Lunar Orbit Rendezvous INST 154 Apollo at 50
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gryphon: a Flexible Lunar Lander Design to Support a Semi-Permanent Lunar Outpost
AIAA SPACE 2007 Conference & Exposition AIAA 2007-6169 18 - 20 September 2007, Long Beach, California The Gryphon: A Flexible Lunar Lander Design to Support a Semi-Permanent Lunar Outpost Dale Arney1, Joseph Hickman,1 Philip Tanner,1 John Wagner,1 Marc Wilson,1 and Dr. Alan Wilhite2 Georgia Institute of Technology/National Institute of Aerospace, Hampton, VA, 23666 A lunar lander is designed to provide safe, reliable, and continuous access to the lunar surface by the year 2020. The NASA Exploration System Architecture is used to initially define the concept of operations, architecture elements, and overall system requirements. The design evaluates revolutionary concepts and technologies to improve the performance and safety of the lunar lander while minimizing the associated cost using advanced systems engineering capabilities and multi-attribute decision making techniques. The final design is a flexible (crew and/or cargo) lander with a side-mounted minimum ascent stage and a separate stage to perform lunar orbit insertion. Nomenclature ACC = Affordability and Cost Criterion AFM = Autonomous Flight Manager AHP = Analytic Hierarchy Process ALHAT = Autonomous Landing and Hazard Avoidance Technology ATP = Authority to Proceed AWRS = Advanced Air & Water Recovery System CDR = Critical Design Review CER = Cost Estimating Relationship CEV = Crew Exploration Vehicle CH4 = Methane DDT&E = Design, Development, Testing and Evaluation DOI = Descent Orbit Insertion DSM = Design Structure Matrix ECLSS = Environmental Control & Life Support System -
Apollo Program 1 Apollo Program
Apollo program 1 Apollo program The Apollo program was the third human spaceflight program carried out by the National Aeronautics and Space Administration (NASA), the United States' civilian space agency. First conceived during the Presidency of Dwight D. Eisenhower as a three-man spacecraft to follow the one-man Project Mercury which put the first Americans in space, Apollo was later dedicated to President John F. Kennedy's national goal of "landing a man on the Moon and returning him safely to the Earth" by the end of the 1960s, which he proposed in a May 25, 1961 address to Congress. Project Mercury was followed by the two-man Project Gemini (1962–66). The first manned flight of Apollo was in 1968 and it succeeded in landing the first humans on Earth's Moon from 1969 through 1972. Kennedy's goal was accomplished on the Apollo 11 mission when astronauts Neil Armstrong and Buzz Aldrin landed their Lunar Module (LM) on the Moon on July 20, 1969 and walked on its surface while Michael Collins remained in lunar orbit in the command spacecraft, and all three landed safely on Earth on July 24. Five subsequent Apollo missions also landed astronauts on the Moon, the last in December 1972. In these six spaceflights, 12 men walked on the Moon. Apollo ran from 1961 to 1972, and was supported by the two-man Gemini program which ran concurrently with it from 1962 to 1966. Gemini missions developed some of the space travel techniques that were necessary for the success of the Apollo missions. -
Materials for Liquid Propulsion Systems
https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost. -
The Following Are Edited Excerpts from Two Interviews Conducted with Dr
Interviews with Dr. Wernher von Braun Editor's note: The following are edited excerpts from two interviews conducted with Dr. Wernher von Braun. Interview #1 was conducted on August 25, 1970, by Robert Sherrod while Dr. von Braun was deputy associate administrator for planning at NASA Headquarters. Interview #2 was conducted on November 17, 1971, by Roger Bilstein and John Beltz. These interviews are among those published in Before This Decade is Out: Personal Reflections on the Apollo Program, (SP-4223, 1999) edited by Glen E. Swanson, whick is vailable on-line at http://history.nasa.gov/SP-4223/sp4223.htm on the Web. Interview #1 In the Apollo Spacecraft Chronology, you are quoted as saying "It is true that for a long time we were not in favor of lunar orbit rendezvous. We favored Earth orbit rendezvous." Well, actually even that is not quite correct, because at the outset we just didn't know which route [for Apollo to travel to the Moon] was the most promising. We made an agreement with Houston that we at Marshall would concentrate on the study of Earth orbit rendezvous, but that did not mean we wanted to sell it as our preferred scheme. We weren't ready to vote for it yet; our study was meant to merely identify the problems involved. The agreement also said that Houston would concentrate on studying the lunar rendezvous mode. Only after both groups had done their homework would we compare notes. This agreement was based on common sense. You don't start selling your scheme until you are convinced that it is superior. -
America's Greatest Projects and Their Engineers - VII
America's Greatest Projects and Their Engineers - VII Course No: B05-005 Credit: 5 PDH Dominic Perrotta, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 076 77 P: (877) 322-5800 [email protected] America’s Greatest Projects & Their Engineers-Vol. VII The Apollo Project-Part 1 Preparing for Space Travel to the Moon Table of Contents I. Tragedy and Death Before the First Apollo Flight A. The Three Lives that Were Lost B. Investigation, Findings & Recommendations II. Beginning of the Man on the Moon Concept A. Plans to Land on the Moon B. Design Considerations and Decisions 1. Rockets – Launch Vehicles 2. Command/Service Module 3. Lunar Module III. NASA’s Objectives A. Unmanned Missions B. Manned Missions IV. Early Missions V. Apollo 7 Ready – First Manned Apollo Mission VI. Apollo 8 - Orbiting the Moon 1 I. Tragedy and Death Before the First Apollo Flight Everything seemed to be going well for the Apollo Project, the third in a series of space projects by the United States intended to place an American astronaut on the Moon before the end of the 1960’s decade. Apollo 1, known at that time as AS (Apollo Saturn)-204 would be the first manned spaceflight of the Apollo program, and would launch a few months after the flight of Gemini 12, which had occurred on 11 November 1966. Although Gemini 12 was a short duration flight, Pilot Buzz Aldrin had performed three extensive EVA’s (Extra Vehicular Activities), proving that Astronauts could work for long periods of time outside the spacecraft. -
Hack the Moon Bibliography
STORY TITLE SOURCES General Sources for Many Topics and Stories - the following books served Digital Apollo by David A. Mindell as sources of both specific and general information on the Apollo Project and were utilized in many places across the website. Journey to the Moon: The History of the Apollo Guidance Computer by Eldon C. Hall Apollo 13 by James Lovell and Jeffrey Kluger Sunburst and Luminary: An Apollo Memoir by Don Eyles Apollo 8 by Jeffrey Kluger Left Brains for the Right Stuff by Hugh Blair-Smith Apollo by Zack Scott Ramon Alonso's Moon Mission Grammar Ramon Alonso Interview MIT Science Reporter:The Apollo Guidance Computer -- https://infinitehistory.mit.edu/video/mit-science-reporter%E2% 80%94computer-apollo-1965 Apollo's Iron Man: Doc Draper https://www.nytimes.com/1987/07/27/obituaries/charles-s-draper-engineer-guided-astronauts-to-moon.html https://www.washingtonpost.com/archive/local/1987/07/28/charles-draper-dies-at-age-85/4bdedf80-c033-4563-a129- eb425d37180a/?utm_term=.ab5f7aaa7b19 http://www.nmspacemuseum.org/halloffame/detail.php?id=6 http://news.mit.edu/2015/michael-collins-speaks-about-first-moon-landing-0402 https://www.nap.edu/read/4548/chapter/7#126 Digital Fly-By-Wire Left Brains For The Right Stuff by Hugh Blair-Smith www.nasa.gov https://www.aopa.org/news-and-media/all-news/2017/july/flight-training-magazine/fly-by-wire www.aircraft.airbus.com aviationweek.com/blog/1987 http://spinoff.nasa.gov/Spinoff2011/t_5.html The Amazing DSKY: A Leapfrog in Computer Science E-2567 -- Operations & Functions of the MINKEY -
4. Lunar Architecture
4. Lunar Architecture 4.1 Summary and Recommendations As defined by the Exploration Systems Architecture Study (ESAS), the lunar architecture is a combination of the lunar “mission mode,” the assignment of functionality to flight elements, and the definition of the activities to be performed on the lunar surface. The trade space for the lunar “mission mode,” or approach to performing the crewed lunar missions, was limited to the cislunar space and Earth-orbital staging locations, the lunar surface activities duration and location, and the lunar abort/return strategies. The lunar mission mode analysis is detailed in Section 4.2, Lunar Mission Mode. Surface activities, including those performed on sortie- and outpost-duration missions, are detailed in Section 4.3, Lunar Surface Activities, along with a discussion of the deployment of the outpost itself. The mission mode analysis was built around a matrix of lunar- and Earth-staging nodes. Lunar-staging locations initially considered included the Earth-Moon L1 libration point, Low Lunar Orbit (LLO), and the lunar surface. Earth-orbital staging locations considered included due-east Low Earth Orbits (LEOs), higher-inclination International Space Station (ISS) orbits, and raised apogee High Earth Orbits (HEOs). Cases that lack staging nodes (i.e., “direct” missions) in space and at Earth were also considered. This study addressed lunar surface duration and location variables (including latitude, longi- tude, and surface stay-time) and made an effort to preserve the option for full global landing site access. Abort strategies were also considered from the lunar vicinity. “Anytime return” from the lunar surface is a desirable option that was analyzed along with options for orbital and surface loiter. -
The Apollo Lunar Orbit Rendezvous Architecture Decision Revisited
Student Session II Paper No. GT-SSEC.E.2 The Apollo Lunar Orbit Rendezvous Architecture Decision Revisited David M. Reeves1 Georgia Institute of Technology National Institute of Aerospace, Hampton, VA, 23666 Michael D. Scher2 University of Maryland National Institute of Aerospace, Hampton, VA, 23666 Dr. Alan W. Wilhite3 Georgia Institute of Technology National Institute of Aerospace, Hampton, VA, 23666 Dr. Douglas O. Stanley4 Georgia Institute of Technology National Institute of Aerospace, Hampton, VA, ABSTRACT The 1962 Apollo architecture mode decision process was revisited with modern analysis and systems engineer tools to determine driving selection criteria and technology/operational mode design decisions that may be used for NASA’s current Space Exploration program. Results of the study agreed with the Apollo selection of the Lunar Orbit Rendezvous mode based on the technology maturity and politics in 1962. Using today’s greater emphasis on human safety and improvements in technology and design maturity, a slight edge may be given to the direct lunar mode over lunar orbit rendezvous. Also, the NOVA direct mode and Earth orbit rendezvous mode are not competitive based any selection criteria. Finally, reliability and development, operations, and production costs are major drivers in today’s decision process. 1Graduate Research Assistant, Georgia Institute of Technology, 100 Exploration Way, AIAA Student Member. 2 Graduate Research Assistant, University of Maryland, 100 Exploration Way, AIAA Student Member. 3 Langley Professor, Georgia Institute of Technology, 100 Exploration Way, AIAA Associate Fellow. 4 Langley Professor, Georgia Institute of Technology, 100 Exploration Way, AIAA Member. Page 1 of 12 Pages Student Session II Paper No. -
Consumables Analysis for the Apollo 10 Spacecraft Operational Trajectory
................................... ::::::::::::::::::::::: .:.:.:.:.:.:.:.:.:.:.:. \ :.:.:.:.:.:.:.:.:.:.:.: . jj:.t~:~:~:~:t~~~: .: ......:. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ::., .=:: ......................:.:. .. .-:.:.: .:.:.:.:.:.:.:.:.:.:.:. ::::::::::::::::::::::: MSC INTERNAL NOTE NO. 69-FM-76 ::::::::::::::::::::::: :~:~:t~:~:t~:~:~:. April 7, 1969 ~ ~~~~~~~~~~~~~~~~~~~~~~~ , • N..................······················... ~ ~:ttttt~ · ~~::::::::::::.::::::::::"\ .......... ::::::::::::::::::::::: .:::::::::::::::::::::: , I~III~~I ":':':':':':':':':':':........... ~.:::::::::::::::::::::: ~.......................... .:::::::::::::::::::::: ::::::::::::::::::::::: CONSUMABLES ANALYSIS ::::::::::::::::::::::: FOR THE APOLLO 10 (MISSION F) ----- -------- SPACECRAFT OPERATIONAL 1IIIIIilllllllllllllili TRAJECTORY :::::::::::::::::.:::::: • ~t{ttmm • I Guidance and Performance Branch, MISSION PLANNING AND ANALYSIS DIVISION • • .:~~~ 'i •••~...••~.~~.;·7) MANNED HS:U~~OEN~T~~~TCENTER ~'. :!I~"!I CNASA-TM-X-69384) CONSUMABLESAN AL YSIS N74-70735 ~FOB THE APOLLO 10 (MISSION F) SPACECBAFT :::.OFERATIONAL TRAJECTORY (NASA) 64 p Unclas • 00/99 16454 :::::::::::::::::::::.' • MSC INTERNAL NOTE NO. 69-FM-76 • PROJECT APOLLO CONSUMABLES ANALYSIS FOR THE APOLLO 10 (MISSION F) SPACECRAFT OPERATIONAL TRAJECTORY By Martin L. Alexander, Sam A. Kamen, Arnold J. Loyd, Samuel O. Mayfield, Dwight G. Peterson, and Walter Scott, Jr. , Guidance and Performance Branch ~ April 7, 1969 " MISSION PLANNING AND ANALYSIS DIVISION • NATIONAL AERONAUTICS -
NTR Systems Assessment for NASA's First Lunar Outpost Scenario
NASA Technical Memorandum 106748 AIAA-92-3812 l "Fast Track" NTR Systems Assessment for NASA's First Lunar Outpost Scenario Stanley K. Borowski and Stephen W. Alexander Lewis Research Center Cleveland, Ohio .- / " ./ Prepared for the 28th Joint Propulsion Conference and Exhibit cosponsored by AlAA, SAE, ASME, and ASEE Nashville, Tennessee, July 6-8, 1992 National Aeronautics and •Space Administration ---_.. _-- _.... _---_ ... _-- "FAST TRACK" NTR SYSTEMS ASSESSMENT FOR NASA'S FIRST LUNAR OUTPOST SCENARIO Stanley K. Borowski* Stephen W. Alexander** Nuclear Propulsion Office Advanced Space Analysis Office NASA/Lewis Research Center NASA/Lewis Research Center 21000 Brookpark Road 21000 Brookpark Road Cleveland, OH 44135 Cleveland, OH 44135 ABSTRACT engine/stage configurations, and examines the impact on engine selection and vehicle design Integrated systems and mission study results resulting from a consideration of alternative are presented which quantify the ratio'nale and NTR fuel forms and lunar mission profiles. benefits for developing and using nuclear thermal rocket (NTR) technology for returning humans to the Moon in the early 2000's. At present, the INTRODUCTION Exploration Program Office (ExPO) is considering chemical propulsion for its "First Lunar Outpost" The Space Exploration Initiative (SEI) outlined (FLO) misSion, and NTR propulsion for the more by President Bush on July 20 , 1989, the 20th demanding Mars missions to follow. The use of an anniversary of Apollo 11, calls for a return to the NTR-based lunar transfer stage, capable of Moon "to stay" early in the next century, followed evolving to Mars mission applications, could by a journey to Mars using systems "space result in an accelerated schedule, reduced cost tested" in the lunar environment. -
A Constrained Space Exploration Technology Program: a Review of NASA's Exploration Technology Development Program
A Constrained Space Exploration Technology Program: A Review of NASA's Exploration Technology Development Program The National Academies Press Committee to Review NASA’s Exploration Technology Development Program Aeronautics and Space Engineering Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study was supported by Contract No. NNH05CC16C between the National Academy of Sciences and the National Aero- nautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that provided support for the project. Cover: Design by Timothy Warchocki. International Standard Book Number 13: 978-0-309-12583-3 International Standard Book Number 10: 0-309-12583-9 Available in limited supply from Aeronautics and Space Engineering Board, 500 Fifth Street, N.W., Washington, DC 20001, (202) 334-2858. Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Wash- ington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu. Copyright 2008 by the National Academy of Sciences. -
Apollo Experience Report Abort Planning
APOLLO EXPERIENCE REPORT - ABORT PLANNING by Charles T. Hyle? Charles E. Foggatt? and Bobbie D, Weber 4 Mdnned Spacecra, Center , Houston, Texas 77058 ce NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. JUNE 1972 TECH LIBRARY KAFB, NM - 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA "I D-6847 5. Remrr natP June 1972 APOLLO EXPERIENCE REPORT 6. Performing Organization Code ABORT PLANNING . -. 8. Performing Organization Report NO. Charles T. Hyle, Charles E. Foggatt, and MSC S-307 - Bobbie D. Weber. MSC 10. Work Unit No. 9. Performing Organization Name and Address 924-22-20-00-72 .-- .. -.. - Manned Spacecraft Center 11. Contract or Grant No. Houston, Texas 77058 13. Type of Report and Period Covered 2. Sponsoring Agency Name and Address Technical Note ~__-- __ National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 5. Supplementary Notes The MSC Director waived the use of the International System of Units (SI) for this Apollo Experience Report, because, in his judgment, the use of SI units would impair the usefulness of the report or result in excessive cost. -~. 6. Abstract Definition of a practical return-to-earth abort capability was required for each phase of an Apollo mission. A description of the basic development of the complex Apollo abort plan is presented in this paper, The process by which the return-to-earth abort plan was developed and the constrain ing factors that must be included in any abort procedure are also discussed. Special emphasis is given to the description of crew warning and escape methods for each mission phase.