Real Gases – As Opposed to a Perfect Or Ideal Gas – Exhibit Properties That Cannot Be Explained Entirely Using the Ideal Gas Law

Total Page:16

File Type:pdf, Size:1020Kb

Real Gases – As Opposed to a Perfect Or Ideal Gas – Exhibit Properties That Cannot Be Explained Entirely Using the Ideal Gas Law Basic principle II Second class Dr. Arkan Jasim Hadi 1. Real gas Real gases – as opposed to a perfect or ideal gas – exhibit properties that cannot be explained entirely using the ideal gas law. To understand the behavior of real gases, the following must be taken into account: compressibility effects; variable specific heat capacity; van der Waals forces; non-equilibrium thermodynamic effects; Issues with molecular dissociation and elementary reactions with variable composition. Critical state and Reduced conditions Critical point: The point at highest temp. (Tc) and Pressure (Pc) at which a pure chemical species can exist in vapour/liquid equilibrium. The point critical is the point at which the liquid and vapour phases are not distinguishable; because of the liquid and vapour having same properties. Reduced properties of a fluid are a set of state variables normalized by the fluid's state properties at its critical point. These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor, provide the basis for the simplest form of the theorem of corresponding states The reduced pressure is defined as its actual pressure divided by its critical pressure : The reduced temperature of a fluid is its actual temperature, divided by its critical temperature: The reduced specific volume ") of a fluid is computed from the ideal gas law at the substance's critical pressure and temperature: This property is useful when the specific volume and either temperature or pressure are known, in which case the missing third property can be computed directly. 1 Basic principle II Second class Dr. Arkan Jasim Hadi In Kay's method, pseudocritical values for mixtures of gases are calculated on the assumption that each component in the mixture contributes to the pseudocritical value in the same proportion as the mol fraction of that component in the gas. Thus, the pseudocritical values are computed as follows: where yi, is the mole fraction, ppc is the pseudocritical pressure and Tpc, is the pseudo- critical temperature The values so obtained are pseudocritical temperature and pressure, Tpc and ppc which replace T, and P, to define pseudoreduced parameters:: 푇 푇푝푟 = 푇푝푐 푝 푝푝푟 = 푝푝푐 Compressibility factor (Z): is the ratio of the molar volume of a gas to the molar volume of an ideal gas at the same temperature and pressure. It is a useful thermodynamic property for modifying the ideal gas law to account for the real gas behavior. Or - For an ideal gas or perfect gases, the compressibility factor Z=1 - For real gas Z≠ 1 2 Basic principle II Second class Dr. Arkan Jasim Hadi 3 Basic principle II Second class Dr. Arkan Jasim Hadi 4 Basic principle II Second class Dr. Arkan Jasim Hadi 5 Basic principle II Second class Dr. Arkan Jasim Hadi 14.6 Calculating the Compressibility Factor Using the Pitzer Factors zo and z1 Several methods have appeared in the literature and in computer codes to cal- culate z via an equation in order to obtain more accurate values of z than can be obtained from charts. Equation (14.4) employs the Pitzer acentric factor, w where zo and z1 are listed in tables in Appendix C as a function of Tr and Pr, and co is unique for each compound, and can be found in the CD that accompanies this book. Table 14.1 is an abbreviated table of the acentric factors from Pitzer. The acentric factor 흎 indicates the degree of acentricity or nonsphericity of a molecule. For helium and argon, 흎 is equal to zero. For higher molecular weight hydrocarbons and for molecules with increased polarity, the value of 흎 increases. 14.7 Real Gas Mixtures How can you apply the concept of compressibility to problems involving gas mixtures? Each component in the mixture will have different critical properties. Numerous ways have been proposed to properly weigh the critical properties so that at appropriate reduced temperature and pressure can be used to obtain z. Refer to the references at the end of this chapter for some examples. One simple way that is rea sonably accurate, at least for our purposes, is Kay's method? 6 Basic principle II Second class Dr. Arkan Jasim Hadi In Kay's method, pseudocritical values for mixtures of gases are calculated of the assumption that each component in the mixture contributes to the pseudocritica value in the same proportion as the mol fraction of that component in the gas. Thus the pseudocritical values are computed as follows: where yi is the mole fraction, 푝푐́ is the pseudocritical pressure and 푇́푐 is the pseudo critical temperature. EXAMPLE 14.3 Calculation of p-V-T Properties for a Real Gas Mixture A gaseous mixture has the following composition (in mole percent): Methane, CH4 20 Ethylene, C2H4 30 Nitrogen, N2 50 at 90 atm pressure and 100°C. Compare the volume per mole as computed by the methods of: (a) the ideal gas law and (b) the pseudoreduced technique (Kay's method). Solution Basis: 1 g mol of gas mixture Additional data needed are: Component Tc (K) Pc (atm) from App. CH4 191 45.8 C2H4 283 50.5 N2 126 33.5 a. Ideal gas law 7 Basic principle II Second class Dr. Arkan Jasim Hadi 푅푇 (1)(82.06)(273+100) 푉 = = = 340 푐푚3/푔푚표푙 푝 90 b. According to the Kay’s method, first calculate the pseudo critical values of mixture 푝푝푐 = 푝푐퐴푦퐴 + 푝푐퐵푦퐵 + 푝푐퐶푦퐶 = (45.8)(0.2) + (50.5)(0.3) + (33.5)(0.5) = 41.1 atm 푇푝푐 = 푇푐퐴푦퐴 + 푇푐퐵푦퐵 + 푇푐퐶푦퐶 = (191)(0.2) + (283)(0.3) + (126)(0.5) = 186 K Then calculate the pseudocritical values of the mixture 푝 푇 푝푝푟 = 푇푝푟 = 푝푝푐 푇푝푏 = 90/41.1 = 2.19, = 373/186 = 2.01 With the aid of these two parameter and from fig. 14.4 b that z Tpr =1.91, and thus z = 0.95 푧푅푇 (1)(0.95)(82.06)(273 + 100) 푉 = = = 323 푐푚3/푔푚표푙 푝 90 8 .
Recommended publications
  • Carbon Dioxide Heat Transfer Coefficients and Pressure
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della ricerca - Università degli studi di Napoli Federico II international journal of refrigeration 33 (2010) 1068e1085 available at www.sciencedirect.com www.iifiir.org journal homepage: www.elsevier.com/locate/ijrefrig Carbon dioxide heat transfer coefficients and pressure drops during flow boiling: Assessment of predictive methods R. Mastrullo a, A.W. Mauro a, A. Rosato a,*, G.P. Vanoli b a D.E.TE.C., Facolta` di Ingegneria, Universita` degli Studi di Napoli Federico II, p.le Tecchio 80, 80125 Napoli, Italy b Dipartimento di Ingegneria, Universita` degli Studi del Sannio, corso Garibaldi 107, Palazzo dell’Aquila Bosco Lucarelli, 82100 Benevento, Italy article info abstract Article history: Among the alternatives to the HCFCs and HFCs, carbon dioxide emerged as one of the most Received 13 December 2009 promising environmentally friendly refrigerants. In past years many works were carried Received in revised form out about CO2 flow boiling and very different two-phase flow characteristics from 8 February 2010 conventional fluids were found. Accepted 5 April 2010 In order to assess the best predictive methods for the evaluation of CO2 heat transfer Available online 9 April 2010 coefficients and pressure gradients in macro-channels, in the current article a literature survey of works and a collection of the results of statistical comparisons available in Keywords: literature are furnished. Heat exchanger In addition the experimental data from University of Naples are used to run a deeper Boiling analysis. Both a statistical and a direct comparison against some of the most quoted Carbon dioxide-review predictive methods are carried out.
    [Show full text]
  • Entropy: Ideal Gas Processes
    Chapter 19: The Kinec Theory of Gases Thermodynamics = macroscopic picture Gases micro -> macro picture One mole is the number of atoms in 12 g sample Avogadro’s Number of carbon-12 23 -1 C(12)—6 protrons, 6 neutrons and 6 electrons NA=6.02 x 10 mol 12 atomic units of mass assuming mP=mn Another way to do this is to know the mass of one molecule: then So the number of moles n is given by M n=N/N sample A N = N A mmole−mass € Ideal Gas Law Ideal Gases, Ideal Gas Law It was found experimentally that if 1 mole of any gas is placed in containers that have the same volume V and are kept at the same temperature T, approximately all have the same pressure p. The small differences in pressure disappear if lower gas densities are used. Further experiments showed that all low-density gases obey the equation pV = nRT. Here R = 8.31 K/mol ⋅ K and is known as the "gas constant." The equation itself is known as the "ideal gas law." The constant R can be expressed -23 as R = kNA . Here k is called the Boltzmann constant and is equal to 1.38 × 10 J/K. N If we substitute R as well as n = in the ideal gas law we get the equivalent form: NA pV = NkT. Here N is the number of molecules in the gas. The behavior of all real gases approaches that of an ideal gas at low enough densities. Low densitiens m= enumberans tha oft t hemoles gas molecul es are fa Nr e=nough number apa ofr tparticles that the y do not interact with one another, but only with the walls of the gas container.
    [Show full text]
  • IB Questionbank
    Topic 3 Past Paper [94 marks] This question is about thermal energy transfer. A hot piece of iron is placed into a container of cold water. After a time the iron and water reach thermal equilibrium. The heat capacity of the container is negligible. specific heat capacity. [2 marks] 1a. Define Markscheme the energy required to change the temperature (of a substance) by 1K/°C/unit degree; of mass 1 kg / per unit mass; [5 marks] 1b. The following data are available. Mass of water = 0.35 kg Mass of iron = 0.58 kg Specific heat capacity of water = 4200 J kg–1K–1 Initial temperature of water = 20°C Final temperature of water = 44°C Initial temperature of iron = 180°C (i) Determine the specific heat capacity of iron. (ii) Explain why the value calculated in (b)(i) is likely to be different from the accepted value. Markscheme (i) use of mcΔT; 0.58×c×[180-44]=0.35×4200×[44-20]; c=447Jkg-1K-1≈450Jkg-1K-1; (ii) energy would be given off to surroundings/environment / energy would be absorbed by container / energy would be given off through vaporization of water; hence final temperature would be less; hence measured value of (specific) heat capacity (of iron) would be higher; This question is in two parts. Part 1 is about ideal gases and specific heat capacity. Part 2 is about simple harmonic motion and waves. Part 1 Ideal gases and specific heat capacity State assumptions of the kinetic model of an ideal gas. [2 marks] 2a. two Markscheme point molecules / negligible volume; no forces between molecules except during contact; motion/distribution is random; elastic collisions / no energy lost; obey Newton’s laws of motion; collision in zero time; gravity is ignored; [4 marks] 2b.
    [Show full text]
  • How Compressible Are Innovation Processes?
    1 How Compressible are Innovation Processes? Hamid Ghourchian, Arash Amini, Senior Member, IEEE, and Amin Gohari, Senior Member, IEEE Abstract The sparsity and compressibility of finite-dimensional signals are of great interest in fields such as compressed sensing. The notion of compressibility is also extended to infinite sequences of i.i.d. or ergodic random variables based on the observed error in their nonlinear k-term approximation. In this work, we use the entropy measure to study the compressibility of continuous-domain innovation processes (alternatively known as white noise). Specifically, we define such a measure as the entropy limit of the doubly quantized (time and amplitude) process. This provides a tool to compare the compressibility of various innovation processes. It also allows us to identify an analogue of the concept of “entropy dimension” which was originally defined by R´enyi for random variables. Particular attention is given to stable and impulsive Poisson innovation processes. Here, our results recognize Poisson innovations as the more compressible ones with an entropy measure far below that of stable innovations. While this result departs from the previous knowledge regarding the compressibility of fat-tailed distributions, our entropy measure ranks stable innovations according to their tail decay. Index Terms Compressibility, entropy, impulsive Poisson process, stable innovation, white L´evy noise. I. INTRODUCTION The compressible signal models have been extensively used to represent or approximate various types of data such as audio, image and video signals. The concept of compressibility has been separately studied in information theory and signal processing societies. In information theory, this concept is usually studied via the well-known entropy measure and its variants.
    [Show full text]
  • Thermodynamics of Ideal Gases
    D Thermodynamics of ideal gases An ideal gas is a nice “laboratory” for understanding the thermodynamics of a fluid with a non-trivial equation of state. In this section we shall recapitulate the conventional thermodynamics of an ideal gas with constant heat capacity. For more extensive treatments, see for example [67, 66]. D.1 Internal energy In section 4.1 we analyzed Bernoulli’s model of a gas consisting of essentially 1 2 non-interacting point-like molecules, and found the pressure p = 3 ½ v where v is the root-mean-square average molecular speed. Using the ideal gas law (4-26) the total molecular kinetic energy contained in an amount M = ½V of the gas becomes, 1 3 3 Mv2 = pV = nRT ; (D-1) 2 2 2 where n = M=Mmol is the number of moles in the gas. The derivation in section 4.1 shows that the factor 3 stems from the three independent translational degrees of freedom available to point-like molecules. The above formula thus expresses 1 that in a mole of a gas there is an internal kinetic energy 2 RT associated with each translational degree of freedom of the point-like molecules. Whereas monatomic gases like argon have spherical molecules and thus only the three translational degrees of freedom, diatomic gases like nitrogen and oxy- Copyright °c 1998{2004, Benny Lautrup Revision 7.7, January 22, 2004 662 D. THERMODYNAMICS OF IDEAL GASES gen have stick-like molecules with two extra rotational degrees of freedom or- thogonally to the bridge connecting the atoms, and multiatomic gases like carbon dioxide and methane have the three extra rotational degrees of freedom.
    [Show full text]
  • An Entropy-Stable Hybrid Scheme for Simulations of Transcritical Real-Fluid
    Journal of Computational Physics 340 (2017) 330–357 Contents lists available at ScienceDirect Journal of Computational Physics www.elsevier.com/locate/jcp An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows Peter C. Ma, Yu Lv ∗, Matthias Ihme Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA a r t i c l e i n f o a b s t r a c t Article history: A finite-volume method is developed for simulating the mixing of turbulent flows at Received 30 August 2016 transcritical conditions. Spurious pressure oscillations associated with fully conservative Received in revised form 9 March 2017 formulations are addressed by extending a double-flux model to real-fluid equations of Accepted 12 March 2017 state. An entropy-stable formulation that combines high-order non-dissipative and low- Available online 22 March 2017 order dissipative finite-volume schemes is proposed to preserve the physical realizability Keywords: of numerical solutions across large density gradients. Convexity conditions and constraints Real fluid on the application of the cubic state equation to transcritical flows are investigated, and Spurious pressure oscillations conservation properties relevant to the double-flux model are examined. The resulting Double-flux model method is applied to a series of test cases to demonstrate the capability in simulations Entropy stable of problems that are relevant for multi-species transcritical real-fluid flows. Hybrid scheme © 2017 Elsevier Inc. All rights reserved. 1. Introduction The accurate and robust simulation of transcritical real-fluid effects is crucial for many engineering applications, such as fuel injection in internal-combustion engines, rocket motors and gas turbines.
    [Show full text]
  • New Explicit Correlation for the Compressibility Factor of Natural Gas: Linearized Z-Factor Isotherms
    J Petrol Explor Prod Technol (2016) 6:481–492 DOI 10.1007/s13202-015-0209-3 ORIGINAL PAPER - PRODUCTION ENGINEERING New explicit correlation for the compressibility factor of natural gas: linearized z-factor isotherms 1 2 3 Lateef A. Kareem • Tajudeen M. Iwalewa • Muhammad Al-Marhoun Received: 14 October 2014 / Accepted: 17 October 2015 / Published online: 18 December 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The compressibility factor (z-factor) of gases is Keywords Z-factor Á Explicit correlation Á Reduced a thermodynamic property used to account for the devia- temperature Á Reduced pressure Á Natural gas tion of real gas behavior from that of an ideal gas. Corre- lations based on the equation of state are often implicit, List of symbols because they require iteration and are computationally P Pressure (psi) expensive. A number of explicit correlations have been P Pseudo-critical pressure derived to enhance simplicity; however, no single explicit pc P Pseudo-reduced pressure correlation has been developed for the full range of pseudo- pr ÀÁ T Temperature (R) reduced temperatures 1:05 Tpr 3 and pseudo-reduced ÀÁ Tpc Pseudo-critical temperature (R) pressures 0:2 Ppr 15 , which represents a significant Tpr Pseudo-reduced temperature research gap. This work presents a new z-factor correlation Ppc Pseudo-critical pressure (psi) that can be expressed in linear form. On the basis of Hall Ppr Pseudo-reduced pressure and Yarborough’s implicit correlation, we developed the v Initial guess for iteration process new correlation from 5346 experimental data points Y Pseudo-reduced density extracted from 5940 data points published in the SPE z-factor Compressibility factor natural gas reservoir engineering textbook and created a linear z-factor chart for a full range of pseudo-reduced temperatures ð1:15 Tpr 3Þ and pseudo-reduced pres- sures ð0:2 Ppr 15Þ.
    [Show full text]
  • 5.5 ENTROPY CHANGES of an IDEAL GAS for One Mole Or a Unit Mass of Fluid Undergoing a Mechanically Reversible Process in a Closed System, the First Law, Eq
    Thermodynamic Third class Dr. Arkan J. Hadi 5.5 ENTROPY CHANGES OF AN IDEAL GAS For one mole or a unit mass of fluid undergoing a mechanically reversible process in a closed system, the first law, Eq. (2.8), becomes: Differentiation of the defining equation for enthalpy, H = U + PV, yields: Eliminating dU gives: For an ideal gas, dH = and V = RT/ P. With these substitutions and then division by T, As a result of Eq. (5.11), this becomes: where S is the molar entropy of an ideal gas. Integration from an initial state at conditions To and Po to a final state at conditions T and P gives: Although derived for a mechanically reversible process, this equation relates properties only, and is independent of the process causing the change of state. It is therefore a general equation for the calculation of entropy changes of an ideal gas. 1 Thermodynamic Third class Dr. Arkan J. Hadi 5.6 MATHEMATICAL STATEMENT OF THE SECOND LAW Consider two heat reservoirs, one at temperature TH and a second at the lower temperature Tc. Let a quantity of heat | | be transferred from the hotter to the cooler reservoir. The entropy changes of the reservoirs at TH and at Tc are: These two entropy changes are added to give: Since TH > Tc, the total entropy change as a result of this irreversible process is positive. Also, ΔStotal becomes smaller as the difference TH - TC gets smaller. When TH is only infinitesimally higher than Tc, the heat transfer is reversible, and ΔStotal approaches zero. Thus for the process of irreversible heat transfer, ΔStotal is always positive, approaching zero as the process becomes reversible.
    [Show full text]
  • Chapter 3 3.4-2 the Compressibility Factor Equation of State
    Chapter 3 3.4-2 The Compressibility Factor Equation of State The dimensionless compressibility factor, Z, for a gaseous species is defined as the ratio pv Z = (3.4-1) RT If the gas behaves ideally Z = 1. The extent to which Z differs from 1 is a measure of the extent to which the gas is behaving nonideally. The compressibility can be determined from experimental data where Z is plotted versus a dimensionless reduced pressure pR and reduced temperature TR, defined as pR = p/pc and TR = T/Tc In these expressions, pc and Tc denote the critical pressure and temperature, respectively. A generalized compressibility chart of the form Z = f(pR, TR) is shown in Figure 3.4-1 for 10 different gases. The solid lines represent the best curves fitted to the data. Figure 3.4-1 Generalized compressibility chart for various gases10. It can be seen from Figure 3.4-1 that the value of Z tends to unity for all temperatures as pressure approach zero and Z also approaches unity for all pressure at very high temperature. If the p, v, and T data are available in table format or computer software then you should not use the generalized compressibility chart to evaluate p, v, and T since using Z is just another approximation to the real data. 10 Moran, M. J. and Shapiro H. N., Fundamentals of Engineering Thermodynamics, Wiley, 2008, pg. 112 3-19 Example 3.4-2 ---------------------------------------------------------------------------------- A closed, rigid tank filled with water vapor, initially at 20 MPa, 520oC, is cooled until its temperature reaches 400oC.
    [Show full text]
  • New Explicit Correlation for the Compressibility Factor of Natural Gas: Linearized Z-Factor Isotherms
    J Petrol Explor Prod Technol DOI 10.1007/s13202-015-0209-3 ORIGINAL PAPER - PRODUCTION ENGINEERING New explicit correlation for the compressibility factor of natural gas: linearized z-factor isotherms 1 2 3 Lateef A. Kareem • Tajudeen M. Iwalewa • Muhammad Al-Marhoun Received: 14 October 2014 / Accepted: 17 October 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The compressibility factor (z-factor) of gases is Keywords Z-factor Á Explicit correlation Á Reduced a thermodynamic property used to account for the devia- temperature Á Reduced pressure Á Natural gas tion of real gas behavior from that of an ideal gas. Corre- lations based on the equation of state are often implicit, List of symbols because they require iteration and are computationally P Pressure (psi) expensive. A number of explicit correlations have been P Pseudo-critical pressure derived to enhance simplicity; however, no single explicit pc P Pseudo-reduced pressure correlation has been developed for the full range of pseudo- pr ÀÁ T Temperature (R) reduced temperatures 1:05 Tpr 3 and pseudo-reduced ÀÁ Tpc Pseudo-critical temperature (R) pressures 0:2 Ppr 15 , which represents a significant Tpr Pseudo-reduced temperature research gap. This work presents a new z-factor correlation Ppc Pseudo-critical pressure (psi) that can be expressed in linear form. On the basis of Hall Ppr Pseudo-reduced pressure and Yarborough’s implicit correlation, we developed the v Initial guess for iteration process new correlation from 5346 experimental data points Y Pseudo-reduced density extracted from 5940 data points published in the SPE z-factor Compressibility factor natural gas reservoir engineering textbook and created a linear z-factor chart for a full range of pseudo-reduced temperatures ð1:15 Tpr 3Þ and pseudo-reduced pres- sures ð0:2 Ppr 15Þ.
    [Show full text]
  • Technical Brief
    Journal of Energy Resources Technology Technical Brief Formulations for the Thermodynamic on mathematical integration of the correlations developed for spe- cific heat, and the property estimates obtained are remarkably Properties of Pure Substances accurate. The fundamental equation-of-state formulation typically re- quires several numerical constants to ensure accuracy. Besides, George A. Adebiyi subsequent determination of the complete list of thermodynamic Mechanical Engineering Department, Mississippi State properties from the fundamental equation of state requires obtain- University, Mississippi State, MS 39762 ing differentials of the characteristic function. The functional rep- e-mail: [email protected] resentation must be accurate, and great precision will be required if the estimates obtained for these other thermodynamic properties are to be reliable. These formulations are, as a result, not suitable for incorporation into programs that require repeated computation This article presents a procedure for formulation for the thermo- of system properties. dynamic properties of pure substances using two primary sets of The integrated approach is described in general terms in this data, namely, the pvT data and the specific heat data, such as the article. An illustration is provided using dry air at pressures as constant-pressure specific heat c p as a function of pressure and high as 50 bar ͑725 psia͒ and temperatures in the range 250 K temperature. The method makes use of a linkage, on the basis of ͑450 R͒ to 1000 K ͑1800 R͒. the laws of thermodynamics, between the virial coefficients for the pvT data correlation and those for the corresponding specific heat data correlation for the substance.
    [Show full text]
  • A Thermodynamic Theory of Economics
    ________________________________________________________________________________________________ A Thermodynamic Theory of Economics Final Post Review Version ________________________________________________________________________________________________ John Bryant VOCAT International Ltd, 10 Falconers Field, Harpenden, AL5 3ES, United Kingdom. E-mail: [email protected] Abstract: An analogy between thermodynamic and economic theories and processes is developed further, following a previous paper published by the author in 1982. Economic equivalents are set out concerning the ideal gas equation, the gas constant, pressure, temperature, entropy, work done, specific heat and the 1st and 2nd Laws of Thermodynamics. The law of diminishing marginal utility was derived from thermodynamic first principles. Conditions are set out concerning the relationship of economic processes to entropic gain. A link between the Le Chatelier principle and economic processes is developed, culminating in a derivation of an equation similar in format to that of Cobb Douglas production function, but with an equilibrium constant and a disequilibrium function added to it. A trade cycle is constructed, utilising thermodynamic processes, and equations are derived for cycle efficiency, growth and entropy gain. A thermodynamic model of a money system is set out, and an attempt is made to relate interest rates, the rate of return, money demand and the velocity of circulation to entropy gain. Aspects concerning the measurement of economic value in thermodynamic terms are discussed. Keywords: Thermodynamics, economics, Le Chatelier, entropy, utility, money, equilibrium, value, energy. Publisher/Journal: This paper is the final post review version of a paper submitted to the International Journal of Exergy, published by Inderscience Publishers. Reference: Bryant, J. (2007) ‘A thermodynamic theory of economics’, Int. J. Exergy, Vol 4, No.
    [Show full text]