 3389 38. 3426 4500 8580 8580 8580 8581

2550 39. 1894 39. 1932 39. 1969 39. 2007 4590 8606 8605 8606 8606 2600 40. 0500 40. 0537 40. 0575 40. 0613 4680 8627 8627 8627 8627 2650 40. 9127 40. 9164 40. 9202 40. 9240 4770 8651 8652 8652 8652 2700 41. 7778 41. 7816 41. 7854 41. 7892 4860 8675 8675 8675 8675 2750 42. 6453 42. 6491 42. 6529 42. 6567 4950 8698 8698 8698 8699

2800 43. 5151 43. 5189 43. 5227 43. 5266 5040 8720 8720 8721 8720 2850 44. 3871 44. 3909 44. 3948 44. 3986 5130 8743 8744 8743 8744 2900 45. 2614 45. 2653 45. 2691 45. 2730 5220 8765 8765 8766 8765 2950 46. 1379 46. 1418 46. 1457 46. 1495 5310 8786 8786 8786 8787 3000 47. 0165 47. 0204 47. 0243 47. 0282 5400

- 8 - Table . 22/1 Enthalpy of Molecular Oxygen (H - Eq)/RTq Pressure _ __ rT0 atm 40 atm 70 atm 100 atm' T T °K °R

130 1. 505 234 144 140 1. 649 147 252

150 1. 7963 270 1427 160 1. 9390 1. 48 288 1395 23 170 2. 0785 1. 711 1. 18 306 1375 194 33 180 2. 2160 1. 905 la 4915 a 94 324 1360 177 261 41 190 2. 3520 2. 082 la 751 la 346 342 1351 166 221 313

200 2 . 4871 2, 248 la 972 I. 659 360 1340 158 198 257 210 2. 6211 2. 406 2a 170 la 916 378 1334 153 182 122 220 2. 7545 2. 559 2a 352 2a 138 396 1329 150 172 202 230 2. 8874 2. 709 2. 524 2a 340 414 1325 142 165 186 240 3. 0199 2. 851 2a 689 2a 526 432 1323 150 160 177

250 3, 1522 3. 001 2a 849 2a 703 450 1319 143 156 169 260 3. 2841 3. 144 3a 005 2a 872 468 1318 142 152 163 270 3. 4159 3. 286 3a 157 3. 035 486 1315 140 150 160 280 3. 5474 3. 426 3. 307 3a 195 504 1317 140 148 156 290 3. 6791 3„ 566 3o 455 3a 351 522 1317 139 147 154

300 3. 8108 3. 705 •3a 602 3a 505 540 1316 138 145 151 310 3. 9424 3. 843 3. 747 3. 656 558 1316 138 144 150 320 4o 0740 3. 981 3a 891 3a 806 576 1319 138 143 148 330 4. 2059 4. 119 4. 034 3. 954 594 1320 - 137 142 147 340 4. 3379 4. 256 4a 176 4. 101 6.12 1322 137 142 147

350 4. 4701 1323 4. 393 137 4a 318 142 4a 248 146 630 360 4. 6024 1327 4. 530 137 4. 460 141 4a 394 145 648 370 4. 7351 1329 4. 667 137 4a 601 141 4. 539 144 666 380 4 . 8680 1332 4. 804 137 4a 742 140 4, 683 144 684 390 5. 0012 1337 4a 941 137 4a 882 141 4a 827 144 7 02

400 5. 1349 1338 5. 078 137 5a 023 140 4a 971 143 720 410 5. 2687 1342 5a 215 137 5a 163 141 5a 114 143 738 420 5. 4029 1346 5a 352 138 5. 304 140 5a 257 143 756 430 5. 5375 1349 5a 490 138 5. 444 141 5a 400 143 774 440 5. 6724 1354 5a 628 138 5. 585 140 5= 543 144 792

450 5. 8078 5a 766 5a 725 5a 687 810

- 9 - ,.

- Table 9. 22/ 1 Enthalpy of Molecular Oxygen (H E g)/RT0 Pressure

1 1 0 atm 40 atm 7 0 atm 100 atm * T T °K °R

450 5. 8078 5. 766 5.725 5.687 810 1357 13g i 4 1 ^ 4 3 460 5. 9435 5. 828 1361 138 5.866 14J 830 140 6. 5. 846 470 0796 1366 6.042 139 6.007 141 973 143 480 6. 2162 1369 b ‘ iyi 139 6 . 148 141 6 . 116 143 864 490 6. 3531 6. 320 6 . 289 6. 259 882 1374 14Q i 4 2 144

6. 500 6. 4905 460 , 6. 431 , . 6.403 . . 0 900 1378 3 510 6. 6283 6, 600 6. 572 6, 546 {4 918 1382 44 520 6. 7665 6. 740 6 . 714 6.690 936 1386 {{fJJ iff; 44 530 6. 9051 6. 880 6. 856 6.834 954 1391 4 540 7. 0442 7-021 6. 999 6. 978 {44 972 1395 ]141} 143 144

550 7. 1837 7. 162 7. 142 . _ 7. 122 - . 990 1399 «c 560 7. 3236 7. 303 7. 285 {43 7.267 1008 1403 { 6 45 570 7. 4639 7 . 445 7. 428 {4 7.412 1026 1407 « 580 7. 6046 7. 588 7. 572 {44 7.557 1044 1412 44 b 590 7. 7458 7. 730 7.716 7. 702 1062 1415 143 144 {,146

600 7. 8873 7. 873 7. 860 . 7. 848 - 1080 1420 , 8 , 46 610 8. 0293 8. 016 8. 004 }44 7.994 1098 1423 {{f b 620 8. 1716 8. 160 8. 149 {4j? 8. 140 {4 1116 1427 \\\ « 630 8. 3143 8. 304 8, 294 8. 286 {4® 1134 1432 \\\ 640 8. 4575 8. 448 8. 440 8. 433 1152 1435 145 146\, n 146

650 8. 6010 8. 8.586 i c 8 1170 1440 593 145 4 ° 148 660 8. 1188 7450 1442 8.738 145 8.732 146 8.727 147 670 8. 8892 8. 878 i 8 . 1206 1447 8.883 146 47 8/4 14 g 680 9. 0339 9. 9. 9. 022 1224 1450 029 14fi 025 147 -j 47 690 9. 9. 1789 1453 9.175 146 172 147 9. 169 249 1242

700 9. 3242 9. 9 ° 319 9 ” 3 8 1260 321 1 1457 47* 148 {. 148' 710 9. 4699 9. 468 9. 467 9. 466 1278 1461 b , 9 720 9. 6160 9. 615 9. 615 {4 9. 615 {4 1296 1464 49 730 9. 7624 9. 762 {*' 9. 763 {4^ 9.764 1314 1468 48 9 740 9. 9092 9.910 « 9.911 9. 913 1332 1471 148 149 {?150

750 10. 0563 1 0, 06 0 10. 063 1350 10.058 -j -j 1474 i 48 49 49 760 10. 2037 10. 206 10. 209 c) lu. 212 1368 1477 14R 14 j 5 q

770 10. 3514 10.354 10.358 10.362 -j 1386 1481 149 149 ^ q

780 10. 4995 ° 1483 10. 503 149 10.507 150 10 513 150 1404 790 10. 6478 1487 10-652 150 10.657 15Q iO. 663 151 1422

800 10. 7965 10. 802 10. 807 10. 814 1440

10 - Table 9. 22/1 Enthalpy of Molecular Oxygen (H - E RT o»/ o Pressure

' * 1 0 atm 40 atm 70 atm 100 atm T T °K °R

800 10. 797 10. 802 10. 807 10. 814 1440 1501 1507 15.14 1519 900 12. 298 12. 309 12. 321 12. 333 1620 1526 1531 1536 1541 1000 13. 824 13. 840 13. 857 13. 874 1800 1547 1551 1554 1557 1100 15. 371 15. 391 15. 411 15. 431 1980 1564 1567 1570 1573 1200 16. 935 16. 958 16. 981 17. 004 2160 1579 1581 1584 1587

1300 18. 514 18. 539 18. 565 18. 591 2340 1593 1595 1596 1598 1400 20. 107 20. 134 20. 161 20. 189 2520 1604 1606 1608 1610 1500 21. 711 21. 740 21. 769 21. 799 2700 1616 1618 1619 1620 1600 23. 327 23. 358 23. 388 23. 419 2880 1627 1628 1630 1631 1700 24. 954 24. 986 25. 018 25. 050 3060 1638 1639 1640 1641

1800 26. 592 26. 625 26. 658 26. 691 3240 1648 1649 1650 1651 1900 28. 240 28. 274 28. 308 28. 342 3420 1658 1659 1660 1661 2000 29. 898 29. 933 29. 968 30. 003 3600 1669 1669 1670 1671 2100 31. 567 31. 602 31. 638 31. 674 3780 1679 1680 1680 1681 2200 33. 246 33. 282 33. 318 33. 355 3960 1689 1689 1690 1690

2300 34. 935 34. 971 35. 008 35. 045 4140 1699 1700 1700 1700 2400 36. 634 36. 671 36. 708 36. 745 4320 1709 1709 1710 1710 2500 38. 343 38. 380 38. 418 38. 455 4500 1718 1719 1719 1720 2600 40. 061 40. 099 40. 137 40. 175 4680 1728 1728 1729 1729 2700 41. 789 41. 827 41. 866 41. 904 4860 1738 1738 1738 1739

2800 43. 527 43. 565 43. 604 43. 643 5040 1746 1747 1747 1747 2900 45. 273 45. 312 45. 351 45. 390 5220 1755 1755 1756 1756 3000 47. 028 47. 067 47. 107 47. 146 5400

11 - 9 q 2

Table 9= 22/2 Entropy of Molecular Oxygen S/R Pressure ~l Coi atm . 1 atm . 4 atm . 7 atm 1 atm T T °K °R

100 25. 23. 1 c 20. 180 4396qqq 7 336 q q4 21.7 357 q 7 3404 794 244 110 25. 77 23. 22. 21. in^o 21. 198 33 3049 4681 3054 0729 3 072 5042 3092 13813^^3 120 26. 23. 7735 22. 21 . 21. 4494 216 07822go2 2 806 3801 2821 8134 2 833 2848 130 26. 35842595 24. 0541 2 598 22. 6622 2607 22. 0967 26 18 21.7 342 234 140 26. 6179 2417 24. 3 1 39 241 22.92 29 2426 22 . 35852^88 21. 9969 2442 252

150 26. 8596 24. 5558 23. 1655 22. 6018 22. 2411 270 2259 2261 2267 2274 2279 160 27. 0855 24. 7819 23. 3922 22. 8292 22. 4690 288 2123 2124 2129 2134 2138 170 27. 2978 24. 9943 23. 6051 23. 0426 22. 6828 306 2002 2003 2007 2010 2016 180 27. 4980 25. 1946 23. 8058 23. 2436 22. 8844 324 1894 1896 1898 1902 1904 190 27. 6874 25. 3842 23. 9956 23, 4338 23. 0748 342 1796 1796 1799 1802 1805 200 27. 8670 25, 5638 24. 1755 23. 6140 23. 2553 360 1 71 0 1711 1713 1715 1717 210 28. 0380 i coV 25. 24. 3468 23, 7855 23. 4270 378 7349 1631 1633 1634 1636 220 28. 25. 24. 5101 23. 9489 23, 5906 396 2011 i ccq 8980 1559 1561 1563 1564 230 28.3570 26. 24. 6662 24. 1052 23, 7470 414 74q^ 0539 1494 1495 1496 1498 240 28. 26. 2033 24. 8157 24. 2548 23. 8968 432 5063 ^33 1433 1434 1435 1437

2150 28,6496 26. 3466 24. 9591 24, 3983 24, 0405 450 1?7 o 1378 , q Rn 1381 1381 260 28/7874 26. 4844 25. 0971 24. 5364 24. 1786 468 7^o 1329 jq^q* * 1330 1331 270 28. 9202 26. 6173 25. 2300 24. 6694 24. 3117 486 Tpon 1280 1282 .1283 280 29. 0482 26. 7453 25. 3581 24. 7976 24, 4400 504 1 000 1238 1239 1240 290 26. 8691 25. 24. 9215 24. 5640 522 29.1720 ^9° 1198 4820 1199 1199

300 29. 2917 , 26, 9889 25, 6018 25. 0414 24. 6839 540 ,09 1160 1160 1161 1162 310 29. 4077 7 27. 1049 25. 7178 25. 1575 24. 8001 558 1125 1126 1126 1127 320 29.5202 27. 2174 25. 25, 2701 24, 9128 576 7(7^ 1093 8304 1094 1094 1094 330 29. 6295 27. 3267 25. 9398 25. 3795 25. 0222 594 7j!^ 1062 1062 1063 1064 340 29. 7357 27.4329 26. 0460 25. 4858 25. 1286 612 2 035 1035 1036 1036 1036

350 27, 5364 .26. 1496 25. 5894 25. 2*322 630 29.8392 1f)n7 1007 1007 1008 1008 360 29. 27. 6371 26. 2503 25. 6902 25, 3330 648 9399 qoo 982 983 983 983 370 30.0381 qrQ 27. 7353 26 3486 25. 7885 25. 4313 666 959 959 959 960 380 30.1340 nne 27. 8312 26. 4445 25, 8844 25. 5273 684 937 936 937 937 390 30.2276 27. 9249 26, 5381 25. 9781 25, 6210 702 g’fg 916 917 917 917

400 30 3492 28.0165 26.6298 26, 0698 25. 7127 720 °oqg 896 896 896 410 30, 4088 28.1061 26.7194 26, 1594 25, 8023 738 o 7 g 7 g 876 877 877 420 30.4964 nr7 28.1937 26.8070 26. 2471 25. 8900 756 859 859 860 430 30. 5823 nj? 28. 2796 26. 8929 26. 3330 25. 9760 774 842 841 841 440 . 30. 28.3637 26,9771 26. 4171 26,, 0601 792 6664 ggg gjg 826 827 827 450 30. 7490 28.4463 27.0597 26. 4998 26. 1428 810

- 12 - 1

Table 9. 22/2 Entropy of Molecular Oxygen S/R Pressure

01 atm 1 atm . 4 atm . 7 atm 1 atm T o K °R

450 30. 7490 810 28. 4463 810 27. 0597 810 26. 4998 810 26. 1428 810 810 460 30. 8300 795 28. 5273 795 27. 1407 795 26. 5808 796 26. 2238 796 828 470 30. 9095 780 28. 6068 780 27. 2202 780 26. 6604 780 26. 3034 780 846 480 30. 9875 768 28. 6848 769 27. 2982 769 26. 7384 768 26. 3814 769 864 490 31. 0643 754 28. 7617 754 27. 3751 754 26. 8152 754 26, 4583 754 882

500 31. 1397 742 28. 8371 742 27.4505 742 26. 8906 743 26. 5337 742 900 510 31. 2139 28. 9113 27. 5247 26. 9649 26. 6079 918 730l uu 730 730 730 731 520 31. 2869 718 28. 9843 718 27. 5977 718 27. 0379 718 26. 6810 718 936 53Q 31. 3587 707 29. 0561 707 27. 6695 707 27. 1097 707 26. 7528 707 954 540 31. 4294 696 29. 1268 696 27. 7402 696 27. 1804 697 26. 8235 697 972

550 31. 4990 686 29. 1964 686 27. 8098 687 27. 2501 686 26. 8932 686 990 560 31. 5676 676 29. 2650 676 27. 8785 676 27. 3187 676 26. 9618 676 1008 570 31. 6352 666 29. 3326 666 27. 9461 666 27. 3863 666 27. 0294 666 1026 580 31. 7018 657 29. 3992 657 28. 0127 657 27. 4529 657 27. 0960 658 1044 590 31. 7675 648 29. 4649 648 28 0784 648 27. 5186 648 27. 1618 648 1062

600 31. 8323 639 29. 5297 639 28. 1432 639 27. 5834 639 27.2266 639 1080 610 31. 8962 630 29. 5936 630 28. 2071 630 27. 6473 63 b 27. 2905 630 1098 620 31. 9592 622 29. 6566 622 28. 2701 622 27. 7104 622' 27. 3535 622 1116 630 32. 0214 614 29. 7188 614 28. 3323 614 27. 7726 614 27. 4157 615 1134 640 32. 0828 607 29. 7802 607 28. 3937 607 27. 8340 607 27. 4772 607 1152

650 32. 1435 598 29. 8409 598 28. 4544 598 27. 8947 598 27. 5379 598 1170 28.-5142 660 32. 2033 59 29. 9007 591 591 27. 9545 591 27. 5977 591 1188 670 32. 2624 584 29. 9598 584 28. 5733 584 28. 0136 584 27. 6568 584 1206 680 32. 30. 28. 28. 27. 1224 3208 tzrj 17 0182 C f7 17 6317 JZH n 0720 c 7 7 7152 c 7 7 O 0 1 Oil 0 c 0 0 ( 0 Dm 690 32. 3785 30. 0759 28 . 6894 28. 1297 27. 7729 1242 570 570 571 570 570

700 32. 4355 564 30. 1329 564 28. 7465 564 28. 1.867 565 27. 8299 564 1260 710 27. 1278 32. 4919 557 30. 1893 557 28. 8029 557 28. 2432 557 8863 558 720 5476 27. 1296 32. 550 30. 2450 550 28. 8586 550 28. 2989 550 9421 550 730 32. 6026 30.3000 C A 28. 9136 28. 3539 27.9971 1314 G.A ^ R Urt O 545 740 32. 6571 30. 3545 28. 9681 28, 4084 28. 0516 1332 538 538 538 538 538

750 32. 7109 30. 4083 29. 0219 28. 4622 C O 28. 1054 c 09 1350 532 532 532 D1 O da WWIid 760 32. 7641 30. 4615 29. 0751 28. 5154 28. 1586 1368 527 527 527 527 527 .1386 770 32. 8168 . 30. 5142 29. 1278 28. 5681 28. 2113 780 32. 8689 521 30. 5663 521 29. 1799 521 28. 6202 521 28. 2634 521 1404 790 32. 9204 515 30. 6178 515 29. 2314 515 28. 6717 515 28. 3149 515 1422 510 510 510 510 510 800 32. 9714 30. 6688 29. 2824 28. 7227 28. 3659 1440

-13 - i

Table 9. 22/2 Entropy of Molecular Oxygen S/ Pressure

. 01 atm . 1 atm . 4 atm 7 atm 1 atm’ T T °K °R

800 32. 9714 30. 6688 29. 2824 28. 7227 28. 3659 1440 2472 2472 2472 2472 2473 850 33. 2186 30. 9160 29. 5296 28. 9699 28. 6132 1530 2352 2352 2353 2'352 900 33. 4538 2352 31. 1512 29. 7648 29. 2052 28. 8484 1620 2243 2243 2243 2243 950 33. 6781 2243 31. 3755 29. 9891 29. 4295 29. 0727 1710 2145 2145 2145 2145 1000 33. 8926 2145 31. 5900 30. 2036 29. 6440 29. 2872 1800 2053 2053 2053 2053 2054

1050 34. 0979 31. 7953 30. 29 . 8493 29. 4926 n 1890 1970 1970 4089 iq71 t 70 1100 34. 2949 31. 9923 30. 6060 30. 0463 Togo 29. 6896|n !; 1980 1893 1893 q 1150 34. 4842 32. 1816 30. 7953 30. 2356 ooT 29. 8789 2070 1821 1821 1821 i 1821 1200 34. 6663 1756 32. 3637 1756 30. 9774 i 7 cc 30. 4177 l756 30. 0610 1756 2160 1250 34. 8419 32. 30. 30. 2250 1695 5393 1695 31.1530 1695 5933 169 5 2366 1095

1300 35. 0114 32. 7088 31. 3225 30. 7628 30. 2340 1638 1638 1638 1639 4061 i 6 3 8 2430 1350 35. 1752 1584 32. 8726 1584 31. 4863 1584 30. 9267 1584 30. 5699 1584 6447 31. 30. 2520 1400 35. 3336 1535 33. 0310 1535 31. 1535 0851 1535 7283 1535 2610 1450 35. 4871 1488 33. 1845 1488 31. 7982 1488 31. 2386 1488 30. 8818 1489 1500 35. 6359 1444 33. 3333 1444 31. 9470 1444 31. 3874 1444 31. 0307 1444 2700

1550 35. 7803 33. 4777 32. 0914 31. 5318 31 . 2790 1404 1404 1404 i 4 Q 4 1751 i4Q4 1600 35. 9207 33. 6181 32. 2318 31 . 67 31. 3155 qca 2880 1364 1364 1364 22 1 304 1650 36. 0571 1329 33. 7545 1329 32. 3682 1329 31.8086 1329 31. 4519 {329 2970 1700 36. 1900 33. 8874 32. 5011 31.9415 31 . 5848 3060 1294 1294 1294 i 294 1294 1750 36. 3194 1262 34. 0168 1262 32. 6305 1262 32. 0709 1202 31. 7142 1202 3150

1800 36. 4456 1232 34. 1430 1232 32. 7567 1232 32. 1971 1232 31 . 8404 1232 3240 1850 36. 5688 1202 34. 2662 1202 32. 8799 1202 32. 3203 1202 31. 9636 1202 3330 1900 36. 6890 1175 34. 3864 1175 33. 0001 1175 32. 4405 1175 32. 0838 1175 3420 1950 36. 8065 34. 5039 33. 1176 32. 5580 32. 2013 3510 1148 1148 1148 1148 1 14R 2000 36. 9213 34. 6187 33. 2324 32. 6728 32. 3161 3600 1124 1124 1124 1124 -^4 2050 37. 0337 34. 7311 33. 3448 32. 7852 32. 4285 3690 1100 1100 1100 1100 1100 2100 37. 1437 34. 8411 33. 4548 32. 8952 32. 5385 3780 1077 1077 1077 1077 1077 2150 37. 2514 34. 9488 33. 5625 33. 0029 32. 6462 3870 1056 1056 1056 1056 1056 2200 37. 3570 35. 0544 33. 6681 33. 1085 32. 7518 3960 1035 1035 1035 1035 1035 2250 37. 4605 35. 1579 33. 7716 33. 2120 32. 8553 4050 1015 1015 1015 1015 1015 2300 37. 5620 35.2594 33.8731 33.3135 32.9568 4140

-14 Table 9. 22/2 Entropy of Molecular Oxygen S/R Pressure

.01 atm . 1 atm . 4 atm . 7 atm 1 atm T T °K °R

2300 37.5620 35.2594 33.8731 33.3135 32.9568 4140 997 997 997 997 997 2350 37.6617 35.3591 33.9728 33.4132 33.0565 4230 978 978 978 978 978 2400 37.7595 35.4569 34.0706 33.5110 33.1543 4320 961 961 961 961 961 2450 37.8556 35.5530 34.1667 33.6071 33.2504 4410 945 945 945 945 945 2500 37.9501 35.6475 34.2612 33.7016 33.3449 4500 928 928 928 928 928

2550 38.0429 35.7403 34.3540 33.7944 33.4377 4590 912 912 912 912 912 2600 38.1341 35.8315 34.4452 33.8856 33.5289 4680 898 898 898 898 898 2650 38.2239 35.9213 34.5350 33,9754 33.6187 4770 884 884 884 884 884 2700 38.3123 36.0097 34.6234 34.0638 33.7071 4860 869 869 869 869 869 2750 38.3992 36.0966 34.7103 34.1507 33.7940 4950 856 856 856 856 856

2800 38.4848 36.1822 34.7959 34.2363 33.8796 5040 844 844 844 844 844 2850 38.5692 36.2666 34.8803 34,3207 33.9640 5130 830 830 830 830 830 2900 38.6522 36.3496 34.9633 34.4037 34,0470 5220 819 819 819 819 819 2950 38.7341 36.4315 35.0452 34.4856 34.1289 5310 807 807 807 807 807 3000 38.8148 36.5122 35.1259 34.5663 34.2096 5400

- 15 - 9 0

Table 9V22/2 Entropy of Molecular Oxygen S./R Pressure ! 1 atm 4 atm 7 atm 1 atm T T °K °R

100 20. 794 344 180 110 21. 1381 3113 198 19. 216 120 21. 4494 2848 981 v$q 4 130 21. 7342 2627 20 . 2851 2751 19. 651 294 234 140 21. 9969 2442 20. 5602 2529 19. 9448 2639 19. 525 - 279 252

150 22. 2411 2279 20. 8131 2345 20. 2087 2421 19. 8036 2514 270 160 22. 4690 2138 21. 0476 2188 20. 4508 2246 20.0550 2310 288 170 22. 6828 2016 21. 2664 2055 20. 6754 2099 20.2860

200 23. 2553 1717 21. 8488 1770 21. 2686 1763 20. 8908 1788 360 210 23. 4270 1636 22. 0227 1655 21.4449 1674 21. 0696 1695 .378 220 23. 5906 1564 22. 1882 1 co 0 21.6123 1597 21. 2391 1614 396 230 23. 7470 1498 22. 3462 15? 21.7:720 1525 21. 4005 1540 414 240- 23. 8968 22. 4974 21.9^45 21. 5545 432 1437 i 44 9 1461 1473

250 24. 0405 22. I 1 21. 1381 6423 oq 22.0706 1403 7018 1415 450 260 24. 1786 22. 7814 22.2109 21. 8433 468 1331 1 040 1349 1359 270 24, 3117 1283 22.9154 ^00 22.3458 1300 21. 9792 1306 486 280 24. 4400 1240 23. 0446 {047 22.4758 1254 22. 1098 1263 504 290 24. 5640 23. 22.6012 22. 2381 522 1199 1693 12 q 6 1212 1218

300 24-. 6839 23. 2899 22.7224 22. 3579 540 1162 u67 117 3 4 i 7 g 310 24. 8001 1127 23. 4066 u 00 22.8397 1138 22. 4758 1142 558 24. 22. 1 320 9128 1094 23. 5198 {oqq 22.9535 1104 5900 n 08 576 330 25. 0222 23. 6297 22.7008 1 594 1064 iQg 7 23.0639 1071 0 7 0 340 25. 1286 23. 7364 23,1710 22,8084 612 1036 J 04Q 1044 1Q48

350 25. 2322 23.8404 23.2754 22. 9132 630 1008 1015 1019 360 25. 3330 23. 9416 23.3769 23. 0151 648 983 qof 989 992 370 25. 4313 24.0402 23,4758 23. 1143 666 960 966 969 380 25. 5273 24.1365 23.5724 23. 2112 684 937 q~q 942 944 390 25. 6210 24.2304 23.6666 23. 3056 702 917 920 921 924 400 25. 7127 896 24,3224 090 23.7587 902 23. 3980 904 720 410 25. 8023 877 24.4122 079 23.8489 880 23. 4884 882 738 420 25. 8900 7 860 24,5001 23.9369 864 23. 5766 866 56 430 25. 9760 841 24.5863 040 24.0233 845 23. 6632 847 774 440 26. 0601 24:6706 827 24.1078 830 23. 7479 831 792

450 CD 1428 24.7534 24.1908 23. 8310 810

-16 - 2

Table 9. 22/2 Entropy of Molecular Oxygen S/R Pressure®_

* 1 atm 4 atm 7 atm 10 atm’ T T °K °R

450 26. 1428 g20 24. 7 534 322 24. 1908 323 23. 8310 815 810 460 26. 2238 793 24. 8346 797 24,2721 793 23 9125 800 828 470 26. 3034 7go 24. 9 143 732 24, 35 19 733 23 9925 784 846 480 26. 3814 709 24. 9925 709 24, 4302 772 24. 0709 772 864 490 26. 4583 754 25. 0694 756 2 4 . 50 7 3 757 24, 1481 758 882

500 26. 25, 24. 5830 24. 2239 900 5337 740 1450 74 g 744 746 510 26. 6079 25. 2193 24. 6574 24. 2985 918 733 733 520 26.6810 25. 2925 24, 7307 24, 3718 936 7 ^ 720 721 530 26. 7 528 707 25. 3644 708 24, 8027 709 24, 4439 710 954 540 26 . 8235 097 25. 4352 097 24. 8736 698 24. 5149 699 972

550 26. 8932 25. 5049 24. 9434 24. 5848 990 686 687 688 689 560 26. 9618 25, 5736 25. 0122 24. 6537 1008 676 677 678 678 570 27i 0294 25. 6413 25. 0800 24. 7215 1026 666, 667 667 668 580 27 0960 25. 7080 25, 1467 24, 7883 1044 658 658 659 660 590 27. 1618 25. 7738 25, 2126 24, 8543 1062 648 649 649 650

600 27. 2266 25. 8387 25. 2775 24. 9193 1080 639 640 641 641 610 27. 2905 25. 9027 25. 3416 24, 9834 1098 630 631 631 632 620 27. 3535 25. 9658 25. 4047 25, 0466 1116 622 622 623 623 630 27. 4157 26. 0280 25= 4670 25. 1089 1134 615 615 616 616 640 27. 4772 26/0895 25. 5286 25, 1705 1152 607 608 608 609

650 ' 26. 1503 25, 5894 25, 2314 cQq 1170 ll 598 598 599 660 27. 5977 591 26. 2101 592 25, 6493 592 25. 2913 593 1188 670 27. 6568 584 26. 2693 584 25, 7085 585 25. 3506 505 1206 680 27. 7152 577 26 , 3277 578 25.7670 578 25.4091 1224 690 27. 77 29 570 26.3855 570 25, 8248 571 26 , 4669 57 1242

700 27. 8299 26. 4425 25. 8819 25. 5241 1260 564 565 564 565 710 27. 8863 26. 4990 25. 9383 25. 5806 1278 558 557 558 558 720 27. 9421 26. 5547 25. 9941 25, 6364 1296 550 551 551 551 730 27. 9971 26. 6098 26, 0492 25. 6915 1314 545 545 546 546 74:0 28. 0516 26. 6643 26. 1038 25. 7461 1332 538 539 538 539

750 28. 1054 26. 7182 26. 1576 25. 8000 1350 532 532 533 coo 760 28. 1586 26. 7714 26, 2109 25, 8533 1368 770 28, 2113 527 26. 8241 527 26. 2637 528 25, 9061 528 1386 521 22 780 28. 2634 26. 8763 522 26. 3158 521 25. 9583 1404 516\ 790 28. 3149 515 26. 9278 515 26. 3674 516 26. 0099 1422 510 510 511 511 800 28.3659 26.9788 26.4185 26.0610 1440

- 17 - Table ). 22/2 Entropy of Molecular Oxygen S/R Pressure -- — - « .<»— I. — - I r- ' 1 atm 4 atm 7 atm 10 atm T T

° K °R

800 28. 26. 26. 4185 26. 0610 1440 2473 2474 247 5 850 28. 27. 26. 6659 26. 3085 1530 2352 2354 2355 900 28. ala! 27. 26. 9013 26. 5440 1620 99436 2245 2246 950 29. 0727U ^ 27. 6859 27. 1258 26, 7686 1710 2145 2146 2147 1000 29. & 2054 27. 9005 27. 3404 2055 26, 9833 2055 1800

1050 29. 4926 28. 1059 27. 5459 27. 1888 1890 1970 197 0 1971 1971 1100 29. 6896 28. 3029 27. 7430 27. 3859 1980 1893 1894 1894 1895 1150 29. 8789 28. 4923 27. 9324 27. 5754 2070 1821 1821 1822 1822 1200 30. 0610 28. 6744 28. 1146 27. 7576 2160 1756 1757 1756 1757 1250 30. 2366 28. 8501 28. 2902 27. 9333 2250 1695 1695 1696 1696 2340 1300 30. 4061 1638 29. 0196 1638 28, 4598 1638 28. 1029 1638 1350 30. 5699 29. 1834 28. 6236 28. 2667 2430 1584 1585 1585 1585 1400 30. 7283 29. 3419 28. 7821 28. 4252 2520 1535 1535 1535 1536 1450 30. 8818 29. 4954 28. 9356 28. 5788 26 1489 1488 1489 1488 4,0 1500 31. 0307 1444 29. 6442 1444 29. 0845 1444 28. 7276 1445 2700

1550 31. 1751 29. 7886 29. 2289 28. 8721 2790 1404 1404 1404 1404 1600 31. 3155 29. 9290 29. 3693 29. 0125 2880 1364 1365 .1365 1364 1650 31. 4519 30. 0655 29. 5058 29, 1489 2970 1329 1329 1329 1330 1700 31. 5848 30. 1984 29. 6387 29. 2819 3060 1294 1295 1294 1294 1750 31. 7142 30. 3279 29. 7681 29. 41 13 3150 1262 1261 1262 1262

1800 31. 8404 30. 4540 29. 8943 29. 5375 3240 1232 1232 1233 1850 31. 9636 30. 5772 30. 0175 29. 6608 3330 1202 1202 1202 1202 1900 32. 0838 30. 6974 30. 1377 29. 7810 3420 1175 1175 1176 1 175 1950 32. 2013 30. 8149 30. 2553 29. 8985 3510 1148 1148 1148 1148 2000 32. 3161 30. 9297 30. 3701 30. 0133 3600 1124 1124 1124 1124

2050 32. 4285 31. 0421 30. 4825 30, 1257 3690 1100 1100 1100 1101 2100 32. 5385 31. 1521 30. 5925 30. 2358 3780 1077 1077 1077 1077 2150 32. 6462 31. 2598 30. 7002 30, 3435 3870 1056 1057 1055 1056 2200 32. 7518 31. 3655 30. 8058 30. 4491 3960 1035 1035 1035 1035 2250 32. 8553 31. 4690 30. 9093 30. 5526 4050 1015 1015 1015 1015 2300 32.9568 31.5705 31.0108 30.6541 4140

-18 Table 9* 22/2 Entropy of Molecular Oxygen S/R Pressure *T~atnT 4 atm 7 atm 10 atm T T

°K °R

2300 32. 9568 31. 5705 31. 0108 30. 6541 4140 997 997 997 997 2350 33. 0565 31. 6702 31. 1105 30. 7538 4230 978 978 978 978 2400 33. 1543 31. 7680 31. 2083 30. 8516 4320 961 961 962 961 2450 33. 2504 31. 8641 31. 3045 30. 9477 4410 945 945 945 945 2500 33. 3449 31. 9586 31. 3990 31. 0422 4500 928 928 928 929

2550 33. 4377 32. 0514 31. 4918 31. 1351 4590 912 912 912 912 2600 33. 5289 32. 1426 31. 5830 31. 2263 4680 898 898 898 898 2650 33. 6187 32. 2324 31. 6728 31. 3161 4770 884 884 884 884 2700 33. 7071 32. 3208 31. 7612 31. 4045 4860 869 869 869 869 2750 33. 7940 32. 4077 31. 8481 31. 4914 4950 856 856 856 856

2800 33. 8796 32. 4933 31. 9337 31. 5770 5040 844 844 844 844 2850 33. 9640 32. 5777 32. 0181 31. 6614 5130 830 830 830 830 2900 34. 0470 32. 6607 32. 1011 31. 7444 5220 819 819 819 819 2950 34. 1289 32. 7426 32. 1830 31. 8263 5310 807 807 807 807 3000 34. 2096 32. 8233 32. 2637 31. 9070 5400 T able 9. 22/2 Entropy of Molecular Oxygen S/R

______H~6~atm 40 atm 70 atm 100 atm~^ T T °K °R

140 19. 525 279 252

150 19 . 8036 2514 270 160 20. 0550 901 n 18.10 37 288 170 20 . 2860 2148 18. 474 oq4 17 . 2 5: 306 180 20. 5008 2010 1.8. 778 261 17. 74 38 16. 7 6 324 190 20. 7018 iggo 19. 0389 2320 18. 121 310 17. 30 44 342

200 20. 8908 19. 2709 18. 17. 74 360 1788 2113 431 263 34 210 21. 0696 1695 19. 4822 1949 18. 694 232 18. 084 282 378 220 21. 19. 6771 18. 926 18, 366 396 2391 1614 1820 209 245 230 21. 4005 19. 8591 19. 135 18. 611 414 1540 1707 192 i o non 217 240 21. 5545 20. 0298 19. 327 18. 828 432 1473 1616 178 196

250 21. 7018 20. 1914 19. 505 19. 024 450 1415 1531 167 182 260 21. 8433 20. 3445 19. 672 19. 206 468 1359 1461 157 169 270 21. 9792 20. 4906 19. 829 19. 375 486 1306 1396 149 158 280 22. 1098 20. 6302 19. 978 19. 533 504 1263 1339 142 150 290 22. 2361 20. 7641 20 . 120 19. 683 522 1218 1287 136 142

300 22. 3579 20. 8928 20. 2555 1 9 „ 825 540 1 . ?q 1239 1300 136 310 22. 4758 21. 0167 20. 3855 19. 961 558 1195 1248 130 320 22. 5900 21. 1362 20. 5103 20. 091 576 \ 1156 1204 .125 330 22. 7008 21. 2518 20. 6307 20. 2.16 594 1119 1161 119 340 22.8084 21. 3637 20. 7468 20. 335 612 1087 1126 117

350 22. 20. 8594 20. 4516 630 9132 1019 21. 4724 1053 1087 1120 360 23. 0151 21. 5777 20. 9681 20 5636 648 992 1025 1055 1085 370 23. 1143 21. 6802 21. 0736 20, 6721 666 969 997 1027 1052 380 23. 2112 21. 7799 21. 20, 7773 684 944 972 1763 997 1021 390 23. 3056 21. 8771 21. 2760 20. 8794 702 924 948 973 995

400 23. 3980 21. 9719 21. 20. 9789 720 904 926 3733 947 967 410 23. 4884 22. 0645 21. 4680 21. 0756 738 882 904 924 943 420 23. 5766 22. 1549 21. 5604 21. 1699 756 866 883 903 920 430 23. 6632 22. 2432 21. 6507 21. 2619 774 847 864 880 898 440 23. 7479 22. 3296 21. 7 387 21, 3517 792 831 849 864 878

450 23. 8310 22. 4145 21. 8251 21. 4395 810

- 20 - g

Table 9. 22/2 Entropy of Molecular Oxygen S/R Pressure 1 10 atm 40 atm 70 atm 100 atm T T °K °R

450 23. 8310 815 22. 4145 830 21. 8251 846 21. 4395 860 810 460 23. 9125 800 22. 4975 81 o 21. 9097 827 21. 5255 840 828 470 23. 9925 784 22. 5788 797 21. 9924 811 21. 6095 823 846 480 24. 22. 22. 21. 6918 864 0709 772 6585 7 8 c 0735 794 807 490 24. 22. 21. 7725 1481 75g 22.7370 7 0Q 1529 782 792 882

500 24. 22. 22. 21. 900 2239 746 8139 756 2311 707 8517 7 77 510 24. 22. 918 2985 733 8895 744 22.3078 700 21.9294 7 0 3 520 24. 22. 22. 3718 721 9639 73Q 3831 74Q 22. 0057 74 g 936 530 24. 22. 457 22. 4439 7l0 23.0369 719 1 790 0805 7 70 954 540 24. 23. 1 22. 972 5149 69g 088 7 q 8 22.5299 715 1541 724

550 24. . a 5848 689 23. 1796 696 22 60 14 7 q 22. 2265 719 990

560 24. 6537 2 = 22. 678 3 249 2 0 g 22.6718 693 2977 goo 1008 570 24. 7215 668 23. 3178 070 22. 7411 683 22. 3676 c oq 1026 580 24. 7883 660 23. 3854 00= 22. 8094 072 22.4365 679 1044 590 24. 8543 22. 1062 650 23.4519 g 57 22.8766 663 5044 66 g

600 24. 9193 23. 5176 22. 9429 22. 5712 1080 641 647 652 ,659 610 24. 9834 23. 5823 23. 0081 22. 6371 1098 632 637 643 648 620 25. 0466 23. 6460 23. 0724 22. 7019 1116 623 630 635 639 630 25. 1089 23. 7090 23. 1359 22. 7658 1134 616 620 626 631 640 25. 1705 23. 7710 23. 1985 22. 8289 1152 609 614 618 623 650 25. g314 23. 8324 23. 2603 22. 8912 1170 599 604 608 613 660 25. 2913 23. 8928 23. 3211 22, 9525 1188 593 597 601 605 670 25. 3506 23. 9525 23. 3812 23. 0130 1206 585 589 594 597 680 25. 4091 24. 0114 23. 4406 23. 0727 1224 578 583 587 591 690 26. 4669 24. 0697 23. 4993 23. 1318 1242 572 575 578 582

700 25, 5241 24. 1272 23. 5571 23. 1900 1260 565 568 573 576 710 25. 5806 24. 1840 23. 6144 23. 2476 1278 558 561 564 568 720 25. 6364 24. 2401 23, 6708 23. 3044 1296 551 555 557 561 730 25. 6915 24, 2956 23, 7265 23. 3605 1314 546 549 553 555 740 25. 7461 24. 3505 23. 7818 23. 4160 1332 539 542 545 548

750 r 25. 8000 33 24.4047 c o0 23. 8363 539 23. 4708 542 1350 760 25. 1368 8533 028 24.4583 lit 23. 8902 532 23. 5250 536 770 25. 9061 ™ 24. 5114 col 23. 9434 528 23. 5786 530 1386 780 25. 1404 9583 cff 24. 5638 0 19 23. 9962 520 23. 6316 523 790 26. 1422 0099 5n 24,6157 513 24. 0482 517 23. 6839 518

800 26.0610 24. 6670 24.0999 23,7357 1440

- 21 Table 9. 22/2 Entropy of Molecular Oxygen S/R P ressur e ______10 atm 40 atm 7 0 atm 100 atm 1 T T °K °R

800 26. 0610 24. 6670 24. 0999 23. 7357 1440 2475 2487 2496 2507 850 26. 3085 24. 9157 24. 3495 23. 9864 1530 2355 2364 2374 2382 900 26. 5440 25. 1521 24. 5869 24 2246 1620 2246 2252 2258 2267 950 26. 7686 25. 3773 24. 8127 24. 4513 1710 2147 2153 2160 2165 1000 26. 9833 25. 5926 25. 0287 24. 6678 1800 2055 2060 2065 2070 1050 27. 1888 25. 7986 25. 2352 24. 8748 1890 1971 1977 1982 1985 1100 27. 3859 25. 9963 25. 4334 25. 0733 1980 1895 1898 1902 1907 1150 27. 5754 26. 1861 25. 6236 25. 2640 2070 1822 1824 1828 1831 1200 27. 7576 26. 3685 25. 8064 25. 4471 2160 1757 1761 1763 1766 1250 27. 26. 5446 25. 9827 25. 6237 2250 9333 1696 1698 1700 1702

1300 28. ] 26. 7144 26. 1527 25. 7939 2340 029 163g 1641 1644 1646 i350 28. 26. 8785 26. 3171 25. 9585 2430 2667 15g5 1587 1589 1591 1400 28. 27. 0372 26. 4760 26. 1176 2520 4252 1536 1538 1539 1540 1450 28. 27. 1910 26. 6299 26. 2716 2610 5788 1488 1489 1491 1493 1500 28. 7276 1445 27. 3399 1446 26. 7790 1447 26. 4209 1450 2700

1550 28. 8721 27. 4845 26. 9237 26. 5659 2790 1404 1405 1407 1408 1600 29. 0125 27. 6250 27. 0644 26. 7067 2880 1364 1366 1367 1367 1650 29. 1489 27. 7616 27. 2011 26. 8434 2970 1330 1330 1331 1332 1700 29. 2819 27. 8946 27. 3342 26. 9766 3060 1294 1295 1296 1297 1750 29. 28. 27. 27. 3150 4113 1262 0241 1264 4638 1264 1063 1265

1800 29. 537 28. 1505 27. 5902 27.2328 3240 5 90066 1233 1234 1850 29 , 6608 28, 2738 27. 7136 27.3563 :"^ 3330 \l " 1203 1203 1900 29. 7810 28. 3941 27. 8339 27. 4767 3420 1 17b 1175 1176 1 1950 29. 8985 28. 5116 27. 9515 27. 5944 3510 1149 1149 2000 30. 0133 28. 6265 28. 0664 27.7094 3600 1125 1125

2050 30. 28. 28, 3690 1257 7390 1789 27.8219 -i U01 1100 11Q1 4 o i 2100 30. 28, 8490 28. 3780 2358 1Q77 1078 2890 107Q 27.9320 1079 2150 30. 3435 28. 9568 28. 3969 28, 0399 3870 i q 38 1057 1056 7 2200 30. 29. 0625 28. 3960 4491 1Q35 1035 5025 1Q36 28.1456^ 2250 30. 5526 iq15 29. 1660 1015 28 . 6061 1016 28 . 2492 1016 4050

2300 30.6541 29.2675 28. 7077 28. 3508 4140

- 22 - Table . 22/2 Entropy of Molecular Oxygen S/R P ressure ™~ __ Ho atm ¥0 atm 7 0 atm 100 atm^ T T

°K- °R

2300 30. 6541 29. 2675 28. 7077 28. 3508 4140 997 998 997 998 2350 30. 7538 29. 3673 28. 8074 28. 4506 4230 978 978 979 979 2400 30. 8516 29. 4651 28. 9053 28. 5485 4320 961 962 962 962 2450 30. 9477 29. 5613 29. 0015 28. 6447 4410 945 945 945 946 2500 31. 0422 29. 6558 29. 0960 28. 7393 4500 929 928 929 929

2550 31. 1351 29. 7486 29. 1889 28. 8322 4590 912 913 913 913 2600 31. 2263 29. 8399 29. 2802 28. 9235 4680 898 898 898 898 2650 31. 3161 29. 9297 29. 3700 29. 0133 4770 884 884 885 885 2700 31. 4045 30. 0181 29. 4585 29. 1018 4860 869 869 869 869 2750 31. 4914 30. 1050 29. 5454 29. 1887 4950 856 857 856 857

2800 31. 5770 30. 1907 29. 6310 29. 2744 5040 844 844 844 844 2850 31. 6614 30. 2751 29. 7154 29. 3588 5130 830 830 831 831 2900 31. 7444 30. 3581 29. 7985 29. 4419 5220 819 819 820 820 2950 31. 8263 30. 4400 29. 8805 29. 5239 5310 807 807 807 808 3000 31. 9070 30. 5207 29. 9612 29. 6047 5400

- 23 - Table 9. 22 Enthalpy and Entropy of Oxygen

The Property Tabulated

The enthalpy and entropy of oxygen are tabulated in the dimen- sionless forms (H-Eq)/RTq and S/R as functions of temperature in °K and °R and of pressure in atmospheres. Tq is the temperature of the ice point, 273. 16 °K, and E§ is the enthalpy of the ideal gas at 0 °K.

The values tabulated were obtained by combining values for the ideal gas from Table 9. 10 of this series with differences between the real and the ideal gas based on thermodynamic formulas and the virial coefficients used for Table 9. 20 of this series.

The effect of dissociation is not included in this table, but its magnitude may be estimated using formulas given in reference 1. Graphs are included with this table showing the general magnitude of the effect of dissociation. If other constituents containing oxygen are present, the effects are more complicated.

Reliability of the Tables

The accuracy of the tabulated values varies with temperature and pressure. Disregarding the neglected effect of dissociation at the ele- vated temperatures, the error in the difference between real and ideal properties is thought to be somewhat less than 5% in the range of moder- ate pressure, but may be as great as 10% at the highest pressure.

Interpolation

Linear interpolation between successive tabulated temperatures at the same pressure is in general adequate for both entropy and enthalpy. Linear interpolation in the pressure direction is similarly valid in the enthalpy table. Linear interpolation is also in general adequate in the entropy table, provided the independent variable is the logarithm of the pressure rather than the pressure itself. The entries have, however, been spaced to permit Lagrangian interpolation directly in pressure.

- 24 - Conversion Factors

The functions in this table have been expressed in dimensionless form. In order that they may be easily converted to any system of units, conversion factors are listed for the frequently used units.

Conversion Factors

To convert To Enthalpy with tabulated the Dimensions Multiply value of Indicated Below by

- 1 (H-Eg)/RT 0 cal mole 542. 821 -1 cal g 19. 3754

joules g" 1 SI. 0669 -1 Btu (lb mole) 97 6o 437

~ Btu lb 1 34. 8528

To convert tabu- To the Dimensions Multiply lated value of Indicated Below by

-1 1 -1 S/R cal mole °K~ (or °C ) 1. 98719 -1 -1 -1 cal g °K (or °C ) 0. 0620996

1 -1 joules g °K (or °C 0. 259825

-1 -1 1 Btu (lb mole) °R (or °F“ ) 1. 98588

1 -1 -1 Btu lb" °R (or °F ) 0. 0620587

REFERENCE

[l] Ho Wo Woolley, The Effect of Dissociation on the Thermodynamic Properties of Pure Diatomic Gases, Report No. 1884, National Bureau of Standards, October 15, 1952.

- 25 -

ENTHALPY OF OXYGEN

1000 2000 3000 4000 5000 TEMPERATURE DEGREES KELVIN

U. S. Department of Commerce National Bureau of Standards

The NBS - NACA Tables of Thermal Properties of Gases

Table 9. 24 Specific Heat of Molecular Oxygen

Cp/R

by

Harold W. Woolley

June 1953

Table 9. 24 Specific Heat of Molecular Oxygen p/ R Pressure rtTlil irrr~t - nr--.

l 1 . 01 atm . 1 atm . 4 atm . 7 atm 1 atm T T

°K °R

100 3. 5024 -3 3. 5117 -27 3. 5459 _ 126 180 110 3. 5021 -2 3. 5090 -17 3. 5333 -74 3. 5597 _ 145 198 120 3. 5019 -2' 3. 5073 -13 3. 5259 -52 3. 5452 -94 3. 566 „ 15 216 130 3. 5017 -0 3. 5060 -8 3. 5207 -34 3. 5358 -63 3. 5513 94 234 140 3. 5017 -1 3. 5052 -6 3. 5173 -28 3. 5295 -50 3. 5419 252

150 3. 5016 +2 3. 5046 -3 3. 5145 -19 3. 5245 -34 3. 5347 270 160 3. 5018 3. 5043 3. 5126 3. 5211 3. 5295 288 1 -2 -14 -27 170 3, 5019 3. 5041 3. 5112 3. 5184 3. 5256 306 3 -1 -10 -20 3. 3. 3. 3. 3. 324 180 5022 5 5040 +3 5102 -6 5164 -13 5226 190 3. 5027 7 3. 5043 5 3. 5096 -1 3. 5151 -8 3. 5205 342

200 3. 5034 3. 5048 3. 5095 3. 5143 3. 5190 360 9 8 4*3 -4 210 3. 5043 3. 5056 3. 5098 3. 5139 3. 5182 378 14 12 8 44 -1 220 3. 5057 3. 5068 3- 5106 3. 5143 3. 5181 396 1 7 1 6 1 1 8 +4 230 3, 5074 3. 5084 3. 5117 3. 5151 3. 5185 414 ?? 2 1 11 240 3. 5096 3. 5105 3. 5196 432 27 26 18

250 3. 5123 3. 5131 3. 5214 450 no 32 24 260 3. 5156 3. 5163 3. 5238 468 38 38 31 270 3. 5194 3. 5201 3. 5269 486 45 44 38 3. 3. 3. 504 280 5239 50 5245 49 5307 45 290 ^3. 5289 3. 3. 522 56 5294 56 5352 51

300 3. 5345 3. 5350 3. 5403 540 63 63 59 310 3. 5408 69 3. 5413 68 3. 5462 65 558 320 3. 5477 75 3. 5481 75 3. 5527 72 576 330 3. 5552 79 3. 5556 79 3. 5599 76 594 340 3. 5631 86 3. 5635 86 3. 5675 84 612

3. 5759 630 350 3/5717 90 3. 5721 90 87 648 360 3. 5807 95 3. 5811 95 % 5846 93 5939 666 370 3. 5902 100 3 5906 99 3 97 3. 3. 3. 6036 684 380 6002 i n o 6005 iuo 1l \J02kJ 3. 6137 702 390 3. 6105 107 3 6108 107

3- 720 400 3- 6212 110 3. 6215 no 6243 410 3. 6322 113 3. 6325 113 3. 6351 738 3. 756 • 3. 6462 420 3 6435 i i is 6438 115 3. 6576 774 430 3. 6550 118 3. 6553 117 3. 6668 3. «. 3. 6693 792 440 119 6670 119 450 3. 6787 3. 6789 3. 6811 810

- 1 - 9. C /R Table 24 Specific Heat of Molecular Oxygen p Pressure

I. I 01 atm . 1 atm 1 atm 10 atm T T °R

810 450 3. 6787 120 3. 6789 120 3. 6811 118 3. 7022 108 828 460 3. 6907 122 3. 6909 122 3. 6929 121 3. 7130 112 846 470 3. 7029 122 3. 7031 122 3. 7050 121 3. 7242 112 864 480 3. 7151 123 3. 7153 123 3. 7171 122 3. 7354 114 882 490 3. 7274 122 2. 7276 122 3. 7293 122 3. 7468 114

500 3. 7396 3. 7398 3. 7415 3. 7582 900 124 124 123 115 918 510 3. 7520 123 3. 7522 123 3. 7538 122 3. 7697 115 520 3. 7643 122 3. 7645 122 3. 7660 121 3. 7812 115 936 530 3. 7765 122 3. 7767 122 3. 7781 122 3. 7927 116 954 540 3. 7887 121 3. 7889 121 3. 7903 120 3. 8043 114 972

550 3. 8008 121 3. 8010 120 3. 8023 120 3. 8157 115 990 3. 3. 1008 560 8129 119 3. 8130 119 3. 8143 119 8272 114 570 3. 8248 118 3. 8249 118 3. 8262 117 3. 8386 113 1026 580 3. 8366 3. 8367 3. 8379 3. 8499 1044 117 117 117 112 590 3. 8483 3. 8484 3. 8496 3. 8611 1062 116 116 115 111

600 3. 8599 114 3. 8600 114 3. 8611 114 3. 8722 109 1080 610 3. 3. 8714 3. 8725 3. 1098 8713 113 113 112 8831 109 620 3. 8826 3. 8827 3. 8837 3. 8940 1116 111 111 111 107 630 3. 8937 3. 8938 3. 8948 3. 9047 1134 1 10 110 110 106 640 3. 9047 3. 9048 3 9058 3. 9153 1152 108 108 107 104

650 3. 9155 107 3. 9156 107 3. 9165 107 3. 9257 104 1170 660 3. 9262 105 3. 9263 105 3. 9272 105 3. 9361 102 1188 670 3. 9367 103 3. 9368 103 3. 9377 102 3. 9463 100 1206 680 3. 9470 101 3. 9471 101 3. 9479 101 3. 9563 98 1224 690 3. 9571 101 3. 9572 101 3. 9580 101 3. 9661 98 1242

700 3. 9672 98 3. 9673 98 3. 9681 97 3 9759 95 1260 710 3. 9770 96 3. 9771 95 3. 9778 96 3. 9854 94 1278 720 3. 9866 95 3. 9866 96 3. 9874 95 3. 9948 92 1296 730 3. 3. 3. 9961 93 9962 93 9969 93 4. 0040 91 1314 740 4. 4. 4. 0054 91 0055 91 0062 90 4. 0131 88 1332

750 4. 0145 4. 0146 4. 4. 90 90 0152 90 0219 88 1350 760 4. 0235 88 4. 0236 87 4. 0242 88 4. 0307 86 1368 770 4. 4. 0323 86 0323 87 4. 0330 86 4. 0393 84 1386 780 4. 0409 4. 85 0410 85 4 0416 85 4. 0477 83 1404 790 4. 0494 4. 0495 4. 0501 4. 83 83 82 0560 81 1422

800 4. 0577 4. 0578 4. 0583 4. 0641 1440

- 2 - 1 01

Table 9. 24 Specific Heat of Molecular Oxyge n Cp/R Pressure

1 . 01 atm . 1 atm 1 atm 10 atm l T T °k: °R

800 4. 4- 4. 0583 4 0641 1440 0577 393 0578 393 392 385 850 40970 4. 097 4. 0975 41026 1530 357 1 336 357 350 900 4. 4. 1332 4. 1620 4, 1327 325 1327 325 324 1376 HI 950 4. 1652 4. 1652 4. 1656 4. 1696 1710 ggs 29 6 296 29 1 1000 4. 1948 27 4. 1948 27 4. 1952 270 4. 1987 267 1800

1050 4. 4. 4. 2222 4. 1890 2219 250 2219 250 250 2254 246 1100 4. 2472 4. 1980 4.2469 229 4.2469 ^ 229 2500 226 1150 4. 2698 4. 2698 4. 2701 4.2726 2070 ?14 ^ i 4 214 211 1200 4 J* 4. 4. 2915 4. 2160 2912 200 2912 goo 199 2937 19g 1250 4. 4. 3114 4. 2250 4.3112 188 3112 18g 188 3135 186

1300 4. 4. 4. 2340 3300 1?9 3300 279 3302 179 4.3321 277 1350 4. 4. 3481 4. 2430 3479 172 4.3479 172 172 3498 1?1 1400 4. 4. 4. 2520 4.3651 164 3651 164 3653 164 3669 162 1450 4. 3815 4. 3815 4. 3817 4.3831 2610 16 q 2 o 159 159 1500 4. 3976 2700 4.3975 \ll 4-3975 HI 155 4. 3990 \ll

1550 4. 4. 4131 4 - 4144 2790 4.4130 152 4130 152 152 151 1600 4. 4. 4283 4. 2880 4282 149 4.4282 149 149 4295 14g 1650 4. 4. 2970 4.4431 14? 4.4431 247 4432 147 4443 146 1700 4. 4579 3060 4.4578 146 4.4578 146 146 4.4589 H5 1750 4. 4. 4725 3150 4724 144 4.4724 144 144 4.4734 144

1800 4. 4. 4869 4. 3240 4868 143 4.4868 143 143 4878 142 1850 4. 50U. 4. 5011 4. 5012 4. 5020 3330 ^ 4 2 14 2 142 ^ 1900 4. 5153 4. 5153 4. 5154 4. 5161 3420 ^ 4 2 14 2 142 14 2 1950 4.5295 4. 5295 4. 5296 4. 5303 3510 141 141 141 ^ 4 a 2000 4. 4. 5437 3600 4.5436 14Q 5436 14Q 140 4.5443 14Q

2050 4. 4. 4. 5577 4. 3690 5576 139 5576 139 139 5583 13g 2100 4. 4. 4. 5716 4. 3780 5715 139 5715 139 139 5721 139 2150 4. 4. 4. 5855 4. 3870 5854 139 5854 139 138 5860 139 2200 4. 5993 4. 5993 4. 5993 4. 5999 3960 1 q7 t 27 137 136 4 4. 4. 4050 2250 6130 237 4.6130 i 37 6130 138 6135 x 37

2300 4. 6267 4. 6267 4. 6268 4. 6272 4140

- 3 - Table 9. 24 Specific Heat of Molecular Oxygen Cp/R Pressure

I. * U 1 atm . 1 atm 1 atm 10 atm T T ° K °R

2300 4. 6267 4. 6267 . 4. 4. 137 6268 136 6272 137 4140

2350 4. 6404 4.6404 4 ' 6404 4230 136 136 4.6409235

2400 4. 6540 4 . 6540 46540 4. 134 134 6544 234 4320 2450 4. 6674 46674 4 6674 134 134 134 4.6678234 4410

2500 4. 6808 4 . 6808 4. 6808 , 00 4. 6812 4500 132 2 32 232

2550 4. 6940 4. 6940 4. 6940 4. 6944 4590 131 131 131 130 2600 4. 7071 4. 7071 4. 7071 4. 7074 4680 129 129 129 129 2650 4. 7200 4. 7200 4. 7200 4. 7203 4770 128 128 128 128 2700 4. 7328 4. 7328 4. 7328 4. 7331 4860 126 126 126 126 2750 4. 7454 4. 7454 4. 7454 4. 7457 4950 125 125 125 125

2800 4. 7579 4. 7579 4. 124 4.7579 124 124 7582 124 5040

2850 4. 7703 4.7703 4. 7703 4 . 7706 121 221 121 2Q 5130 2900 4. 7824 4 . 7824 4. 7824 4. 7826 5220 120 12Q 120 ^ 2Q

2950 4. 7944 4 ' 7944 4. 7944 4.7946 118 118 118 n8 5310 3000 4. 8062 4. 8062 4. 8062 4. 8064 5400 4 _ '

Table 9. 24 Specific Heat of Molecular Oxygen C /R r Pressure

* I 1 atm 4 7 10 . atm atm atm T T °K °R

120 3. 566 -is 216 130 3. 5513 .g 234 140 3.5419 -72 3 - 684 -38 252

150 3. 5347 _ 3. 646 1 3.781 3. 951 270 52 _2 5 5 _50 _ j 04

160 3 . 5295 oq 3- 62u6_ 3. 288 2gg 7252_88 g 3.847 fi7 170 3. ' 3. 3. 306 5256 o 6018 14*2 6863 284 3.780 _ 46 180 3. 3. 3. 6 57 3. 324 5226 _ 21 5875;109 9 2 16 7343.342

190 3. 5205 3. 5766 3 . 6 36 3. 7001 342 _i5 _ 85 3 _i 67 _2 62

200 3. 5190 3. 5681 _Q8 3. 6196 _i32 3. 6739 -205 360 210 3.6182 _i 3. 5613 -48 ® 3. 6064 -102 3. 6534 -160 378 220 3. 5181 + 4 3. 5565 _ gg 3- 5962 _ 8 o 3. 6374 _i28 396 230 3.5185 ii 3. 5526 _22 3. 5882 -61 3. 6246 -100 414 240 3. 5196 lg 3. 5504 _ 16 3-5821 _43 3. 6146 _ 75 432

250 3.5214 , 3. 5488 3. 5778 3.6071 450 9 + “q 97 260 3. 5238 ZZ 3. 5491 3. 5751 "f 3. 6016 468 270 3. 5269 “J 3.5501 3. 5736 3. 5977 486 280 3. 5307 3. 3.5735 3. 504 5520 2797 5955 -°a 290 3. 5352 .3.5547 3.5745 3.5947 522 ^ 2i + *

3 . 3. 3. 59.51 540 300 5403 rq 3.5584 , 5766 7 310 3. 3. 5797 i 558 3 5462 5629 Vi 3.5968 9J 320 3. 5527 79 3.5681 X 7 3. 5838 3. 5996 ^ 576 330 3. 5599 3. 5742 3 5887 t 3. 6035 iZ • 594 ' 6 ^ 340 3.5675 3.5810 ^ 3.5945 H 3.6082 612

3. 57 3. 3. 630 350 59 g 7 5884 8 q 6010 72 3.6138 63

360 3 . 3. 648 5846 g g 5964 gg 3.6082 73 3.6201 7Q 370 3 . 5939 g7 3.6049 92 3.6160 34 3.6271 73 666 380 3 . 6036 ini 3.6140 95 3.6244 39 3. 6349 33 684

3. . 3. 3. 702 390 3.6137 106 6235 200 6333 94 . 6432 33

400 3. 3. 6335 36427 3.6520 720 6243 10R 99 410 3. 6351 {ii 3. 6438 207 3. 6526 iq2 3.6614 738 420 3.6462 114 3. 6545 209 3. 6628 io4 3. 6710 ioi 756 430 3.6576 3. 3.67 ng 3.6811 774 217 6654 213 32 i io5 440 3. 3. 3. 792 6693 218 6767 214 3.6841 \i 0 6916 io6

450 3. 6811 3. 6881 3. 6951 3. 7022 810

5 3

Table 9. 24 Specific Heat of Molecular Oxygen Cp/R

. Pressure

* 1 10 atm 40 atm 70 atm 100 atm T T o K °R

150 3 - 951 -104 270 160 3. 288 847 .•67 3. 5.7 306 170 780 .•46 3. 5. 324 180 7343 -342 03 _ 38 190 3. 7001 -262 4 - 65 -23 6 . 5 -8 342

200 3. 6739 4 - 415 5. 66 7. 6 360 -205 -162 -50 ’ 11

210 3. 6534 4 - 2 5 5. 16 6 . 48 378 -160 - 11 6 -33 -72

- 4. 5. 76 396 220 3. 6374 -128 4 137 -88 831 -237 -49 3. 4, 4. 5. 27 414 230 6246 -100 049 _ 6? 594 -168 -32

. 4. 426 4. 95 432 240 3 6146 -75 3.982 _ 52 -125 -24

250 3. 6071 3. 9296 4. 301 4. 710 450 - 55 -422 -97 -173 260 3. 6016 3.8874 4. 204 4. 537 468 QQ 7 i Qn - o y ““ j D -I oU 270 3. 5977 3-8535 4. 129 4. 407 486 - * "DUfin -1UUi nn 280 3. 5955 3. 8263 4. 069 4. 307 504 -8 -49 -78 290 3. 5947 3. 4. 020 4.. 229 522 + 4 80411^ -39 -64

300 3. 5951 3. 3. 981 4. 165 540 17 7862_ -32 -52 141 . 310 3. 5968 3. 3. 949 4. 113 558 28 7721_ni -26 -41 320 3. 5996 923 4 072 576 39 3.7610 _ 84 3 -22 -34 330 3. 3. 3. 901 4. 038 594 6035 47 7526 ”_ 6Q -17 -29 340 3. 6082 7466 3. 884 4. 009 612 56 3 41 -15 -23

350 3. 3. 7 3. 869 3. 986 630 6138 63 425 22 -11 -19

360 3. 6201 3.74 3 . 85 8 3. 967 648 70 03 _ 7 -8 -15 370 3. 6271 3. 3. 850 3. 952 666 78 7396 + g -6 -13 380 3. 6349 3 3. 844 3. 939 684 83 7404 lg -5 -10 390 3. 6432 3. 839 3. 929 702 88 3.7422 31 -3 -8

400 3. 6520 3. 3. 921 720 94 3.7453 40 836 -1 -5 410 3. 6614 3. 835 3. 916 738 96 3.7493 4? 0 -5 420 3. 6710 3.7540 3. 835 3. 911 756 101 5 6 + 2 -2 430 3. 6811 3. 837 3. 909 774 105 3,7596 64 2 -1 440 3. 6916 3 7660 3. 839 3. 908 792 106 gg 3 0

450 3. 7022 3. 7729 3. 842 3. 908 810

- 6 - Table . 24 Specific Heat of Molecular Oxygen Cp/R Pressure

1 10 atm 40 atm 7 0 atm 100 atm ' rP T I °K °R

450 3 7022 108 3. 7729 73 3. 8420 38 3. 908 0 810 460 3. 7130 112 3. 7802 79 3. 8458 47 3. 908 2 828 470 3. 7242 112 3. 7881 81 3. 8505 53 3. 910 3 846 480 3. 7354 114 3. 7962 86 3. 8558 57 3. 913 3 864 490 3. 7468 114 3. 8048 86 3. 8615 62 3. 916 4 882

500 3. 7582 115 3. 8134 91 3. 8677 67 3. 920 4 900 510 3. 7697 115 3. 8225 93 3. 8744 70 3. 924 5 918 520 3. 7812 115 3. 8318 93 3. 8814 72 3. 929 5 936 530 3. 7927 116 3. 8411 96 3. 8886 76 3. 934 6 954 540 3. 8043 114 3. 8507 95 3. 8962 76 3. 940 6 972

550 3. 8157 3. 8602 3. 9038 3. 946 990 1 1 5 97 80 6 560 3. 8272 3. 8699 3. 9118 3. 952 1008 114 97 80 8 570 3. 8386 3. 8796 3. 9198 3. 960 1026 113 96 82 7 580 3. 8499 3. 8892 3. 9280 3. 967 1044 1 1 2 97 82 6 590 3. 8611 3. 8989 3. 9362 3. 973 1062 111 98 83 7

600 3. 8722 3. 9087 3. 9445 3. 980 1080 109 96 83 6 610 3. 8831 3. 9183 3. 9528 3. 986 1098 109 95 83 8 620 3. 8940 3. 9278 3. 9611 3. 994 1116 107 96 83 7 630 3. 9047 3 9374 3. 9694 4. 001 1134 106 94 84 8 640 3. 9153 3. 9468 3. 9778 4. 009 1152 i 104 94 83 7

650 3. 9257 104 3. 9562 93 3. 9861 83 4. 016 8 1170 660 3. 9361 102 3. 9655 92 3. 9944 82 4. 024 7 1188 670 3. 9463 100 3. 9747 90 4. 0026 81 4. 031 7 1206 680 3. 9563 98 3. 9837 89 4. 0107 80 4. 038 7 1224 690 3. 9661 98 3. 9926 90 4. 0187 79 4. 045 7 1242

700 3. 9759 4. 0016 4. 0266 4. 052 1260 95 87 78 7 710 3. 9854 4. 0103 4. 0344 4. 059 1278 94 85 78 7 720 3. 9948 4. 0188 4. 0422 4. 066 1296 92 85 78 7 730 4. 0040 4. 0273 4. 0500 4. 073 1314 91 84 76 7 740 4. 0131 4. 0357 4. 0576 4. 080 1332 88 82 75 6

750 4. 0219 4. 0439 4. 0651 4. 086 1350 88 81 75 8 760 4. 0307 4. 0520 4. 0726 4. 094 1368 86 80 74 7 770 4. 0393 4. 0600 4. 4. 101 1386 84 77 0800 72 6 780 4. 0477 4. 0677 4. 0872 4. 107 1404 83 78 7 J 7 790 4. 0560 81 4. 0755 75 4. 0943 74 4. 114 6 1422

800 4. 0641 4. 0830 . 4. 1017 4. 120 1440

- 7 - Table . 24 Specific Heat of Molecular Oxygen Cp/R

Pres sur e

1 10 atm 40 atm 70 atm 100 atm* T T ° K °R

800 4. 0641 4. 0830 4. 1017 4. 120 1440 385 360 337 31 850 4. 1026 4. 1190 4. 1354 4. 151 1530 350 331 310 29 900 4. 1376 4. 1521 4. 1664 4. 180 1620 320 302 286 27 950 4. 1696 4. 1823 4. 1950 4. 207 1710 291 278 263 25 1000 4. 1987 4. 2101 4. 2213 4. 232 1800 267 254 242 23

1050 4. 2254 4. 2355 4. 2455 4. 255 1890 246 236 226 22 1100 4. 2500 4. 2591 4. 2681 4. 277 1980 226 217 208 20 1150 4. 2726 4. 2808 4. 2889 4. 297 2070 211 204 196 19 1200 4. 2937 4. 3012 4. 3085 4. 316 2160 198 190 185 1250 4 3135 4. 3202 4. 3270 4. 2250 186 180 172 334 jg

1300 4. 4. 3382 4. 3442 4. 2340 3321 17? 173 166 350 16 1350 4. 4. 3555 4. 3608 4. 2430 3498 171 166 163 366 16 1400 4. 4. 3721 4. 3771 4. 382 2520 3669 162 158 154 1450 4.3831 tjC) 4. 3879 4. 3925 4. 397 2610 ^ 155 151 | 5 1500 4. 4. 4034 4. 4076 4. 412 2700 3990 154 150 148

1550 4. 4144 4. 4184 4. 4224 4.426 2790 151 148 145 14 1600 4. 4295 4. 4332 4. 4369 4. 440 2880 148 145 142 4 1650 4. 4443 4. 4477 4. 4511 4. 454 2970 146 144 141 j14 1700 4. 4589 4. 4621 4. 4652 4.468 3060 145 143 142 4 1750 4. 4734 4. 4764 4. 4794 4. 482 3150 144 141 139 j

1800 4. 4878 4. 4905 4. 4933 4.496 3240 142 142 138 4 1850 4. 5020 4. 5047 4. 5071 4. 510 3330 141 138 138 j 1900 4. 5161 4. 5185 4 5209 4. 523 3420 142 140 138 4 1950 4. 5303 4. 5325 4. 5347 4.537 3510 140 139 138 14j 2000 4. 5443 4. 5464 4. 5485 4.551 3600 140 138 137 13 2050 4. 5583 4. 5602 4. 5622 4. 564 3690 138 137 136 4 2100 4. 5721 4. 5739 4 . 5758 4. 578 3780 139 139 138 13j 2150 4. 5860 4. 5878 4. 5896 4. 591 3870 139 138 136 14 2200 4. 5999 4. 6016 4. 6032 4. 605 3960 136 135 134 2250 4. 6135 4. 6151 4. 6166 4. 618 4050 137 136 135 jjj

2300 4. 6272 4.6287 4.6301 4. 631 4140

- 8 -

J Table 9. 24 Specific Heat of Molecular Oxygen Cp/R Pressure

I 10 atm 40 atm 7 0 atm 1 00 atm I T K °R

2300 4. 6272 137 4. 6287 136 4. 6301 135 4. 631 14 4140 2350 4. 6409 135 4. 6423 135 4. 6436 134 4. 645 13 4230 2400 4. 6544 134 4. 6558 133 4. 6570 132 4. 658 is 4320 2450 4. 6678 134 4. 6691 133 4. 6702 133 4. 671 14 4410 2500 4. 6812 132 4. 6824 131 4. 6835 130 4. 685 13 4500

2550 4. 6944 4. 6955 4. 6965 4. 698 4590 130 130 130 12 2600 4. 7074 4. 7085 4. 7095 4. 1 4680 129 128 127 I ? 13 2650 4. 7203 4, 7213 4. 7222 4. 4770 128 128 127 723 13 2700 4. 7331 4. 7341 4. 7349 4. 4860 126 125 125 736 12 2750 4. 7457 4. 7466 4. 7474 4. 4950 125 124 124 748 i3

2800 4. 7582 4. 7590 4. 7598 4. 761 5040 A.1 24faJ i ±1 94tc 1 2ft 12 2850 4. 7706 4. 7714 4. 7721 4. 773 5130 1 20 I1 620V 120 12 2900 4. 7826 4. 7834 4. 7841 4, 785 5220 120 120 119 12 2950 4. 7946 4. 7954 4. 7960 4. 797 5310 1 1 1 1 ft ± 1 oR 1 JL O ±1 J.1 7i 111 3000 4. 8064 4. 8072 4. 8077 4. 808 5400

- 9 - Table 9. 24 Specific Heat at Constant Pressure of Oxygen

The Property Tabulated

The specific heat of oxygen at constant pressure is tabulated in the dimensionless form Cp/R as a function of temperature in °K and °R, and of pressure in atmospheres. Values for .4, .7, 4 and 7 atmos- pheres have been omitted for temperatures at which the values may be obtained by linear interpolation between lower and higher pressures.

The specific heat values were obtained by combining the ideal gas specific heat values from Table 9. 10 of this series with differences between real and ideal based on thermodynamic formulas and the virial coefficients used for Table 9. 20 of this series.

The effect of dissociation is not included in this table but its magnitude may be estimated with the formulas given in reference [5].

Reliability of the Tables

The accuracy of the tabulated values varies with temperature and pressure. Disregarding the considerable deviation due to dissociation at elevated temperature and low and moderate pressure, the error in Cp - Cp is thought to be somewhat less than 5% in the range of moderate pressure but may be as great as 10% at the highest pressure. Figure 1 gives a comparison between experimental values for the specific heat [l - 4] and this table. Figure 2 shows the data of Workman [S] for the dependence of specific heat upon pressure at 26°C and 60°C, with the indications of the present correlation shown as curves for comparison.

Interpolation

The error produced by linear interpolation varies throughout the table but does not in general exceed one eighth of the second difference, so that for most of the table linear interpolation is adequate.

- 10 - Conversion Factors

The function in the table has been expressed in dimensionless form. In order that it may be easily converted to any system of units, conversion factors are listed for the frequently used units. For other conversion factors see Table 1. 30 of this series.

Conversion Factors

To convert tab - To the dimensions Multiply ulated value of indicated below by

-1 -1 1 Cp/R cal mole °K (or °C"" ) 1. 98719

-1 1 -1 0. cal g °K" (or °C ) 0620996

-1 1 joules g °K (or °C ^) 0. 259825 -1 -1 -1 Btu (lb mole) °R (or°F ) 1. 98588

1 1 0 _1 Btu lb" °R” (or F ) 0. 0620587 ]

REFERENCES

[1] A. Eucken and K. v. Lude, Die spezifische Warme der Gase bei mittleren und hohen Temperaturem I. Die spezifische Warme der Gase: Luft, Stickstoff, Sauerstoff, Kohlenoxyd, Kohlensaure, Stickoxydul, und Methan zwischen 0° und 220°C, Z. physik. Chem. B5, 413 (1929).

[2] P. S, H. Henry, The specific heat of Air, Oxygen, Nitrogen from 20° to 37 0°C, Proc. Roy. Soc. (London) A. 133, 492 (1931).

[3] W. G. Shilling and J. R. Partington, Measurements of the velocity of sound in air, nitrogen and oxygen with special reference to the

temperature coefficients of the molecular heats, Phil. Mag. , 6, 920 (1928).

[4] P. F. Wacker, R. K. Cheney and R. B. Scott, Heat capacities of gaseous oxygen, isobutane and 1 -butane from -30° to 90°, J. Research, Nat. Bureau of Standards, 38, 651 (1947). R. P. 1804.

- 11 - [5] H. W. Woolley, The effect of dissociation on the thermodynamic properties of pure diatomic gases. Report No. 1884, National Bureau of Standards, Oct. 15, 1952.

[6] E. J. Workman, The variation of the specific heats(Cp) of oxygen,

nitrogen and hydrogen with pressure, Phys. Rev. , 37, 1345 (1931).

- 12 - o o 3.24 CM

OXYGEN TABLE o o o

FROM

o HEAT o m

o SPECIFIC o o CD

O EXPERIMENTAL o M"

OF o o CM

DEPARTURE

o I.

3ynidvd3a% FIG. . FIG. 2. DEPENDENCE OF SPECIFIC HEAT UPON PRESSURE » U. S, Department of Commerce National Bureau of Standards

NBS-NACA Tables of Thermal Properties of Gases

Table 9. 26 Specific Heat Ratios of Molecular Oxygen

7

by

Harold W\ Woolley

June 1953

Table 9. 26 Specific Heat Ratios of Molecular Oxygen 7 Pressure "I

^01 atm . 1 atm 1 atm 4 atm 7 atm 10 atm T T

°K °R

100 1. 400 1. 402 180 1. 120 400 1, 401 1. 417 - 6 216 140 1. 400 1. 401 1.411 -3 1. 450 “15 252 160 1, 400 1. 401 1. 408 1. 435 1.466 1. 500 288 -2 - 9 -18 -29 180 1. 400 1. 400 1. 406 1. 426 1. 448 1. 471 324 - 6 -12 -18

200 1. 400 1. 400 1 . 404 1. 420 1. 436 1. 453 360 - 8 - 1 ^ 220 1. 399 1. 400 1= 403 1. 415 1. 428 1. 441 396 - 6 - 9 240 1. 1. 399 1. 399 402 1.412 1. 422 5 1. 432 _ 7 432 260 1. 398 1. 398 1. 400 1. 408 1. 417 1.425 468 - 5 - 5 . 1 280 1. 396 1. 396 1. 398 1.405 1.412 1. 420 504 - 4 - 6

300 1. 1. 540 395 1. 395 1. 396 1. 402 1. 408 414 - 5 1. 576 320 393 1. 393 1. 394 1. 399 1. 404 1. 409 - 4 340 1. 390 1. 390 1. 392 1. 396 1. 400 1. 405 - 5 612 360 1. 388 1. 388 1. 389 1. 392 1. 396 1. 400 648 - A* 4: 380 1. 385 1. 385 1. 386 1. 389 1. 392 1. 396 684 - 5

400 1. 382 1 a 3 8 2 1. 382 1. 385 1. 388 1. 391 720 420 1. 378 1. 378 1. 379 1. 382 1. 384 1. 387 756 440 1. 375 1. 375 1. 376 1. 378 1. 380 1. 383 792 460 1. 372 1. 372 'I. 372 1. 374 1. 376 1. 378 828

480 1 . 368 1. 368 1. 369 1. 371 1. 373 1. 374 864 A

500 1. 365 1. 365 1. 366 1. 367 1.369 1. 371 900 520 1. 362 1. 362 1. 362 1. 364 1. 365 1. 357 936 540 1. 359 1. 359 1. 359 1. 360 1. 362 1. 363 972 560 1. 356 1. 355 1. 356 1. 357 1. 358 1. 360 1008

580 1, 353 1. 353 1. 353 1 . 354 1. 355 1. 356 1044

600 1. 350 1. 350 1. 350 1. 351 1. 352 1. 353 1080

620 1. 347 1 . 347 1. 347 1. 348 1. 349 1. 350 1116

640 1 . 344 1. 344 1 . 344 1. 345 1. 346 1 . 347 1152 660 1. 342 1. 342 1. 342 1, 343 1. 344 1. 344 1188 680 1. 339 1. 339 1. 340 1. 340 1. 341 1. 342 1224

700 1. 337 1. 337 1. 337 1. 338 1. 339 1. 339 1260 720 1. 335 1. 335 1. 335 1. 336 1. 336 i*.»337 1296 740 1. 333 1. 333 1. 333 1. 334 1. 334 1. 335 1332 760 1. 331 1. 331 1. 331 1. 332 1. 332 1. 333 1338 780 1. 329 1. 329 1. 329 1. 330 1. 330 1. 331 1404 Table 9. 26 Specific Heat Ratios of Molecular Oxygen 1

Pressure

. 01 atm . 1 atm 1 atm 4 atm 7 atm 1 0 atm T T

°K °R

800 1. 327 1. 327 1. 327 1. 328 1. 328 I. 329 1440 900 1. 319 1. 319 1. 319 lo 320 1. 320 I. 320 1620 1000 1. 313 1. 313 lo 313 1. 313 lo 314 lo 314 1800 1100 1. 308 1. 308 lo 308 I. 308 lo 308 lo 309 1980 1200 lo 304 1. 304 I. 304 1. 304 lo 304 lo 304 2160

1300 1. 300 1. 300 lo 300 1. 300 lo 301 I. 301 2340 1400 1. 297 1. 297 lo 297 lo 297 lo 297 lo 297 2520 1500 1. 294 1. 294 lo 294 lo 294 lo 294 1. 295 2700 1600 1. 292 1, 292 1. 292 1. 292 I. 292 lo 292 2880 1700 1, 289 1. 289 I, 289 1. 289 1. 289 lo 289 3060

1800 1. 287 1. 287 lo 287 lo 287 lo 287 lo 287 3240 1900 1. 285 1. 285 lo 284 lo 284 lo 284 lo 285 3420 2000 1. 282 1. 282 1. 282 lo 282 1. 282 lo 282 3600 2100 1. 280 1. 280 1. 280 lo 280 lo 280 lo 280 3780 2200 1. 278 1. 278 lo 278 lo 278 lo 278 lo 278 3960

2300 1. 276 1. 276 lo 276 1. 276 lo 276 lo 276 4140 2400 1. 274 1. 274 lo 274 lo 274 lo 274 lo 274 4320 2500 1. 272 1. 272 lo 272 1. 272 lo 272 lo 272 4500 2600 1. 270 1. 270 1. 270 lo 270 lo 270 lo 270 4680

2700 1. 268 1. 268 1. 268 lo 268 lo 268 1 o 268 4860

2800 1. 266 1. 266 lo 266 I. 266 lo 266 lo 266 5040 2900 1. 264 1. 264 1. 264 lo 264 I. 264 lo 264 5220 3000 1. 263 1. 263 lo 263 I, 263 lo 263 1.263 5400

- 2 - Table 9. 26 Specific Heat Ratios of Molecular Oxygen y Pressure

1 1 io atm 40 ,atm 70 atm 100 atm T T °K °R

120 216 140 252 160 l. 500 -29 288 180 i. 471 -18 1. 84 _ 16 324

200 l. 453 -12 1. 683 -81 2. 08 -26 360 1. 1. 2. 396 220 l. 441 -9 602 .-49 818 -124 12 _ 27 1. 240 l. 432 -7 1. 553 .-33 1. 694 -71 85 _ 13 432

260 i. 425 -5 1. 520 .-24 1. 623 -46 1. 721 -7 3 468 1. 280 l. 420 -6 1. 496 .-18 1. 577 -35 648 -49 504

300 l. 414 -5 1. 478 .-15 1. 542 -24 1. 599 -35 540

320 l. 409 -4 1. 463 .-13 1. 518 -23 1. 564 -27 576 l. 1. 1. 612 340 405 -5 450 .-11 1. 495 -27 537 -23 360 l. 400 -4 1. 439 -10 1. 478 -15 1. 514 -19 648 380 l. 396 -5 1. 429 -8 1. 463 -13 1. 495 -17 684

400 l. 391 1. 421 -8 1. 450 -11 1. 478 -14 720 420 l. 387 1. 413 -7 1. 439 -10 1. 464 -13 756 440 l. 383 1. 406 -7 1. 429 -10 1. 451 -12 792 460 l. 378 1. 399 -6 • 1. 419 -8 1. 439 -10 828 480 l. 374 1. 393 -6 1. 411 -7 1. 429 -9 864

500 l. 371 1. 387 -5 1. 404 -7 1. 420 -9 900 QO 7 sj O' 0 1. 936 520 l. 367 1. 382 -5 1. -7 411 -8

. . 972 540 l. 363 1. 377 -5 1 390 -6 1 403 -7 1008 560 i. 360 1. 372 -4 1. 384 -6 lo 396 -7 580 i. 356 1. 368 1. 378 1. 389 1 044 -5 -5 - 6 1080 600 l. 353 1. 363 1. 373 -4 1. 383 -5 620 i. 350 1. 360 1. 369 1 . 378 1116 - 5 5 640 i. 347 1. 1. 1. 373 1152 356 364 - 4 -5 660 . i. 344 1. 352 1. 360 -4 1. 368 -5 1188 680 l. 342 1. 349 1. 356 -3 1. 363 -4 1224

700 i. 339 1. 346 1. 353 1. 359 1260 720 l. 337 1. 34 3 1. 349 1. 355 1286 740 i. 335 1. 341 1. 346 1. 352 1332 760 i. 333 1. 338 1. 343 1. 349 1368 780 i. 331 1. 336 1. 340 1. 345 1404

800 1. 333 1.338 1.342 1440

- 3 - _

Table 9. 26 Specific Heat Ratios of Molecular Oxygen y Pressure

* 1 0 atm 40 atm 70 atm 100 atm T T °K °R

800 1. 329 _ 1. 333 1. 338 1. 342 1440 g g _ n _ 19 900 1.320 1. 324 1.327 1. 330 1620 6 _ g _ g _g 1000 1.314 1. 316 1.319 1.321 1800 _ 5 _ 6 _ 7 1100 1. 309 1. 310 1.312 1. 314 1980 _ 5 4 _ 5 _ 6 1200 1. 304 1. 306 1.307 1.308 2160 _ 3 _ 4 _ 4 _ 4

1300 1. 301 1. 302 1. 303 1. 304 2340 1400 1. 297 1. 298 1. 299 1. 300 2520 1500 1. 295 1. 295 1. 296 1. 297 2700 1600 1. 292 1. 292 1. 293 1. 293 2880 1700 1. 289 1. 290 1. 290 1. 290 3060

1800 1. 287 1. 287 1. 287 1. 288 3240 1900 1. 285 1. 285 1. 285 1. 285 3420

2000 1. 282 1. 282 1. 283 1 . 283 3600 2100 1. 280 1. 280 1. 280 1. 280 3780 2200 1. 278 1. 278 1. 278 1. 278 3960

2300 1. 276 1. 276 1. 276 1. 276 4140 2400 1. 274 1. 274 1. 274 1. 274 4320 2500 1. 272 1. 272 1. 272 1. 272 4500 2600 1. 270 1. 270 1. 270 1. 270 4680 2700 1. 268 1. 268 1. 268 1. 268 4860

2800 1. 266 1. 266 1. 266 1. 266 5040 2900 1. 264 1. 264 1. 264 1. 264 5220 3000 1. 263 1. 263 1. 263 1. 263 5400

_ 4 _ Table 9. 26 Specific Heat Ratio for Oxygen

The Property Tabulated

~ The specific heat ratio y Cp/Cv of oxygen is tabulated as a function of temperature in degrees Kelvin and Rankine and of pressure in atmospheres. The effect of dissociation is not included in this table.

To obtain the values of y for this table, values of Cp/R as given in Table 9. 24 of this series were combined with

2 C - Cv [Z + T(ZZ/dT) } p __ P R [Z - P(dZ/dP)T] in which the values of Z and its derivatives are consistent with Table 9. 20.

Reliability of the Table

One the basis of the reliabilities estimated for specific heats and compressibilities. Tables 9. 24 and 9. 20, respectively, the values of y are considered to be reliable to within 5% of their departures from ideal values at pressures below 40 atmospheres and possibly only within 10% of this difference at the highest pressure of 100 atmospheres.

- 5 -

U. S„ Department of Commerce National Bureau of Standards

NBS - NACA Tables of Thermal Properties of Gases

Table 9. 32 Sound Velocity in Molecular Oxygen

by

Harold W, Woolley

June 1953

Table 9. 32 Sound Velocity in Molecular Oxygen a/a Q Pressure r 01 atm . 1 atm 1 atm 4 atm 7 atm 1 0 atm ! T T

°K ° R

100 . 606 . 605 180 58 58 120 . 664 . 663 659 216 53 54 54 140 . 717 .717 713 703 252 49 49 51 54

160 . 766 . 766 764 757 750 , 743 288 47 47 47 J GA 54 180 . 813 44 . 813 44 811 45 807 46 802 47 797 49 324

. . a

220 . 898 . 898 * 8^8 , 896 ,894 892 396 40 40 4.1 41 42

240 . 938 . 938 .938 oo , 937 835 , 934 432 38 38 38 U 40 40

. 976 . 5? ,975 , 468 260 36 976 36 .976 37 975 37 974 39 280 1 . 012 36 1 . 012 36 1. 012 1. 012 36 1. 012 36 1., 013 35 504

300 1. 048 1. 048 047 1. 048 1. 048 1,, 048 540 33 33 34 34 oj)34j, 35

320 1 , 081 1. 081 081 1. 082 1. 082 1., 083 576 32 32 33 <1.932

340 1 , 113 114 1. 114 1. 115 1., 116 612 32 113 32 31 32 32 32

1, 1. 1. 1. 147 1., 148 648 360 145 30 145 30 145 30 146 30 30 31

1 , 175 1. 1. .176 1. 177 1., 179 684 380 29 17 5 29 175 29 30 29

400 1. 204 4 1 204 1. 205 1 . 207 1., 208 720 28 ?? 28 / 28 29 28 29 420 1. 232 1. 232 1. 234 1., 235 1., 237 7 56 28 28 d=J28 28

962 , 440 1 . 260 1. 260 1.260 1. 1. 263 1. 265 792 26 26 27 26 fkA (J

: , , 460 1 , 286 ! . 286 1. 288 1. 290 1. 291 828 26 26 27AJ 0 26 27 480 1. 312 1 e 312 X ° 313 1. 315 1. 316 1. 318 864 26 *5 0 26 25 26

500 1. 1. 1. 1, 344 900 338 25 338 25 1. 339 24 340 25 342 25 25

520 1 . 363 9 a 363 1. 363 1. 365 1. 367 1., 369 936 24 25 24Gi TE 24 24 i. 387 1 . 1. 1. 1.,393 972 540 24 387 388 23 389 24 391 24 24 1008 560 1.411 24 411 24 1. 411 24 1. 413 24 1. 415 23 1. 417 23 1. 1. 1. 1044 580 435 1.435 22 1. 435 1. 437 23 438 23 440 23

, 1., 1080 600 1. 457 23 1.457 1 1. 460 22 1. 461 23 463 23 620 1. 480 ; 1.480 1. 480 1. 482 1. 484 1. 486 1116 2 2 or!22&A 22 22 640 1. 502 1 . 502 99 1. 502 1. 504 22 1. 506 22 1. 508 22 1152 1. 524 1.524 1. 524 1. 526 1. 528 1. 530 1188 21 21 e=222 22 22 680 1. 1. 1. 552 1224 545 1. 545 22 1. 546 1. 548 21 550 21 21

700 !o 1. 567 1. 567 1. 1. 571 1., 573 1260 567 569 -i ‘•l 1 22 21 .L 21 720 1-588" 1. 588 1. 588 1. 590 1. 592 1. 594 1296 20 21 21 O) A 21 740 1. 608 1. 608 1. 609 1. 611 1. 612 1. 615 1332 21 20 20 21 20 760 1. 629 1. 629 1. 629 1. 631 1. 633 1. 635 1368 ^ 20 20 20 20 780 i. 649 fj; 1. 649 1. 649 1. 651 1. 653 1. 655 1404 1 y 20 20 20 20 20

800 1.668 1. 669 1 . 669 1. 671 1. 67 3 1. 675 1440

x x a0 314. 82 m sec” 1032. 9 ft sec

1 8 6

Table 9, 32 Sound Velocity in Molecular Oxygen

Pre ssur e

1 . 01 atm . 1 atm 1 atm 4 atm 7 atm 1 atm T

o K °R

800 1 . 668 1. 669 1. 669 671 lc 673 lc 675 1440 96 95 96 L 96 96 95 900 1. 764 1. 764 1. 765 1. 767 lc 769 1. 770 1620 92 92 91 91 91 92 1000 1. 856 1. 856 1. 856 1. 858 P 860 1 862 1800 86 86 87 87 86 86 1100 1. 942 1. 942 1. 943 1. 945 lc 946 i 948 1980 84 84 83 83 83 83 1200 2 . 026 2. 026 2, 026 2c 028 2. 029 2c 031 2160 79 79 80 79 80 79

1300 2, 105 2. 105 2. 106 2c 107 2c 109 2 , 110 2340 77 77 77 77 77 77 1400 2, 182 2, 182 2. 183 2c 184 2. 186 2. 187 2520 74 74 74 74 74 75 1500 2. 256 2. 256 2o 257 2. 258 2c 260 2. 262 2700 72 72 72 72 71 1600 2. 328 2. 328 2. 329 2c 330 2c 332 2c 333 2880 69 69 69 69 68 69 17 00 2. 397 2. 397 2o 398 2c 399 2c 400 2c 402 3060 68 68 67 68 68 67

1800 2. 465 2, 465 2. 465 2c 467 2. 468 2c 469 3240 65 65 65 64 65 66 1900 2. 530 2. 530 2o 530 2. 531 2c 533 2c 535 3420 63 63 63 64 63 62 2000 2. 593 2o 593 2. 593 2. 595 2. 596 2c 597 3600 62 62 62 62 62 62 2100 2. 655 2. 655 2. 655 2c 657 2. 658 2. 659 3780 60 60 61 60 60 61 2200 2. 715 2, 715 2. 716 2. 717 2 » 7 1 3960 59 59 59 59 59 58

2300 2. 774 2„ 774 2„ 775 2. 776 2c 778 4140 58 58 57 57 58 2400 2„ 832 2. 832 2. 832 2c 833 2, 834 2c 836 4320 56 56 56 56 57 56

2500 2 . 888 2 „ 888 2o 888 2c 889 2. 891 2. 892 4500 55 55 55 55 54 55 2600 2. 943 2o 943 2. 943 2c 944 2. 945 2c 947 4680 53 53 54 54 54 53 2700 2. 996 2. 996 2. 997 2. 998 2. 999 3c 000 4860 53 53 52 52 53 53

2800 3o 049 3. 049 3. 049 3o 050 3. 052 3c 053 5040 51 51 52 52 51 51 2900 3. 100 3. 100 3o 101 3c 102 3c 103 3c 104 5220 52 52 51 52 52 52 3000 3. 152 3. 152 3c 152 3 c 154 3c 155 3c 156 5400

1 aQ •- 314c 82 m sec'^ 1032c 9 ft sec” 0 ,1 a

Table 9. 32 Sound in Velocity Molecular Oxygen a/ 9 — Pressure | —

1 atm 40 atm 7 0 atm 100 atm 1 T T

°K °R

160 * 743 288 54 180 ,797 * 749 324 49 70

200 ,846 ° 8 ^ 9 . 360 4g 57 812 g9 4 220 ,892 . 876 ,--1 . 876 • 911 396 4 p 51 DD 45 240 ,934 ° - 931 , 432 4Q 927 4 g 4 q 956 44 260 ,974 .973 • 980 1. 000 468 g ^ 45 42 280 1 - 01S 1.015 1. 1.042 504 025 -j 35 4Q 4 4 ,

300 1.048 i. lo 066 1. 540 35 055 37 39 083 3q 320 1,083 1.092 Q , 1. 105 1. 122 Q7 576 340 i, lie i,1 127 lo 159 612 34 1.141 35 35 360 1. i. 1.176 1. 648 148 31 161 32 33 194 33 380 i, i. 1. 1. 227 e , 684 179 2g 193 30 209 31 £}

400 i, 208 1. 223 1.240 _ 1. 259 720 29 go tJ -L 3]

420 1. 237 1. 1 . 271 ,J>Q 1. 290 756 253 29 1 440 lm 265 792 26 1.282 27 1.300 27 1. 319 2R 460 1,291 1. !. 1 . 347 nrj 828 7 309 27 327 28 480 1,318 26 1. 336 26 1. 355 26 1.374 27 864

500 1, 344 1. 362 1 . 38 1 sjg 1. 401 900 25 25 “ 26 520 1,369 1.387 1.407 1.427 936 24 ^ 4 25 540 1.393 i. lo 431 1.452 972 24 412 24 25 , 4 560 1.417 1. 436 1. !. 4?o 1008 CJ4 456 23 24

580 1 ° „ 1. 1.440 23 460 23 1 47 9 23 500 23 1044

600 !. 1.483 1. 1.523 1080 463 go ^ p 502 23 23 620 1.486 !• 506 1. 1116 525 03 1.546 22 640 1,508 1. 528 1 „ 548 1 . 568 1152 2 2 9 \ 2 ^ 660 1. 1. 549 1. 569 1. 1183 530 2 2 590 21 680 X o 5 5 i 1. 571 1. 591 ot 1.611 1224 ^ I -L £4 1 21

700 1. 1 . . 1, 1260 573 0 592 1 612 632 . 21 21 * 1 J A 720 1. 594 1. 613 1. 633 1. 653 „ 1296 21 21 on 740 1.615 1. 634 1. 653 i. 674 1332 20 20 21 29 760 1. 635 1. 654 1. 674 1. 694 1368 29 “> 780 i.655 I.1 674 1. 693 1. 713 1404 2Q 2Q

800 1. 675 1. 694 1. 713 1. 733 1440

-1 ^ aQ “ 314,82 m sec - 1 032, 9 ft sec'

- 3 - Table 9. 32 Sound Velocity in Molecular Oxygen a/ aQ Pressure 1*1 0 atm 40 atm 70 atm 10 0 at m * T T

°K °R

800 1. 675 1. 694 1.713 1. 733 1440 95 95 95 95 900 1. 770 1. 789 1. 808 1. 828 1620 92 91 90 89 1000 1. 862 1. 880 1. 898 1. 917 1800 86 86 86 85 1100 1. 948 1. 966 1. 984 2. 002 1980 83 83 82 81 1200 2. 031 2. 049 2. 066 2. 083 2160 79 79 78 79

1300 2. 110 2. 128 2. 144 2. 162 2340 77 76 76 75 1400 2. 187 2. 204 2. 220 2. 237 2520 7 3 7 4 7 5 8 O fl O 7 3 1500 2. 262 2. 277 2. 293 2. 310 2700 78 J.1 78 j.1 70 1 69yj 1600 2. 333 2. 348 2. 364 2. 379 2880 69 69 68 68 1700 2. 402 2. 417 2. 432 2. 447 3060 67 67 66 67

1800 2. 469 2. 484 2. 498 2. 514 3240 66 65 65 63 1900 2. 535 2. 549 2. 563 2. 577 3420 62Vi* U626J. 63 63 2000 2. 597 2. 611 2. 626 2. 640 3600 62 62 60 60 2100 2. 659 2. 67 3 2. 686 2. 700 3780 1 fl U6 _L u6 u 60 59 2200 2. 720 2. 733 2. 746 2. 7 59 3960 58 58 58 58

2300 2. 778 2. 791 2. 804 2. 817 4140 58 57 57 57 2400 2. 836 2. 848 2. 861 2. 874 4320 J U KJ56U 55 55 2500 2. 892 2. 904 2. 916 2. 929 4500 55 55 55 54 2600 2. 947 2. 959 2. 971 2. 983 4680 53 53 53 53 2700 3. 000 3. 012 3. 024 3. 036 4860 53 52 52 52

2800 3. 053 3. 064 3. 076 3. 088 5040 51 52 51 50 2900 3. 104 3. 116 3. 127 3. 138 5220 52 vj51JL 51i. zJ51j- 3000 3. 156 3. 167 3. 178 3. 189 5400

a^ = 314. 82 m sec ^ - 1032. 9 ft sec ^

- 4 - Table 9. 32 Sound Velocity in Molecular Oxygen

The Property Tabulated

The relative sound velocity, a/ag, for a sound of low frequency in oxygen is tabulated as a function of temperature in degrees Kelvin and Rankine and of pressure in atmospheres. The sound velocity is represented by a, while ag represents the value of a at the stand- ard conditions of 0°C and one atmosphere pressure. The values for the velocity are calculated from ratios of specific heats, 7 , the density, and the compressibility and its derivatives for which p , reference may be made to Tables 9. 26, 9. 18, and 9. 20, The values are obtained from the theoretical relation

RT T a = Z 1/ M[Z - P(0Z/9 P) T ]

R is the gas constant in appropriate units and M is the molecular weight, 32, 000 , The values tabulated are for equilibrium conditions as far as equalization of vibrational and rotational energies are con- cerned and thus do not apply at very high frequencies. The effect of dissociation has not been included, so that the values are not strictly for equilibrium conditions at elevated temperature and low and moder- ate pressure.

Reliability of the Table

The accuracy of the values tabulated varies with temperature and pressure. Numerically, the reliability is roughly that indicated for values of 7 in terms of departures from ideal gas values. At 200°K, the values are believed to be reliable within about . 003 at 10 atm, . 014 at 40 atm, . 05 at 70 atm and . 14 at 100 atm. At 400°K, the values may have uncertainties of about one tenth as much, becoming still less at higher temperatures where the gas is more nearly ideal. The uncer- tainties, disregarding dissociation, may be as small as . 004 at 100 atm for the higher temperatures.

- 5 - »

A considerable effect due to dissociation occurs at the highest temperatures, particularly for the low pressures. Its magnitude may be estimated with formulas discussed in reference [ 1 ]

Interpolation

Linear interpolation is valid in this table.

Conversion Factors

The tabulated quantity has been expressed in dimensionless form. - Conversion factors are listed at the bottom of each page in ft sec -*- and -1 meter sec . For conversions to other units see Table 1. 30 of this series.

REFERENCE

[lj H. W. Woolley, The effect of dissociation on the thermodynamic properties of pure diatomic gases. Report No. 1884, National Bureau of Standards, October 15, 1952.

- 6 - 9.32

TABLE

FROM

SOUND

OF

VELOCITY

EXPERIMENTAL

OF

DEPARTURES

I. a^myvdia % FIG.

,

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS E. U. Condon, Director Charles Sawyer, Secretary

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 9.39 Molecular Oxygen

Preliminary Issue July 1950

Coefficient of Viscosity

vho

Compiled by R. L. Powell

FOREWORD

This is one of a series of tables of Thermal Properties of Gases be- ing compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of accurate data on thermal prop- erties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal Properties of Gases to make a critical compilation of existing published and unpublished data, and to present such data in con- venient form for application. The loose-leaf form has been chosen as be- ing most convenient, and revisions are anticipated as new data become available.

The' dimensionless character of the tables and their general format should facilitate calculations in aerodynamics, heat- transfer, and jet- engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpublished data. Information and other correspondence regarding these tables should be addressed to Joseph H ilsenrath Heat and Power Division, National Bureau of Standards. Table 9.39—COEFFICIENT OF VISCOSITY OF OXYGEN

2 Table 9.39— COEFFICIENT OF VISCOSITY OF OXYGEN— Continued

3 .

TABLE 9.39 COEFFICIENT OF VISCOSITY OF OXYGEN

The Property Tabulated

The viscosity of gaseous oxygen is given in this table for tempera- tures from 80 °K to 2000 °K (144°R to 3600°R) at one atmosphere pressure. form 17/17 dividing the This viscosity is given in the dimensionless 0 by absolute viscosity at a given temperature by the viscosity at 273.16°K and one atmosphere pressure, which is assumed to be 1919.2x10 7 poises. This value is in close agreement with the determination by Johnston and 7 McCloskey [4], who found the viscosity to be 1918.4 x 10~ poises at -7 273.16°K, based on the value 1833.0 x 10 poises as the viscosity of dry air at 296.1°K. The viscosities were calculated using the Lennard- Jones potential, as applied by Hirschfelder, Bird, and Spotz [2], in which the of interaction between the two molecules is given by

6 e(r)

e is the maximum of attraction and r is the low velocity where m energy 0 collision diameter. The coefficient of viscosity for a single gas is given by 266.93 V 7 i? x 10 = >fW 2 2 r w( > o (2) where M is the molecular weight, T is the temperature in degrees Kelvin, 2 and V and W^ ^(2) are functions of kT/e. Hirschfelder, et al [2], have calculated the collision integrals needed for the computation of the transport properties, and have suggested the parameters for 45 gases. For this table the characteristic parameters

[Me a , 1 e/k = 100 and —r —=4.621 r k o ^ were redetermined by fitting to the data of Johnston and McCloskey and Trautz and Zink in the ranges 90°K to 300°K and 300°K to 1100°K respec- tively. For ease in computation, Bromley’s adaptation [ 1 ] of Hirschfelder’s tables was used. There is little experimental evidence of any significant variation of viscosity with pressure at moderate pressures [3]

Reliability of the Table

A graphical comparison of the tabulated values and the experimental results of six authors (4, 6, 9, 10, 11, 14) is given in Figure 1. The viscosity table is reliable within 1% below 1000°K. The extrapolated values to 2000°K are reliable within 2%.

Interpolation

Linear interpolation is valid above 200°K, below that temperature Lagrangian interpolation is recommended.

4 Conversion Factors

The viscosity of oxygen has been expressed in dimensionless form. Conversion factors for the more frequently used units are given. For conversion factors not listed here, see table 1.30 of this series.

To convert tabulated Having the dimensions To— Multiply by — value of— indicated below

-1 -1 poise or g(M) sec cm x |0"7 v/v 0 V 1919.2

-1 1 2 Kg(M) hr m" 6.9091 x IQ" -2 -7 1 b( F) sec ft 4.0084 x IQ

1 1 5 1 sec" x !Q~ b (M ) ft" 1.2896

1 1 2 1 b(M) hr" ft" 4.6427 x |0"

REFERENCES

[1] LeRoy A. Bromley, "Calculation of gas viscosity as a function of temperature," U. S. Atomic Energy Comm., UCRL-525 (1949).

[2] J. 0. H i rschfel der, R. B. Bird, E. L. Spotz, Viscosity and other physical prop- erties of gases and gas mixtures, Trans. ASME, 48,921 (1949).

[ 3 ] A. Van Itterbeek, W. H. Keesom, Measurements on the viscosity of oxygen gas,

Physica, 2, 97 ( 1935).

[ 4 ] H. L. Johnston, K. E. McCloskey, Viscosities of gases, J. Phys. Chem. , 44, 1038 (1940).

[ 5 ] H. Markowski, Die innere Reibung von Sauerstoff, Wasserstoff, chemischem und at- mospharischem Stickstoff und ihre Anderung mit der Temperatur, Ann. Physik, 4-14, 742 (1904).

[6] P. J. Rigden, The viscosity of air, oxygen, and nitrogen, Phil. Mag., 7-25, 961 (1938).

[7 ] E. Thomson, Uber die innere Rei bung von Gasgemischen, Ann. Physik, 4-36,815(1911).

[8] M. Trautz, R. Heberling, Die Reibung von NH^ und seinen Gemischen mit h , N , 0 2 2 2 ,

C H , Ann. Physik, 5-10, 2 4 155 (1931).

L9] M. Trautz, A. Melster, Die Reibung von H N CO, C H , 0 , und ihren binaren 2 , 2 , 2 4 2 Gemischen, Ann. Physik, 5-7, 409 (1930).

bei - [|0] M. Trautz,* R. Zink. Gasreibung hoheren Temperaturen, Ann. Physik, 5 7 , 427 (1930).

Vogel, 'V i skosi tat ei n ger Gase, Ann. Physik, [11] H. i 4-43, 1235 (1914).

[12] E. Volker, ilber den Koeff iz ienten der inneren Reibung von Sauerstoff und Wasser-

stoff bei niederen Temperaturen, Diss. , Halle, 1910.

[13] K. Yen, Determination of the coefficient of viscosity of hydrogen, nitrogen and oxygen, Phil. Mag., 6-38, 582 (1919).

[14] R. Wobser, F. Muller, Die innere Reibung von Gasen und Dampfen und ihre Messung im Hoppler-Viskosimeter, (Colloid Beihefte, 52, 165 (1941).

5 OXYGEN

% DEPARTURE * i . Igaig-x |QO Tfcalc u i €C ** .# o -X. I o 0 QMl X

- 1 -I X -2 -2

I 1 I I i i 500 T ®K 1000

• Johnston & Me Closkey — 1940 Vogel— 1914 X Trautz & Zink— !930 o Troutz & Melster— 1930 X Wobser & Muller — 1941 a Riqden— 1938

FIGURE I. DEPARTURES OF EXPERIMENTAL VISCOSITIES FROM TABLE 9.39

6 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Charles Sawyer, Secretary E. U. Condon, Director

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 9.42 Molecular Oxygen

July 195] I

Thermal Conductivity

k/k0

Compiled by R. L. Nuttall

FOREWORD

This is one of a series of tables of Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National Advisory Committee for Aeronautics. Recent advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of accurate data on thermal properties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal Properties of Gases to make a critical compilation of existing published and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are anticipated as new data become available.

The dimensionless character of the tables and their general format should facilitate calculations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding un- published data. Information and other correspondence regarding these tables should be addressed to Joseph Hilsenrath, Heat and Power Division, National Bureau of Standards. Table 9.42 Thermal Conductivity of Molecular Oxygen

T k/k A T T k/k A T 0 Q ®K ®R °K °R

80 .293 144 90 .331 ® 162

100 •368 180 350 1.25 630 3 110 .406 198 360 1.28 648 4 120 .444 216 370 1.32 666 f 3 130 .488 234 380 1.35 684 3 * 140 .520 ? 252 390 1.58 702 37

150 .557 270 400 1.41 - 720 ,p 3 160 •595 288 410 !.44 738 3 170 •633 ~ 306 420 1.47 756 3 180 •569 324 430 1.50 774 37 3 190 .706 342 440 i.53 792 37 200 .743 360 450 1.56 310 33 3 210 .779 378 460 1.59 828 33 3 220 .815 396 470 1.62 846

230 • 850 414 480 1.64 864 f \3 240 . 885 ?^ 432 490 1.67 882 35 3 250 .920 450 500 1.70 900 3 260 .954 468 510 1.73 918 30^ 3 270 .989 486 520 1.76 936 " 2 280 1.02 504 530 1.78 954 * 290 1.06 522 540 1.81 972 l 300 1.06 540 550 1.84 990 310 i.12 558 560 1.86 2 1008 l 3 320 1.16 576 570 1.89 1026 \3 330 1.19 5S4 580 1.92 3 1044 2 340 1.22 ? 612 590 1.94 1062 o 3 350 1.25 630 600 1.97 1080

CONVERSION FACTORS To Convert Tabulated Having the Dimensions Multiply To Value of Indicated Below by k k k 1 1 1 5 / o cal cm” sec” °K“’ 5 . 867 x XCf 1 2 Btu ft" hr”1 °R~1 1.419 x IQ" 4 watts cm"1 °K“1 2.455 x IQ”

2 TABLE 9.42 THERMAL CONDUCTIVITY OP MOLECULAR OXYGEN

THE PROPERTY TABULATED

This tattle gives in dimensionless form as a function of temperature in degrees Kelvin and degrees Runkine, the thermal conductivity, h/k^, of molecular oxygen. The values were calculated from the equation

5 C 0.6726 x 10~ 1/2 Q = C T 0 k = C = 265.9

1 10" T 1 + r V c = i° T 2

The symbol k is the thermal conductivity in cal cm~“ sec*^ ®C"^ end T is the temperature in degrees Kelvin. The tabulated quantities have been me.de dimensionless by dividing by kQ = 5.867 x 10”^ cal cmr^ secr-1 which is the thermal conductivity of oxygen at 0°C and 1 atmosphere. These values apply at low to moderate pressures.

RELIABILITY OP THE TABLE

The experimental data covers the range from 86° to 376 °K. The accuracy of the table in this range is of the order of 2$. The accompanying graph shows the deviations of the tabulated values from experimental data.

INTERPOLATION

Linear interpolation is valid in this table.

CONVERSION PACTORS

The function in this table has been expressed in dimensionless form. In order that it may be converted readily to any system of units, conversion factors are listed for the frequently used units. Por conversion factors not listed here see Table 1.30 of this series.

3 8

REFERENCES

fahigke it fll A. Eucken, fiber die T enrp e rat urabhangigke it der Warmele it einiger Gase, Physik. Z. 12, 1101 (1911).

[*2l S. Weber, Untersuchungen uber die Warme 1 e i t fahigke it der Gase, Ann. Phvsik 54. 437 (1917).

H. Gregory and S. Marshall, The thermal conductivities of [ 3 ] oxygen and nitrogen, Proc. hoy. Soc. (London) All . 594 (1928).

4 B. G. Dickens, The effect of accommodation on heat conduction [ ] through gases, Proc. Boy. Soc. (London) A14j5_ . 517 (1934),

G. Kannuluik and L. H. Martin, The thermal conductivity of [ 5 ] W. some gases at 0°C, Proc. Roy. Soc. (London) A144 . 496 (1934).

6 W. Horthdurft, Zur Absolut ernes sung des Warmele it vermogens von [ ] Gasen, Ann. Physik 28, 137 (1937).

7 H. L. Johnston and E. R. Grilly, An improved hot-wire cell for [ ^] accurate measurements of thermal conductivities of gases over a wide temperature range, J. Chem. Phys. 14, 219 (1946).

CL Z) fr“ CL 2 OLU

4 U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NB3 - NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 9»hk Prandtl Number of Oxygen

by

F. Doiald Queen

June 1953

Table 9*kk Prandtl Number of Oxygen N r C /k Pr j P 2 1 ... 1 2 T N 3 3 i ; N jN_ In T Pr Pr Pr rj ; p j l t

*K # R

100 .815 .873 .931 .903 180 110 .800 .862 .928 .891* 198 120 .791 .855 .925 .889 216 130 .7814 .850 .922 .885 23^ lUO .778 .8U6 .920 .882 252

150 .773 .8U2 .918 .879 270 160 .766 .837 .915 .875 288 170 .761 .83a .913 .872 306 180 .756 .830 .911 .869 32a 190 .751 .826 .909 .867 3a2

200 .7U5 .822 .907 .863 360 210 o7U0 .818 .905 .860 378 220 .736 0815 .903 .858 396 230 .732 .812 .901 .856 aia 2hC .728 .809 .900 .853 a32

250 .72$ .807 .898 .851 a5o 260 .722 .809 .897 .850 a68 270 .718 .802 .895 .8a7 a86 280 .717 .801 .895 .8a7 50a 290 .710 .796 .892 .8a3 522

300 .709 .795 .892 ,8a2 sao 310 .709 .795 .892 .ea2 $58 320 .703 .791 .889 .838 576 330 .702 .790 .889 .838 59a 3li0 .702$ .790 .889 .838 612

350 .702 .790 .889 .838 630 360 .701 .789 .888 .837 6a8 370 .696 .785 .886 .83a 666 380 .696 .785 .886 .83a 68a 390 .696 .785 .886 .83a 702

I OO 4 .695 .785 .886 .83a 720 lao .695 .785 .886 .83a 738 I420 .695 .785 .886 .83a 756 1430 .695 .785 .886 .83U 77a I1I4O .69I4 .78U .885 .833 792

U5o .6914 .78a .885 .833 810 -1 - Oxygen N >] C /k Table 9. 1(1* Prandtl Number of f Pr P : 2 1 1 r ? f v 3 r i T N N T Pr Pr Pr L J * - N a *K R

1*50 •69 li .781* .885 .833 810 1*60 .691* .781* .885 .833 828 U70 .695 .785 .886 .831* 81*6 1*80 .697 .786 .887 .835 861* U90 .697 .786 .887 .835 882

500 .697 .786 .887 .835 900 5io .697 .786 .887 .835 918 520 .697 .786 .887 .83$ 936 530 .700 .788 .888 .837 95U 51*0 .700 .788 .888 .837 972

i 0 1/

550 .700 .788 .888 .837 990 560 .701 .789 .888 .837 1008 570 .702 .790 .889 ,838 1026 580 .702 .790 .889 .838 101*1* 590 .701* .791 .890 .839 1062

600 .701* .791 .890 .839 1080

“ 2 - The Property Tabulated

The Prandtl number N • ~n C /k and some of its fractional Pr 1 p powers are listed for molecular oxygen at one atmosphere. The table

was computed from values of viscosity, 7j, specific heat, C , and thermal conductivity, k, given respectively in tables 9.39, 9»2k and

9.1|2 of this series. The ratio C^/k is dimensionless when 7j,C yj p and k are in a consistent set of units. A few frequently used powers are tabulated for convenience. Other fractional powers may be obtained from the alignment chart in figure 1.

Reliability of the Table

The uncertainty in this table results from the uncertainty of thermal conductivity and viscosity, on the basis of which the

Prandtl number may be reliable to about 2 per cent.

-3 -

i

N

a N

.95

-- .995 a

0.1

-- .99

.90

-- .98

— .85

0.2 .96

—.80 .95

.94

.93

— .75 .92

.91 .90 —.70 *

65 .85 ir- 0.4

~~so .80

.75 0.5 •37 .55 7—

.70 ^r-50 .65 0.6 77 .45 .60 t 55 IP* 0.7 -7 7-. 40 .50

.45 77.35 0.8 .40

- 35 77-30 0.9 30 77 .25 .25 1.0 .20 ~T“.20 Drawn by L.C.^.

Figure I.

4

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Charles Sawyer, Secretary E. U. Condon, Director

THE NBS-NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 9.50 Vapor Pressure of Oxygen December 1949

by Harold J. Hoge

FOREWORD

This is one of a series of tables of Thermal Properties of Gases being compiled at the National Bureau of Standards at the suggestion and with the cooperation of the National

Advisory Committee for Aeronautics. Recent advances in methods of propulsion and the high speeds attained thereby have emphasized the importance of accurate data on thermal properties of wind-tunnel and jet-engine gases. It is the purpose of the project on Thermal

Properties of Gases to make a critical compilation of existing published and unpublished data, and to present such data in convenient form for application. The loose-leaf form has been chosen as being most convenient, and revisions are anticipated as new data become available.

This table is also available on IBM punched cards. The tables should facilitate calculations in aerodynamics, heat-transfer, and jet-engine problems. Suggestions for the extension or improvement of these tables are desired as well as information regarding unpublished data. Information and other correspondence regarding these tables should be addressed to Joseph Hilsenrath, Heat and Power Division, National Bureau of Standards. 7 1 6 S

V&P0R PRESSURE 0F ® H 8 E I

SOURCE OF THE DATA Thes® tables are based on a recently completed experimental investigation of the vapor pressure of liquid oxygen at the National Bureau of Standards. Figure 1 shows the experimental data plotted as deviations from the tables. A comparison with the results of other observers is given in the complete report [1],

USE OF THE TABLES Table 9.50/1 is to be used when accurate interpolated values are required. This table gives at uniform intervals of 1/T, the argument being 2/T at first; then changing to 1/T and l°g 10 p finally back to 2/T again to give a progressively closer spacing of entries. The values of T given in table 9.50/1 are only for convenience in locating the part of the table to be used. Interpo- lations must be made in terms of 1/T or 2/T (1.8/T or 3.6/T on the ) rather than in terms of T for greatest convenience and accuracy. When this is done, linear interpolation will introduce no significant error below about 130°K ( 1/T°K « 3 . 6/T°R = 0.0142). Above this temperature

slight errors may be introduced , which however do not exceed 4 mm Hg and reach this value only in the immediate neighborhood of the critical point. Table 9.50/2 gives P at temperature intervals of 5°K(9°R). This table is for reedy reference when values at these particular temperatures are adequate.

RELIABILITY Bel ow a pressure of about 1.4 m Hg the tables are based on mercury manometry and are accurate to about ±0 . 2mm Hg. Above about 1.4 m Hg the uncertainty increases to ±1 or 2 mm Hg, and then gradually increases further at higher pressures, reaching a value of perhaps ±10 mm Hg at the critical point. In these estimates no allowance has been mad® for possible disagreement between the temperature scales used and the thermodynamic scale. The International Temperature Scale was used down to 90 . 19°K and the NBS provisional scale at lower temperatures.

VAPOR PRESSURE OF 'OLID OXYGEN

The only data [2] for solid oxygen do not appear to be very reliable, and hence the tabula- tion has not been extended below the triple point. Since the solid must have a lower vapor pres- sure than the hypothetical supercooled liquid, extrapolation of table 9.50/1 gives a rough upper limit for the vapor pressure of the solid. This procedure gives an upper limit of 0.020 mm Hg at

43 . 8°K, which is the temperature of the higher of the two solid-solid transitions of oxygen. At this temperature Aoyama and Kanda [2] found 0.0111. The true vapor pressure here is almost cer- tainly less than 0.015 mm Hg.

REFERENCES

[1] Harold J. Hoge , Vapor pressure and fixed points of oxygen and heat capacity in the critical region. J. Research NBS 44(1950) (in press),

[2] Shinichi Aoyama and Eiz© Kanda, The vapor tensions of oxygen and nitrogen in the solid state. Sci, Repts. Tohoku Imp. Univ. Sendai 24, 107-15 (1935).

TABLE 9.50/2 VAPOR PRESSURE OF OXYGEN (HOT FOR INTERPOLATION) P \ P Remarks // \p P mm Hg atm psia mm Hg atm ps ia T // T T \ T °K / °R °K °R Triple pt 54.363 1.14 0.00150 .022 97.853 95 1223.3 1.6096 23.65 171

Boiling pt 90.190 760.0 . 1 14.696 162.342 100 1905.0 2. 5066 36.84 180 Critical pt 154- 381-0 50. 736. 0 9 4 9 278. 0 105 2838.2 3.7345 54.88 189 110 4072.9 5.3591 78.76 198 55 1.38 0.00182 0.027 99 115 5661.6 7.4495 109.48 207 60 5.44 0.00716 0.105 108 120 7658. 10.077 148.09 216 65 17. 4 0.0229 0.34 117 125 10120 13. 316 195.7 225 70 46.8 0. 0616 0.90 12G 130 1310 2 17.239 253. 4 234 75 108.7 0,1430 2.10 135 135 16670 21.934 322.3 243 80 225.3 0.2964 4.36 144 140 20892 27.489 404.0 252 8 5 425.4 0.5597 8. 23 153 145 25843 34.004 499.7 261 90 745.0 0.9803 14.41 162 150 31631 41.620 611.6 270

2 TABLE 9.50/1 VAPOR PRESSURE OF OXYGEN (FOR INTERPOLATION)

2 3.6 1 i.8 T '°9 lo D T P T T l T ,o T T fl,o T 0 I -» V °K mm Hg ofm psio & °R R~ °K" °K mm Hg otm psia A °R Or

0.037 54.054 0.014 7.133* 8300* 97.297 0.037 0.0100 100.000 3.27989 0.39908 1.56627 180.000 0.0100 197 ™33,, 0.036 55.556 0.211 7.330 8.497 100.000 0.036 0.0099 101.010 3.31630 0.43549 1.60268 181.818 0.0099 0.035 57.143 0.408 7.527 8.694 102.857 0.035 0.0098 102.041 335269 0.47188 1.63907 183.673 0.0098 0.034 58.824 0.605 7.724 8.891 ™ 105.882 0.034 0.0097 103.093 3.38905 0.50824 1.67543 ££ 185.567 0.0097 0,033 60.606 0.802 7.921 9.088 109.091 CUD 104.167 3.42539 0.54458 187.500 0.0096 33 0.0096 1.71177 3630

0.032 62.500 0.999 8.118 9.285 112.500 0.032 105.263 3.46169 0.58088 1.74807 189.474 0.0095 197 0.0095 3627 0.031 64.516 1.196 8.315 9.482 £ 116.129 0.031 0.0094 106383 3.49796 0.61715 1.78434 191.489 0.0094 0.030 66.667 1.392 8.511 9.678 * 120.000 0.030 0.0093 107.527 3.53419 0.65338 1.82057 If 193.548 0.0093 0.029 68.966 1.587 8.706 9.873 124.138 0.029 0.0092 108.696 3.57041 0.68960 1.85679 195.652 0.0092 ]f0 0.028 71.429 1.781 8.900 0.067 128.571 0.028 0.0091 109.890 3.60661 0.72580 1.89299 197.802 0.0091

0.0090 111.111 3.64281 0.76200 1.9 29 1 200.000 0.0090 9 36198 112.360 3.67900 0.79819 1.96538 202.247 0.0089 0.0089 38 0.0088 113.636 3.71518 0.83437 2.00156 204.545 0.0088 1 1.8 3 J9 i T T 0.0087 114.943 3.75137 0.87056 2.03775 206.896 0.0087 1 S 0.0086 116.279 3.78756 0.90675 2.07394 209.302 0.0086 0.0140 71.429 1.7807 8.8999 0.0671 * 128.571 0.0140 0.0139 71.942 1.8192 8.9384 0.1056 129.496 3.82377 0.94296 0 1 211.765 0.0085 ! 117.647 0.0139 0.0085 2.n 5 3622 a0138 72.464 1.8576 8.9768 0.1440 \T 130.435 0.0138 0.0084 119.048 3.85999 0.97918 2.14637 214.286 0.0084 a0137 72.993 1.8959 9.0151 0.1823 131.387 0.0137 0.0083 120.482 3.89623 1.01542 2.18261 If 216.867 0.0083 10136 73.529 1.9342 9.0534 0.2206 3“ 132.353 0.0136 0.0082 121.951 3.93249 1.05168 2.21887 219.512 0.0082 0,0081 123.457 3.96880 1.08799 2.25518 If 222.222 0.0081 0.0135 74.074 1.9724 9.0916 0.2588 133.333 0.0135 33,“ 74.627 2.0106 225.000 0.0080 0.0134 9.1298 0.2970 134.328 0.0134 0.0080 125.000 4.00516 1.12435 2.29154 3M0 0.0133 75.188 2.0488 9.1680 0.3352 135.338 0.0133 0.0079 126.582 4.04156 1.16075 2-32794 227.848 0.0079 8 0.0132 75.758 2.0869 9.2061 0.3733 136.364 0.0132 0.0078 128.205 4.07802 1.19721 2.36440 230.769 0.0078 0.0131 76.336 2.1250 9.2442 137.404 0.4114 381 0.0131

0.0130 76.923 2.1631 9.2823 0.4495 138.462 0.0130 0.0129 77.519 2.2012 9.3204 0.4876 139.535 0.0129 0.0128 78.125 2.2392 9.3584 0.5256 140.625 0.0128 38ft° 0.0127 78.740 2.2772 93964 0.5636 141.732 0.0127 2 3.6 ' 0.0126 79.365 2.3150 9.4342 0.6014 142.857 0.0126 3 7 T T 0.0125 80.000 2.3527 9.4719 0.6391 144.000 0.0125 0.0156 128.2051 4.07802 1.19721 236440 230.769 0.0156 377" 1826“ 0.0124 80,645 2.3904 9.5096 0.6768 145.161 0.0124 0.0155 129.0323 4.09628 1.21547 2.38266 232.258 0.0155 76 “ 2.40092 233.766 0.0123 81.301 2.4280 9.5472 0.7144 146.341 0.0123 0.0154 129.8701 4.11454 1.23373 9 0.0154 0.0122 81.967 2.4656 9.5848 0.7520 147.541 0.0122 0.0153 130.7190 4.13283 1.25202 2.41921 235.294 0.0153 f. f*3 0.0121 82.645 2.5031 9.6223 0.7895 148.760 0.0121 0.0152 131.5789 4.15115 1.27034 2.43753 236.842 0.0152 t

83.333 4.16949 1.28868 238.410 0.0151 0.0120 2.5406 9.6598 0.8270 150.000 0.0120 0.0151 132.4503 2.45587 1836 0.0119 84.034 2.5781 9.6973 0.8645 151.260 0.0119 0.0150 133.3333 4.18785 1.30704 2.47423 240.000 0.0150 18f0 0.0118 84.746 2.6156 9.7348 0.9020 152.542 0.0118 0.0149 134.2282 4.20625 132544 2.49263 241.611 0.0149 10117 85.470 2.6530 9.7722 0.9394 153.846 0.0117 0.0148 135.1351 4.22467 1.34386 2.51105 M6 243.243 0.0148 10116 86.207 2.6904 9.8096 0.9768 155.172 0.0116 0.0147 136.0544 4.24313 1.36232 2.52951 244.898 0.0147 3„ 1649

86.957 9.8469 136.9863 4.26162 138081 2.54 8 0 246.575 0.0146 0.0115 2.7277 1.0141 156,522 0.0115 0.0146 0 185383 0,0145 137.9310 4.28015 139934 2.56653 248.276 0.0145 0.0144 138.8889 4.29871 1.41790 2.58509 250.000 0.0144 0.0115 86.957 2.72767 9.84686 1.01405 156.522 0.0115 0.0143 139.8601 4.31731 1.43650 2.60369 251.748 0.0143 3725 ™f 0.0114 87.719 2.76492 9.88411 1.05130 157.895 0.0114 0.0142 140.8451 4.33595 1.45514 2.62233 253.521 0.0142

10113 88.496 2.80210 9.92129 1.08848 , 159.292 0.0113 1.47383 255.319 0.0141 0.0112 89.286 2.83922 9.95841 1.12560 160.714 0.0112 0.0141 141.8440 4.35464 2.64102 18?5 90.090 2.87626 9.99545 1.16 6 162.162 0.0111 0.0140 142.8571 437339 1.49258 2,65977 257.143 0.0140 0.0111 2 4 369? 1880 0.0139 143.8849 4.39219 1.51138 2.67857 “ 258.993 0.0139 90.909 2.91323 0.03242 163.636 0.0138 144.9275 4.41105 1.53024 2.69743 260.870 0.0138 10110 1.19961 , 0.0110 ™ 262.774 0.0137 0.0109 91.743 2.95013 0.06932 1.23651 165.138 0.0109 0.0137 145.9854 4.42998 1.54917 2.71636 1900 10108 92.593 2.98698 0.10617 1.27336 ]f 166.667 0.0108 0.0107 93.458 3.02377 0.14296 131015 168.224 0.0107 0.0136 147.0588 4.44898 1.56817 264.706 0.0136 7 266.667 0.0135 0.0106 94.340 3.06051 0.17970 1.34689 169.811 0.0106 0.0135 148.1481 4.46807 1.58726 2.75445 919 268.657 0.0134 0.0134 149.2537 4.48726 1.60645 2.77364 193038 10105 95.238 3.09720 0.21639 138358 171.428 0.0105 0.0133 150.3759 4.50656 1.62575 2.79294 270.677 0.0133 151.5152 4.52598 1.64517 2.81236 272.727 0.0132 0.0104 96.154 3.13383 0.25302 1.42021 If 173.077 0.0104 0.0132 1956 10103 97.087 3.17042 0.28961 1.45680 3” 174.757 0.0103 4.54554 1.66473 2.83192 274.809 0.0131 0.0102 98.039 3.20696 0.32615 1.49334 176.470 0.0102 0.0131 152.6718 J977 2.85 1 6 276.923 0.0130 o.oioi 99.010 3.24345 036264 1.52983 178.218 0.0101 0.0130 153.8462 4.56531 1.68450 9 0088 ! If ™ 0.0129 155.0388 4.58539 1.70458 2.87177 279.070 0.0129 10100 100.000 3.27989 0.39908 1.56627 180.000 0.0100 0.0128 156.2500 4.60589 1.72508 2.89227 281.250 0.0128

‘Logarithms have been increased by 10 wherever necessary to avoid negative mantissas.

3 950/1

table

150

from

data

145

experimental

the °K X of

140

(obs-caic)

Deviations

135 I.

Figure

4 NATIONAL BUREAU OF STANDARDS u. s. DEPARTMENT OF COMMERCE

THE NBS - NACA TABLES OF THERMAL PROPERTIES OF GASES

Table 1.30 Conversion Factors

* Table 1*30/ a CONVERSION FACTORS FOR UNITS OF LENGTH

Multiply by apprcocriate entry to obtain cm mm r nyu X

1 4 7 8 1 Centimeter (cm) 1 10 xo 10 10

1 3 6 7 1 Millimeter (mm) lO" 1 10 10 10 4 3 3 4 1 Micron (ji) 10” 10~ 1 10 10 6 1 Millimicron (mu) 10-7 10~ 10”3 1 10 8 7 4 1 1 Angstrom Unit 00 10- IQ’ 10" 10* 1

Table 1,30/ b CONVERSION FACTORS FOR UNITS OF LENGTH

Multiply. by appropriate entry to obtain cm m in ft yd

1 cm 1 0,01 0,3937 0,032808333 0,010936111

1 m 100, 1 39,37 3,2808333 1,0936111

1 in 2,5400051 Oo 025400051 1 0,083333333 0,027777778

1 ft 30,480061 0,30480061 12, 1 0.33333333

1 yd 91,440183 0,91440183 36c 3, 1

* The conversion factors in Tables 1 T ?0/ a - 1,30/- k are reproduced from "Selected Values of Properties of Hydrocarbons", BBS Circular C461,

Novembers, 1947 0

/. _ i Table 1.30/Ac CONVERSION FACTORS FOR UNITS OF AREA

Multiply by appropriate entry 2 cm sq in/ sq ft sq yd

1. 0763867 1, 4 1959853 ‘‘V1 cnr 1 10~ 0.15499969 -44 xlO“3 xlO

2 4 1 m 10 1 1549c 9969 10,763867 1,1959853

6,4516258 6,9444444 7*7160494 1 sq in 58 1 6,45162 -3 xlQ“4 xlO xlO"4

\ 1 sq ft 929 o 03412 0,092903412 144 0 1 0.11111111

1 sq yd 8361,3070 0 o 836l3070 1296, 9c 1

4-2 ) , e

Table 1.30/ d CONVERSION FACTORS FOR UNITS OF VOLUME

Multiply by appropriate entry • to obtain -p» ml liter gal

* 3 1 cnr 0.9999720 0.9999720 x 10“3 2.6417047 x 10“*-

2 1 cu in 16.38670 1.638670 x 10" 4.3290043 x 10"3

1 cu ft 20316.22 - 28. 31622 7.4805195

1 ml 1 0.001 2.641779 x 10“^

1 liter 1000, 1 0.2641779

1 gal 3785.329 3.785329 1

Table 1,30// d CONVERSION FACTORS FOR UMTS OF VOLUME (Continued)

Multiply by appropriate entry 3 to obtain-——— cm cu in cu ft —

1 cnP 1 0.061023378 3.5314455 x 10~ 3

1 cu in 16.387162 1 5.7870370 x 10 _Zj-

1 cu ft 28317 « 017 1728 1 “ 1 ml 1.000028 0.06102509 3c 531544 x 10 3

1 liter 1000,028 61.02509 0.03531544

1 gal 3785.4345 231c 0.13368056

l

3 2 2

Table 1,30/4© CONVERSION FACTORS FOR UNITS OF MASS

Multiply by appropriate entry to obtain -ta* g kg lb metric ton ton

1 2,2046223 1,102311 ”3^ 1 g 1 10 10 3 6 xlO~ xttf

1,1023112 3 3 1 kg ID 1 2, 2046223 io” xlO"3

4.5359243 1 lb 453,59243 0,45359243 1 0,0005 xlO"4

6 3 1 metric ton 10 Kr 2204,6223 1 1,1023112

1 ton 907134*86 907. 18486 2000o 0,90718486 1

Table 1.3Q/4f CONVERSION FACTORS FOR UNITS OF DENSITY

Multiply. by appropriate entry 3 to obtain »» g/cm g/ml lb/cu in lb/cu ft Ib/gal

1 1,000028 0,036127504 62,428327 8.3454535

1 g/ml 0,9999720 1 0,03612649 62,42658 8,345220

1 lb/cu in 27,67974 27,68052 1 1728, 231,

. .. - . ....

5,7870370 1 lb/cu ft 0,016018369 0,01601882 4 1 0,13368056 xl0“

4,3290043 1 Ib/gal 0,11982572 0,1198291 7.4805195 1 xlO”3

i ! UNITS OF PRESSURE Table l c 30/ g CONVERSION FACTORS FOR

1 altiply by appropriate entry to obtain--— dyne/cm^ bar atm kgCwt )/cn?

l o 9 9869233 1,0197162 6 dyne/cnr2 1 10" 1 6 xlO~6 xlO"

6 1 bar io 1 0,9369233 1,0197162

1 atm 1013250, 1,013250 1 1, 0332275

1 kg(-wt)/cm^ 900665® 0,980665 0,9678411 1

I® 333 2237 1.3157895 1®3595098 1 mm Hg 1333® 2237 xlO"3 xlO”3 xlO“3

1 in Hg 33063® 95 Oo 03306395 0,03342112 Oo 03453162

1 lb(wt)/sq in 60947 o31 0- 06094731 0,06804570 0 C 07030669 —

Table 1,30/ g CONVERSION FACTORS FOR UNITS OF PRESSURE (continued)

Multiply by appropriate entry to obtain — mm Hg in. Hg lb(wt)/sq in

)

1 7.500617 2,952993 1,4503830 1 dyne/cm^ 5 5 xlO“^ xlO*” xlO"

1 bar 750,0617 29 ,52993 14.503830

1 atm 760, 29,92120 14*696006

2 1 kg(wt )/cm 735.5592 28 o 95897 14,223398

1 mm Hg 1 0,03937 0,019336850

1 in Hg 25,40005 1 0,4911570

1 lb(wt)/sq in 51,71473 2,036009 1

6 Table 1,30/ h CONVERSION FACTORS FOR UNITS OF ENERGY

— j by appropriate Multiply entry g mass j

to obtain- 8** » (energy equiv) abs .joule int 0 joule cal

7 8,98656 8.98508 2,14784 1 g mass (energy equiv) 1 13 xlO ^ xlO xlO13

1,112772 1 abs. joule 1 0,999835 0,239006 xlO”3^

1.112956 1 int, joule 1,000165 1 0,239045 xlCf*

4.65584 1 cal 4.1840 40833 1 xlO"14

4.65888 1 IJ« cal 4,18674 4.18605 1.000654 xlO"14

1.174019 1 BTU 1055.040 1054.866 252. 161 xlO"11

4o 00664 1 int, kilowatt -hr 3,600,594. 3,600,000, 860,563, xicr8

2,98727 1 horsepower-hr 2,684,525. 2,684,082, 641,617. 8 xl0~

1,508720

1 ft-lb(wt) ! 1.355821 1.355597 0,324049 xlO"14

2,17256 1 cu ft - 195.2382 195.2060 46.6630 lb(wt)/sq in xlO"12

' ./hr 1,127548

1 liter-atm t- 101,3278 101.3111 24.2179 xlO-12

4: - 7 — o

CONVERSION FACTORS FOR UNITS OF ENERGY (continued) Table l«30/' ; h

\

Multiply by appropriate entry int .kilowatt horsepower to obtain——— I»T« cal BTU “hr -hr

2.14644 80 51775 2.49586 3.34754 mass (energy equiv) 1 g 13 10 7 xlO xlO xlO' xlO'

0, 947831 2.77732 3 <>72505 1 abse, joule 0,238849 xlO 3 xlO ( xio-7

0.947938 2o777778 3.72567

1 into joule 0 o 233889 -3 7 «7' xlO ^ xlO" xlO

3 0 96573 1.162030 1.553562 1 cal 0.999346 ^6 5 xlO”3 xlO xlO

3.96832 1,162791 1.559582 1 I, cal 1 To -3 “60 xlO ^ xlO xlO"6

2,93018 3.93008 BTU 251.996 1 1 4 xlO”4 xlO —1

1 int okilowatt-hr 860, 000 3412.76 1 1,341241

1 horsepower-hr 641, 197 o 2 544. 48 0.745578 1

1,285089 3,76555 5.05051 1 ft-lb(wt) 0 o 323837 ? xl0“3 xlO’7 xlO~ |

5 .42239 7 .27273 - 1 cu ft 46o6325 0.1350529 £ lb(wt)/sq in xlO"5 xlO"?

2.83420 3.77452 1 liter-atm 24 . 2021 0.0960417 xlO xlO-5 ) 0 5

(continued) Table 1.30/ h CONVERSION FACTORS FOR UNITS OF SMGI

Multiply by appropriate entry to obtain ft-lb(wt cu ft- liter-atm

• lb(wt)/sq in

6 0 6281i,. 4,60287 8,86880 (energy equiv) 1 g mass 13 11X 11 xlO xlO xlO

5 0 12195 9,86896 0,737561 1 abs, joule ” 3 xlO 3 xlO"

5c 12279 9.87058

0 C 737682 1 int e joule "* 3 xlO 3 xlQ~

2,14302 4© 12917

1 cal 3,08595 -2 2 xlO xlO“

2,14443 4,13187 1 LT, cal 3,08797 -2 2

xlO xlO" I

1 BTU 77S.156 5,40386 10,41215

1 into kilowatt -hr 2,655*656,, 18442 06 35534.1

1 horsepower-hr 1,980,000c 13750. 26493©

6,94444 1,338054 1 ft-lb(wt) 1 2 xlO”3 xlO"

1 CU ft “ 144© 1 1,926797 lb(wt^sq in

1 1 liter-atm 74 ©73 54 5 18996

- 9 Table 1,30/ 1 CONVERSION FACTORS FOR UNITS OF MOLECULAR ENERGY

Multiply by appropriate entry

to obtain— erg/molecule abs , joule/mole int . joule/mole

+ 6,02263 6.02184 1 erg/molecule 1 16 16 xlO xlO,

1. 660349

1 abs 0 joule/mole 1 17 0,999835 xicf

1*660623

1 int 0 joule/mole 1.000165 1 xlO~17

6 c % 690 1 cal/mol© 4.18400 4. 1333 17 xlO” ... _

1 abs o electron-volt/ 1.601992 molecule 96485,3 96469,4 12 xlO”

1 int o electron-volt/ lo 602521 molecule -12 96517.1 96501.2

xlO i

1c 98 5776 L 1 wave no c (cm“" ) 11,95999 11.95802 16 x!0“

- 10 5

Table 1,30/ Vi CONVERSION FACTORS FOR UNITS OF MOLECULAR ENERGY (continued)

- Multiply 1 by appropriate entry abs. electron- int .electron- wave no, to obtain $»> cal/mole volt /molecule volt /molecule (cm”l)

1. 439491 6.24222 6.24017 5.03581 1 erg/molecule 16 11 11 15 xlO xlO xlO xlO

1,036427 1.036086 8.36121 1 aba, joule/mole 0.239006 -5 2 xlO xlO~5 xlO“

1.036599 1,036257 8.36259 1 int jo ale /mole 0,239046 xlO"5 xlO“ 5 xlO"2

4.33641 4.33498 1 cal/mole 1 0.349833 xlO” 5 xlO" 5

1 abs, electron-volt/ molecule 23060. 1 0.999670 8067.34

1 int .electron-volt/ molecule 23068,1 1.000330 1 8070.00

1.239567 1,239158 wave no,(cm“^) 2.85851 1 1 4 xlO"4 xlO”

'i - 11 —

ENERGY Table 1.30/4 J CONVERSION FACTORS FOR UNITS OF SPECIFIC

Multiply, by appropriate entry BTU/lb to obtain —— abs, joule/g int, joule/g cal/g I,T 0 cal/g

i 1 abs,joule/g 1 0. 999835 0,239006 0,238849 0,429929

1 int,joule/g l a 000165 1 0,239045 0,238889 0,430000

1 cal/g 4,1840 4,1833 1 0,999346 1,798823

1 IoT 0 cal/g 4,18674 4cl8805 1.00C 654 1 1,8

1 BTU/lb 2,32597 2c32558 0,555919 0,555556 1

Table 1,30/ k CONVERSION FACTORS FOR UNITS OF SPECIFIC ENERGY PER DEGREE

Multiply by appropriate entry abs c joule/ into joule/ cal/ I 0 T, cal/ BTU/ F to obtain — g deg C g deg C g deg C g deg C lb deg

1 abs, joule/g deg C 1 0,999835 0,239006 0,238849 0,238849

1 int, joule/g deg C 1 , OOOI65 1 c 239045 0,238889 0,238889

1 cal/g deg C 4,1840 4 ® 1833 1 0,999346 0,999346

1 I 0 T 0 cal/g deg C 4a 18674 4c 18605 1,000654 1 1

1 BTU/lb deg F 4,18674 4,18605 1,000654 1 1

4 • 12 UNITS OF VISCOSITY Table 1*30/# CONVERSION FACTORS FOR

entry ~2 Multiply b/ appropriate -2 IV • | Centipoise poise s ec cm lb sec in to obtain— F

-2 7 i 1.0197x10" 5 1.4504xlO" Centipoise 1 1x10

~5 2 3 1 1.0197xl0" 1.4504x10 Poise l o xl0

2 4: -2 4 1 1,422Ax10” 9 . 8067x10 9«8067xl0 gp sec cm

1 -2 6 4 1 . 6 e 8947xl0 7.0305X10 lb sec m 6.8947xl0 F

2 1 6,9445xlO"3 2 4,7880xl0 4 o 8823xl0" lb_ sec ^t 4,7830x10^ F 3 -2 10 g 5 6000xl0 u . 2.4821x10 2.5310xlO 3 c lbp hr in 2.4821xl0

6 31 1 2 8 1.7237x10 1.7577X10 2.5001X10 lb hr ft” 1 o 7237x10 F

2 3 5 1 1 1.0197xlO" 1.4504x10" sec cm 1x10 g^ r

2 1 10"3 1 1 1.821QX10" 2 . 5901x sec" in 1. 7858x10^ 1„7858x10 lb.,M 1 2 4 1 1 3 1.4882X10 1.5l75xl0" 2.1585x10" lb sec” ft" 1.48S2X10 M -5 7 -1 2 7.1947x10” -1 . 4.9605xl0” 5,0582x10 lb lr m 4,9605 M 6 8 1 1 1 3 4.2152xl0" 5.9957x10" hr” ft" 4C1338X10- 4o1333x10~ lbu and W. L. Sibbitt. Units and conversion * on A« Hawkins. H. L a Solberg, Plant iango ^ov. JL o factors for absolute viscosity,. Power

J 3 .

\ \ — 2

Table 1.30/J CONVERSION FACTORS FOR UNITS OF VISCOSITY (continued)

Multiply by appropriate entry 2 2 2 -1 -l to obtain—— Ibp sec ft” Ibp hr in“ lh hr ft” sec cm F gj^

f 5 n 9 Centipoise 2*0886x10" 4r0289xl0" 5o80l6xl0" IxlO”2

9 7 Poise 2 <> 0886x10"^ 4*0289xl0" 5o80!6xlQ" 1

-2 6 -4 2 &g sec cm 2 r 048 3.9510xlO" 5 6895xl0 9o8067xl0 F

•=2 4 2 Ibp sec in l e 4400x10^ 2o7778xl0“ 4,000Cbcl0“ 6«8947xlcA

2 6 4 2 lb_ sec ft°“ 1 l c 929QxlO" 2 o 77?8xl0” 4 » 788Qx10 F

2 8 lb_ hr in”2 5ol841xl0 5 1 Io4400xl0 2e4821xl0 F

) 2 3 3 6 Ibp hr ft” 3 o 6001X10 6„9446xl0“ 1 1 6 7237x10

1 3 9 7 sec””'*' cm" 2o0886xl0“ 4 o 0289xl0“ 5o80l6xl0" 1

l

9 i "1 . 1 7 4 lb sec in 3.7298X10" 7d948xl0“ 1,036Qx10“ 1,7858x10* Mr

i

1 2 8 1 lb sec” f 3ol083xl0” 5o9958xl0" 8o6339xlO“6 1.4882X10 M

1 1 10 8 -2 1 hr" in" 4 \ l c 036lxl0" 1o9985x10" 2o8779x10” 4.9605x10

1

1 1 6 U 9 3 lbj, hr” ft" 8c6339xlO°“ l e 6655xl0“ 2o3983x10” 4c1336x10“

. . . . i 1

Table 1,30/4 CONVERSION FACTORS FOR UNITS OF VISCOSITY (continued)

Multiply By Appropriate Entry ,, -1. -1 " 1 1 To Obtain Ib^sec in lb hr_lft Slug seedin’" Slug hr^ft"1 M

c \ 5 2 Centipoise 5.5998xlo“ 2^4191 1,7405x10” 7.5188x10”

*3 2 Poise 5*5998x30 2*4191x10 1 0 7405x10“^ 7.5188

»2 5 1 3 g sec cm 5*4916 2*3723xl0 1C7068X10” 7e3733xl0 r

1 . -2 2 7 5 lb„ sec 3o8609xl0 l e 6679xl0 1.200CX10 5.1840xl0 F m

2 5 2 3 lb™ sec ft 2 0 6812 l o 1583xl0 8c3335xl0" 3.6000x10

-2 6 10 4 9 lb_ hr in Io3899xl0 6 o 0044xl0 4o3199xl0 1.8662xl0 F

2 8 2 7 lb™ hr ft" 9 o 6524x10^ 4ol698xl0 3 o 0000x10 1c2960x10 *

1 1 3 2 "^ sec" cm" 5.5998xlO~ 2,4191xl0 1 . x10 7.5188 gM 7405

-2 - 4 3 lbw sec "*- in~^ 1 4.3200x10 3.1081x10 1C3427X10

1 1 ~2 3 3 2 lb., sec" ft" 8 o 33 33x10 3o6000x10 2„5902xlO" 1.1189xl0

6 1 8.6337xl0” 3.7297X10" lbM hr_1 in_1 2.7778x10"^ 1c 2000x10^

i 1 1 2 S3 11— — -5 7 « lOSlxlo” $ U «H 2c 3148x10 1 7c1946x10~ 3

;

56 11 67 22 78 33 89 00 56 11 67 22 33 89 00 4.44 7.78 U 0. 1. 1. 2. 2. 3. 3. 5. 5. 6. 6. 7. 8. 8. 9.44 ~ w w r-’ 05 o' d ^ to © o 10.

B 0 0° o t

ss §S SS gS SS gS S SSS S S3 S £ SS g£ SS gs S iSS s

3 8 £3 So SS S§ SS S SSS S So SS So SS So .55 .5 .55S .5 n * immuMmumMimuiUiUiiiimimminm

8 3 383 3 2 2 3 882 3 SSS 83 283 S53SS 3 2.2 5 88 2 585 2 U S 8 3 28 3 ° 8 gsggsss=§ssss SSSSS 553 SSSS 3 SS 5 sS=Ss'SSs£SS§sSSBB^ssss

»88 33235 S8228 2 858 253S SSS S-25£ S52 28 28 5 S 25 3 8 * 8 8 2 d 2 SS°SSS§§isgSS| 5 |-? &SSS°f | | § 5

SS § S SS SS SS SS S SSS S SS SS SS SS SS SS S SSS s t SssssassssssaaiSisgsassfigsasssiSsaiMiisEEiassigsgsgsg

W wo w w w w w o w wo ww w w w o w w w W w o w w P § £ P P § W . # , B # # ^ * SS°SSggS3 22°88°S8S3gg^

TABLE s 8 2 2 8 8 8 5 2 S § 3 2 3 5 8 5 2 3 5 5 2 8 3 2 5 8 8 2 3 S S 3 2 3 5 8 8 3 3853 g sasassSS 535 3 5 &SSSSSggSRPS!:S'SSSSSSgSSSSS|S 3 S^S 2 25 °aasa

SION 2SS 33235 SUSS? 2 8 8 £ 2538 2 8 8 33235 o 5 2 g 8 2882 2538 R 0 W.

VE by

ON Air" SS SS SS gs SS gs .S .gss ,S C « .SS .gs SS .gs SS is s gss s of R ° 332 Ss|g 5 S| 3 gSS||sR 8 E ^Hl| 55 Sll|Il§S| 22 §|Sgs| ^ lility

INT sg SS Si SS sg SS S S S O S sg SS sg SS sg SS S S ‘ S g s s 0 + gSgSSg 28 &SSSSS&S 3 §fgSSSg' 2 S>T '¥S 23 SS 8 ggg§° 3 &gSSSgR°§S

2 S S 2 5 S 53233 882 8352 8882 u . 8S25S 53233 3 2 3 TEMPERATURE 5853 3853 ° SR£ 5 S 22 8 S 3 8 S ' °‘ * » SS g& 333 S 38 £ 8 S 8 S 85 ^ 3 3 2 2 22 8 S S 8 8

288 33235 S52S :888 2 5 3 8 2 8 8 33235 S52g; SSS 2 5 3 3

„. SS gs SS gs SS gs S gss S SS gs SS SS SS gs s gss s * mmmmmmmmimtmmUiUiimi sg SS sg SS sg SS S S S g S sg SS sg SS sg SS S ssg s s

2 u 8S2SS 53233 8 82 835 2 8 2 8 2 8S2 5S 53233 8 8 2 S3 5,2 S8S2 ° 5g“S»2S|SSS88&3 3;;°SSSS^^

1 1 1 1 ' 1 1 1 1 ' ' ' ' ' • • i I i t l l I I I « • l l l i i i i i I I , , ,

2 .83285 S82S2 2S8S 2 8 * , ™ 253S 8 33235 S52S8 2S8S 283S 1 ° « «' S 5 §S 8 8 3 3 3 3 § 8 8 g 3 3 3 3 RS 8 8 1 8 S 8 S.S R5 8 2 5 5§ 8 8 3 g gS 3 3 g 8

« .SS .SS .SS .gs .SS .gs .S .gss .S SS gs SS gs SS gs s gss s ° ” ° “ 2 2 2 s 3 8 as 8 3 3 S3 SSS R5 8 Sg 8 R8 S 8 § S3 3 S S 2 § 8 §5 § 3 3£8S':S 5 S R8g

sg .SS sg SS Sg SS S ssg S sg SS sg SS sg SS S ssg s s

2 8S2SS 53233 882 S3S2 S 8 8 2 82253 53233 882 835 2 S832

x .283 .--335 .38228 .2383 .2538 .288 .33235 35228 2888 253S ° ” ” m s 2 3 2 2 2 8 8 8.5 8 5 S8 S.8 8 ? 3 3 3 3&S S SS S 2 S S S R8 8 8 8 8g S S S S&S 3 3 S8 TEMPERATURE

INT E R C

ON

VE R S

ION

TABLE

(Continued) THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the x\ct of Congress, March

3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and

"various consultation and information services. A major portion of the Bureau’s work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy

Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover.

Reports and Publications

The results of the Bureau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau’s own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly peri- odicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout

the world. There are also five series of nonperiodical publications: The Applied Mathematics

Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau’s publications can be found in NBS Circular 460, Publications of

the National Bureau of Standards ($1.00). Information on calibration services and fees can be

found in NBS Circular 483, Testing by the National Bureau of Standards (25 cents). Both are

available from the Government Printing Office. Inquiries regarding the Bureau’s reports and

publications should be addressed to the Office of Scientific Publications, National Bureau of Stand-

ards, Washington 25, D. C. NBS