<<

...... ::::::::::::::::::::::: .:.:.:.:.:.:.:.:.:.:.:. . \ :.:.:.:.:.:.:.:.:.:.:.: . jj:.t~:~:~:~:t~~~: .: ...... :. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ::., .=:: ...... :.:. .. .-:.:.: .:.:.:.:.:.:.:.:.:.:.:. ::::::::::::::::::::::: MSC INTERNAL NOTE NO. 69-FM-76 ::::::::::::::::::::::: :~:~:t~:~:t~:~:~:. April 7, 1969 ~ ~~~~~~~~~~~~~~~~~~~~~~~ , • N...... ······················... ~ ~:ttttt~ · ~~::::::::::::.::::::::::"\ ...... ::::::::::::::::::::::: .:::::::::::::::::::::: , I~III~~I ":':':':':':':':':':':...... ~.:::::::::::::::::::::: ~...... :::::::::::::::::::::: ::::::::::::::::::::::: CONSUMABLES ANALYSIS ::::::::::::::::::::::: FOR THE 10 (MISSION F) ------ OPERATIONAL 1IIIIIilllllllllllllili TRAJECTORY :::::::::::::::::.:::::: • ~t{ttmm

• I Guidance and Performance Branch,

MISSION PLANNING AND ANALYSIS DIVISION • • .:~~~ 'i •••~...••~.~~.;·7) MANNED HS:U~~OEN~T~~~TCENTER ~'. :!I~"!I CNASA-TM-X-69384) CONSUMABLESAN AL YSIS N74-70735 ~FOB THE APOLLO 10 (MISSION F) SPACECBAFT :::.OFERATIONAL TRAJECTORY (NASA) 64 p Unclas • 00/99 16454 :::::::::::::::::::::.' • MSC INTERNAL NOTE NO. 69-FM-76 • PROJECT APOLLO CONSUMABLES ANALYSIS FOR THE APOLLO 10 (MISSION F) SPACECRAFT OPERATIONAL TRAJECTORY

By Martin L. Alexander, Sam A. Kamen, Arnold J. Loyd, Samuel O. Mayfield, Dwight G. Peterson, and Walter Scott, Jr. , Guidance and Performance Branch ~

April 7, 1969 "

MISSION PLANNING AND ANALYSIS DIVISION • NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

Appro.ede ~a-.J )w M::OWe:eassetti, Chief • o Gui c and ance Branch • •

FOREWORD

The following table summarizes the consumables requirements for the Apollo 10 mission. Percentages refer to nominal usage only and do not include dispersions and contingencies. Percentage of available consumable Consumable used for mission planning

CM RCS 15 SM RCS 60

SPS

M~ 18 launch 92 M~ 17 launch 89

1M RCS 65

DPS 5 • ~S 100 CSM0 2 66

77

1M descent battery 36

1M ascent battery 73

These results were obtained from detailed consumables analyses performed on the Apollo 10 RCS, SPS, ~S, DPS, and EPS. A time history of total consumables weight loss is also presented. The ECS analysis will be supplied when the detailed operational trajectory time line is available.

The principal sources of data were the data books (refs. 1, 2, • and 3). The Res and EPS analyses were based on the Apollo 10 rough draft preliminary flight plan (ref. 4). The operational procedures described in this study are not intended to define mission rules or • iii crew procedures but are merely an attempt to establish an estimate of the consumables requirements. • Support was obtained from TRW Systems Group, from North American Rockwell, from Grumman Aircraft Engineering Corporation, from the Apollo Spacecraft Program Office, and from the Instrumentation and Electronics Systems Division. •

• iv • " • CONTENTS

Section Page

1.0 THE CM RCS ANALYSIS 1 • 2.0 THE SM RCS ANALYSIS • 2 • 3.0 THE SPS ANALYSIS 23

II 4.0 THE 1M RCS PROPELLANT ANALYSIS 27

5.0 THE DPS ANALYSIS 33 6.0 THE APS ANALYSIS 35 7.0 ASSUMPTIONS AND RESULTS OF THE EPS ANALYSIS . 36 8.0 THE CSM ECS ANALYSIS 43 9.0 THE 1M EPS ANALYSIS 44

10.0 THE 1M ECS ANALYSIS ...• 4t1 • 11.0 TIME HISTORY OF CONSUMABLES WEIGHT LOSS . 4~ 12.0 REFERENCES ...... •....•... 51

• v TABLES • Table Page 1-1 CM RCS PROPELLANT SUMMARY . ··· · . . ... 1 2-1 GROUND RULES AND ASSUMPTIONS FOR THE SM ReS ANALYSIS . . . . · ··· . · . . . 2 • .. 2-II SM RCS PROPELLANT LOADING AND USAGE SUMMARY 3

2-III SM RCS PROPELLANT BUDGET 4 ···· • 3-1 ASSUMPTIONS FOR THE SPS ANALYSIS 24

3-II SPS PROPELLANT SUMMARY

(a) May 17 launch, 72° launch azimuth, first opportunity injection . . 25 (b) May 18 launch, 72° launch·azimuth,· · first opportunity injection 26

4-1 GROUND RULES AND ASSUMPTIONS 27

4-II 1M RCS PROPELLANT SUMMARY 27 4-III 1M Res PROPELLANT BUDGET 28 • 5-1 ASSUMPTIONS FOR THE DPS ANALYSIS 33 5-II DPS PROPELLANT SUMMARY · · · 34 6-1 ASSUMPTIONS FOR THE APS ANALYSIS 35 6-II APS PROPELLANT SUMMARY 35 .. 7-1 ASSUMPTIONS FOR THE CSM EPS ANALYSIS 37 7-II CRYOGENICS SUMMARY . . . · · ·· 38 " 9-1 ASSUMPTIONS FOR THE LM EPS ANALYSIS . 44 ll-I TIME HISTORY OF CONSUMABLES WEIGHT LOSS 4~ • vi • • FIGURES

Figure Page

2-1 SM RCS propellant profile • (a) Total. 20 (b) Quads A and C 21 (c) Quads Band D• 22

.. 7-1 Total spacecraft current versus time 39 7-2 Hydrogen remaining for mission for one tank versus time .•...... 40 7-3 Oxygen remaining for mission for one tank versus time ...... 41 7-4 Total DC energy profile versus time 42 9-1 Descent electrical power profile for an F mission flight plan .. •......

9-2 Ascent electrical load analysis for an F mission • flight plan .• .. ...•... 11-1 Spacecraft weight versus ground elapsed time

.. • • vii ABBREVIATIONS • AGS abort guidance system

APS ascent propulsion system

CDH constant differential height

CM command module •

COAS crew optical alinement sight .. CSI concentric sequence initiation

CSM command and service modules

DB deadband

DAP digital autopilot

DOl descent orbit insertion

DPS descent propulsion system

ECS environmental control system EECOM electrical, environmental, and communications • EPS electrical power system

F.T.P. full throttle position

H hydrogen 2

IMU inertial measurement unit

I fuel cell current fc

I specific impulse sp

LM lunar module LOI lunar orbit insertion • LOS line of sight viii • • LPO lunar parking orbit MCC midcourse correction

MI minimum impulse • MPAD Mission Planning and Analysis Division .. MSFN Manned Spaceflight Network

NR North American Rockwell

ORDEAL orbital rate display, earth and lunar

°2 oxygen

PGNCS primary guidance and navigation control subsystem PTC passive thermal control

RCS reaction control system

REV revolution • RR rendezvous radar SCS stabilization and control subsystem

SEP separation

SLA spacecraft/1M adapter

SM

SPS service propulsion system

SPS-n number of the SPS burn; n = 1, .•• ,8

T, D, andE transposition, docking, and extraction

TEC transearth coast • TEI transearth injection TLC translunar coast

TIMC translunar midcourse correction • ix TPI terminal phase initiation (of rendezvous) • TPF terminal phase finalization (of rendezvous) t time WT weight •

.. • x • •

'CONSUMABLES ANALYSIS FOR THE APOLLO 10 (MISSION F) • SPACECRAFT OPERATIONAL TRAJECTORY By Martin L. Alexander, Sam A. Kamen, Arnold J. Loyd, Samuel O. Mayfield, Dwight G. Peterson, and Walter Scott, Jr.

1.0 THE CM RCS ANALYSIS

The CM RCS propellant data were taken from reference 1. Usage data were taken from reference 5. The CM RCS propellant summary is presented in table I-I .

TABLE I-I. - CM RCS PROPELLANT SUMMARY

RCS propellant RCS propellant Item • used, Ib remaining, Ib Loaded -- 245.0

Trapped 36.4 208.6

Available for mission -- 208.6 planning

Nominal usage 30.8 177.8

Margin -- 177 .8 • • 2 2.0 THE SM RCS ANALYSIS • TABLE 2-1.- GROUND RULES AND ASSUMPTIONS FOR THE SM RCS ANALYSIS

The following ground rules were used to calculate the SM RCS budget.

1. The transposition and docking phase of the mission includes an SPS evasive maneuver. • 2. The first and third MCC's (translunar) are executed as SPS burns with the third MCC followed by an RCS trim.

3. Passive thermal control is assumed to be in the PGNCS wide deadband control mode and to require 1 Ib/hr, compared with 1.1 to 1.T Ib/hr requirement on Apollo 8 in the SCS control mode, except for the test periods under manual control which required ~ 5 Ib/hr on the Apollo 8 mission.

4. The sixth MCC (transearth) is executed as an RCS burn of 5 fps.

5. The SM ReS propellant allocation for a CSM-active il rescue of the 1M is currently under study. The data is to be included in revision 1 to this document. • 6. The propellant profiles shown in figure 2-1 are based on usable propellant remaining as a function of mission time.

• • 3 • TABLE 2-11.- SM RCS PROPELLANT LOADING AND USAGE SUMMARY Nominal loaded propellant, Ib •..•. 1342.4 Initial outage caused by loaded mixture ratio, Ib .••.•.. 15.6 Total trapped propellant, Ib 26.4 Gaging inaccuracy, Ib .. 80.4 • Deliverable SM RCS propellant, Ib . 1220 .. Nominal propellant used, Ib .... 730 Propellant used for translunar phase, Ib 334 Propellant used for transposition and docking, Ib . .. .•..... 90 Propellant used for midcourse corrections, lb ...... 35 Propellant used for passive thermal control, Ib ...... 106 Propellant used for other items, Ib 103 Propellant used for lunar orbital phase (LOI-TEl inclusive), Ib ....•.• 221 Propellant used for docked CSM activities, • Ib ...... 96 Propellant used for undocked CSM activitie~, lb ...... 125 Propellant used for transearth phase, Ib 134 Propellant used for midcourse corrections, Ib ...... 24 Propellant llsed for passive thermal control, Ib ...... 74 Propellant used for other items, Ib • 36 Outage caused by mission duty cycle mixture ratio, Ib ..••..••. 41 • Nominal propellant remaining, Ib 490 • 4 •

• 5 • TABLE 2-III.- SM RCS PROPELLANT BUDGET - Continued

1 p1E. EvE" T SIC liT SM ReS SM Res S'" I HR l 'lBSl UsED L.EfT RC, I L.8S' (L.BS' L.En'i, • '1.'1 ORIENT TO MONITr R 5L.INGSHOT 957'16. '1.3 12'1B'2 93. 0.2 OEG/SEe pGNeS

5.0 P:'2 IMU AL.IGN 9,7'12. '1.2 12'1'10 U 93.

5.:. ORIt:NT fOR NAV "lbHTING5 9<,7311. '1.3 1239.7 92.

5.6 ORIEf\jT fOR NAv ... I b HTI ;, G5 95733. '1.2 123,.!> '12.

5. 7 ORIt.NT fOR NAJ c.1"'HT1NGS 9,,729. '1.3 1231.2 '12.

5.8 Oi;It.NT fOR NAv c;IGHTING5 95725. '1.2 1227.0 Ii I.

:..9 ORIt::N1 fOR NAV <,lr.HTINGS 95721. '1.2 1222.7 9 I•

,.9 MINIMUM IMPUL.Sl MIlRKINb fOR S1(,5 9~715. 5.2 1217.6 'II •

• b.O O~IC.NT fOR PTe 'I! 7 I 1 • 3.9 12 I 3.7 90. ~AX 1S U.l OEc;/SEC

6.U ATTITUDE HOL.'~ <.l.2 DEG Oil sec:; 9:. 7 I I. .11 1212.9 90.

!l.U lST. 0.3 :>E,,/5Ee ROL.L. 'f5710. • 'I 1212., 9U.

6.U "ITCH A'~O 1 A., eO'HkUL. 9;708. 2.7 12U9.8 90.

II. 7 ~~2 J MU ALtr.N 9570S. 2. 'I 1207. 'I 90.

9.l "'IOeOURSE eo""ErTIVN NO I 95101. '1.3 12U3'1 Yo. J AXI 5 Oli/IE'lT ,,(iNes • 9.2 ATTITUDE HOL.I) 5 OE" DB 95701. • 'I 1202.7 90. • 6 • TABLE 2-111.- SM RCS PROPELLANT BUDGET - Continued

TIME EVE .. T SiC .T SM ItCS SM RCS SM I Hit I 11851 USED LEFT ItCS (L.SS' 11.851 L.Ef'T II,

•• 2 SI'S BUItN .,••a. .0 IZU2., '0. IIUILD UI' • •• 2 STEADY STATE 8UltN II 'i••2. •I IZOZ •• 'd.

•• 2 TAILO"" "'21. .1 120 I.' '0.

,.2 OAMP SHUT.oOAtIi TRANSIENT 95'20. I•I IZOO.8 8'.

10. I 1'52 I'IU HI GN 'i·18. 2.3 II ,a. s .,.

10.'1 OR I EI';T FOR PTC 95'1", 3.9 II'.... 8'. lAUS 0.2 oE(;/5[C

10." ATTITUDE HOL.I'l 0.2 DEG 08 SC5 ''i'll. .8 1193.A a,.

10. 'I EST. 0.1 DEc;,/SEC RoL.I. '5'12. ... 1191 ... it" 10 ... PITCH AND '(A,. CONTltOL. "'01. ••• 11e3 •• ••• • zo.o PS2 IMU HI CiN '55". 'f.Z 117'•• its.

20.'f ORIENT Fa" NAV C;IGI1TtNCiS 'sS''f. ".2 I"!il ... 8e.

20.8 O~IENT FOR NAY 51 CiMT IIHiS 955,0. ... Z I I 7 I • I 87.

21.2 ORIt:NT FOR NAY 51 GHT P-lGS '55••• '1.2 11 ..... 87.

21 •• ORIENT FOR NAY slCiHTINliS 'SSAZ. 'f.Z 11.2.7 '7. 21 •• MINIMUM I"'PULSE "'A"K ""G 'S!l78. 3." II!I'·) a •• • • 7 •

• 8 • TABLE 2-III.- SM RCS PROPELLANT BUDGET - Continued

TIM£. £.VE,,1 SIC *T SM RCS SM RCS S" I HR I I LBs I USED LEFT RCS ILFISI ILISI LtFT III .. 7.0 fOTe TEST WIO ATT C"1)1tT1t01. 'SSII. 12.0 1O"., 12. •

",.u fOTc TEST */0 ATT CONUOL 'SSO'. 12.0 1017.2 II.

!i I. U fOTe TEST W/O ,TT CONTROl. 'S"'''. .2.0 1075.' 80.

53.0 1052 IMU ALIGN '!tl'l'O. ... 2 1071.0 110.

5... 1 MIDCOVRSE CORRECTION NO 3 's"e'. '1.2 10".1 7'. MNVR TO BURN ATT

5'1.1 ATTITUDE HOln '5'1.'. .'1 10"''1 7'.

5". I SPS BURN 'S'Ie3. .0 10"''1 7'. BUIL.O UP

5'1.1 STEADY STATE eUHN II 'S'IS7. .0 10"'" 7,. 5... 1 TAII.OFf' '5111'. .' 106"5 7' • •

5'1. I DAMI" SHUT.OO ... N TRANSllNT '5'11". I•I 10'..... 7'.

5".1 Hes TRIM I "PS '5"03. I 1.0 IOS3.5 7••

5".5 ORIENT "OR PTc '!O3". '1.0 10'1'." 7•• JAXIS 0.2 oEc;/SEC

S'I.!O ATTITUOE HOL.o 0.2 DEro 08 scs '53". .8 10".'7 7s.

5'1.5 EST. 0.3 oEc;/SEC ROI.L. '53'1. ... 10'1.'3 7•• S".§ I"ITeH AND TAW CDNTROI. '53'0. 7.1 "'''0.5 7S. • • 9 •

TABLE 2-III.- 8M RC8 PROPELLANT BUDGET - Continued

T P~E E 'JE~' 1 SiC ... T SM ReS SM RCS 5'" I HR I ILBSI usED L. EF" T ReS 1L.~SI IL8S1 U.FT • III 62.0 PITCIo4 AND "A~ CONTROL 95383. 7.8 1032.7 77.

70. I P52 IMU ALIGN 95378. '4.2 1028.'1 77.

7 I • 1 MIOCouRSE CORHEcTION t'.O 'I 9~37lf. If.2 102".2 7,. MNVR TO BURN 1 TT 7 I • 1 ATT HOL.D 0." [;,EG Db PulloCt.; Y;37't. .If 1023.' 7,.

71 • 1 LlEL. vEL • NOM ZERo 9537'1. .0 1023.8 7,.

71 • ~ ORIENT FOR PTe 9~37U. '1.0 10U.tt 76. .lUIS 0.2 OE.r,ISEC • 71.5 ATTITUDE HOLr: 0.2 OEG 08 SCs 9.369. .8 1019.0 7,.

7 1.5 lST. 0.3 OE(~/~EC ROL.L 9S369. .If 1018. , 7,.

7 I .!» PITCH AND YA .. CONTHOL 95366. 1 • a 1017., 76.

71 • ~ I/EON I EN T 9i36S. 2.'1 1015.2 7,..

7 1.5 HEOHIENT 9!363. 2.'1 1012.8 75.

75." P~2 IMU ALIGN 95359. '1.2 1008 •• 7S.

7~." SExTANT SUR CHF(I\.INc;,MIN IMPULSE 91;358. .'1 1008·Z 75.

• 76.2 LUNAR I~Stlq ION 8UF<~ 9535'1. '1.2 10"'4.0 75. ORBIT 3-AXIS ORIENT PGNCS • 76.2 ATTITUDE ~OLI1 9535'4. .'4 1003.' 75. 10 • 11 •

TABLE 2-111.- SM RCS PROPELLANT BUDGET - Continued

TIME EVE",T SiC NT SM FjCS 51'1 ~CS 51'! (HRI I LBs I u-;EO L.EF T ReS IL.ASI (l.b51 LEFT • I ~ I 80.~ TA1\.O'" 706,,8. .0 '11 ... 8 72.

80.' DAMP 5HUTOO't1li TRANSIENT 706,,7. I • 1 1f63.7 72.

81. a REORlt.NT FOR Mc;FN ACloIUISITION 7nll63. 3.'+ '60'3 72.

83.!:t PS2 IMU AL.IGN 7QII6U. J.'+ 9~6.' 7 1 •

83.S REOItIENT 706C;7. 3." '53." 71 •

8J.~ HEOHIENT 71)6~3. 3.'+ ,SO.U 71.

• 83.S MINIMUM t I'IPllL Sf MARKING 7n653. .tt ,.. ,." J I•

8'+.S ORIENT FOR I'1<;Fr. 706,+Y. 3.'+ '''''2 70.

8!:t.!:t MANt.UVER To ORO, fAL SLEEP MODE 706,+6. 3.'+ '''2.a 70. ASSUME SAME AS PTe

8S.S PIT'H AND YAw colHROL 706 .. 1. ...5 ,38,3 70.

90.0 f'ITc'H AND YAW CONTROL 70637. ... s ,33,8 70.

9S.S PS2 IMU ALIGN 70633. 3." '30... 119. • 95.S REORIENT 70632. I.S '2S'6 6'. 95.5 REORIENT 70630. I .8 '26.8 .,. • '7.0 aRiENTATION ~.NEUVERS 70627. 2.5 ,21f.3 .,. 12· •

TABLE 2-III.- SM RCS PROPELLANT BUDGET - Continued

T p1E EVEiIIT SIC ttT SM ReS 5/1 RCS SI'! (HR, (L8SI USED LEFT Res fLBS' ILBS' LEFT III • ORIE~T ,B.O TO UNnUeKIN

98.5 UNOOCK 'taSe8. 't.9 91S.9 68.

9B.S STATION KEEP fn~ LM PHOTOCiIUI"Hy 'tOS7B. 10.0 905.9 67.

98.8 REORIENT FOR 1'1 ... ~ N ACQUISITION '+0576. 1 .1 90'+.3 .7.

98.9 OHIENT fOR SEP BURN "0575. • 8 903.S 67 •

99.2 IotCS SEPARATION 'IU~N I fPS '+0570. 't.' 898., 67.

99.2 REORIENT 'tOS10. • !; 898. I 67 • •

99." REORIENT 't0569. •s 897.1> 07 •

99.6 REORIENT '+OS69. .~ 8'7.1 67.

99.8 REURIENT 'tOS68. • 5 8'6'6 67 •

99.8 .'\ I NI MUM IMPU,S[ CONTROL. 'tOS65. J." 893.1 67.

102.0 P!:>l IMU ALIGN 'tOS6J. 1 • 7 891 • ~ 66. 102.5 il. MANEUVERS TO ACQUISITION ATT 't056U. 2.7 8el.8 .6. • 102.9 MNV R TO 8URN A'r T 't0559. I .7 887. I 66. 102.9 ATTITUDE HOLn i1fITH MI "O§58. • 3 I'•.• 66 • • ------

13 •

TABLE 2-III.- SM RCS PROPELLANT BUDGET - Continued

T1'''£ EYE t. T SIC ",r SI1 RCS SI'! RCS 51'1 (HR I (LBSI uc;ED LEFT RCS ( L. 8 5 I (LBSI LEn • ( SI 103.2 t'S2 IMU ALIGN 'lOS'; 7e 1.7 885'1 66.

103.A l'lNyli TO 8URN ATT '10555. 1.7 883.~ "6.

103.8 An HOLD 'tOS5J. 1.7 881.7 66.

10lf.0 HEORIENT SPACF:CHAFT If TII'IES ,+05lf8. s.o &76.7 65.

IQ'f.l.l I"IINI",UM I I1PUI SE CONTROL 'IOS .. s. 3.0 173.7 65.

lo~.'t MA~EU\lER TO TPt ATTITUDE ltoSIf't. I .7 872.0 65.

• 105 ... ATT HOL.D '10SlfJ. .9 871.2 65.

106.0 FoUR MANEUYE~S 1 u ATTITuoE 'foS38. s.o 866.1 6S.

106.0 i'1INlIolUM I MPUI SE CONTROL 'foS36. I .3 8o'f.A 6'1.

106.S REURIENT FOR MsF~ ltoS3S. I .7 863.2 ''I.

10&.' Ty ALL.OWANCE '10~)I. '1.0 IS9·2 ''1.

106.9 ORIENT TO OOCKI",(, ATT I TUDE lfoS29. I .7 857.51 "If • • 107.0 "AIIiTAIN 80RESIGHT '10527. I .7 8!;S'8 "'4. 107.0 DOCKING '1,da9. 2.S aSJ.) ''1. • 108.5 :o1NV~ TO JETT 150,. ATT '1'111. I .2 852'1 63. •

-- --~--~---- 15 •

TABLE 2-111.- 8M RCS PROPELLANT BUDGET - Continued

T 11'1 E 511 RCS SM RCS (HR) USED LEFT • (LaS) ILlS) 126.S ~EoHt~-~ ~AijD"A~S "0.,'1. 3.8 11'.S 61. 3 TIMES PER REV

126.5 ROLL TO ACQUIRE MSFN 'IOIf,I.

"0...0. ... lie.. 61.

128.0 REV 27 IMU ALIGN 'IOIf90. .& 111.0 'it

IZI.!> 'UO~ I tNT "-OR" ~.IItD"ARI(S J.I 11".2 6it 3 TIMES PER REV

128.S kOLL TO ACQUIRE MSFN IfOIfAS. .3 113.9 'I.

• 128.~ ... 8l3.S 6 ••

12R.S PS2 IMU ALIGN

3.8 808.0 60.

128.S AuTO OR8 RATE 1t7 80'.3 60.

12'.U PS2 IMU ALIGN

129.0 sXT CHEC" .If 8UIf.2 60 •

12'.8 TRA~-tA~ tN~[~TtO~ 1.7 loa., 60. • MNVR TO BURN ATT 12'.8 - ATTITUDE HOLn .'1 102.2 60.

12'.R U~t~ Ilt.D 7BI.2 s... • 2 JET BAND tJ 16 •

TABLE 2-111.- SM RCS PROPELLANT BUDGET - Continued

TIME E'JEr. T SiC oIIT SM RCS SM ReS sM (HR) (LBS) Ut:;ED LoEn RC.S (LRS) (L.BS) L.EFT (i I • 129.8 SPS 8URN '+0,+s7. .0 768.2 59. BUIL.D UP

129.R STEADY SUTE IiURN 136 SEC PbNCS 31293. .2 788.0 59.

129.8 TA I LOFF' 31252. .U 788.0 !il9.

129.8 OAf1P SHUTDOWlr.. TkANSIENT 3\ Zs I. I • 1 786.9 5'19.

130.0 MANEUV-ER FOR MSFN ACQUISITION 3\250. 1 .5'1 785.,+ 5 ••

131 .7 P52 l"lU ALIGN 3\2148. I .5 783.9 Sb.

132.0 ORIENT FOR PTe 3\2148. .7 783.2 S8. • 3AXIS 0.2 Ole./Sle

132.0 ATTITUDE MOLD U·2 oEr:a DB Sc.c; 312'17. .tt 782." !tR.

132.0 t.ST. 0.3 oEr-ISEC ROLL 3IZ'I7. .2 782.2 Sa.

13Z.U PITCH ANt> YA .. CONTROL 31216. \ I • a 771 .2 S7.

1'I3.u P!t2 IMU ALIGN 3\23'+. \ .5 76'.7 !t7.

1.. 3.5 C1SL.UNAR NA\lIc.ATiulII 31228. b.2 763.10 !:I7. STAR/L.UNAR HDWIZO~ ORIE.NT 1143.S MIN. IMPUL.SE ~, ARI( I NG 31226. 2.2 761. " S7. • 114'1.8 MIOCOURSE CORREcTION NO S 3122", I.S 759.9 57. 1'l,:VR TO BURN ATT 1,,'+.8 ATTITUDE HOLn "tTM MJ 3\22'1. • 3 759.7 S7 • • 17' •

TABLE 2-III. - SM RCS PROPELLANT BUDGET - Continued

TIME EVE~T SIC ttT 5"" RC S SM RCS 5" ( HR ) 1t BSI USED L. EF' T RCS (LBSI CL8S) LEFT • III 1..... 6 DEL- vEL • NO", ZERO Jr 22". .0 759.7 17.

1.. 6.0 pTe TEST W/O A1 T CONTROL 1\2\5. 9.0 750.7 !i••

llf8.0 pTe TEST ""0 ATT CONTROL 31206. 9.0 7 .. 1.7 f:lS.

150.0 pTe TEST Wi/O An CONTROL 31197. 9.0 732.7 55.

ls0.0 Tv ALLOWANCE 31193. ... 0 728.7 SIf •

lS6.0 P52 I"U ALIGN 311,2. I• S 727.2 5 ...

• 156.5 ORIENT FOR PTe 31191. .7 726.5 Sif. 3AX IS 0.2 DEr.ISEe

156.5 ATTITUDE. HOln 0.2 DE, 08 SCS 3\ 190. • 8 725.7 S...

156.5 EST. 0.3 DECo/SEe ROLL 31190. • 2 72S.S 5 ...

IS6.~ PITCH AND VA.,. CONTROL J 117'. 1 ... 0 71 Ie S 53.

17 I • (1 PS2 IMU ALIGN 3\17'+. 1.5 710.0 53.

173.5 ORIE.~H FOR PTC J I 17 If • .7 70'.3 53. 3AXIS 0.2 Dlto/SEC

173.5 ATT I TUDE HaLl) 0.2 OEG 08 SCS 31173. .& 708.i 53.

• 173.5 EST. 0.3 DEli/SEC ROLL 3\171. .2 70t.3 53. • 173.S PIT'" •-no Y.,,; CONT"OL 3 II ,~. ... 0 70".1 52 • 18 •

TABLE 2-111.- SM RCS PROPELLANT BUDGET - Continued

TIME lVEr-.T SIC NT 51'1 RCS SI'I HCS SI'I (104Ft) ILSS) Uc;Eo LEFT RCS IL"SI CLBS) LEFT III •

175.0 P~2 lI'IlJ ALIGN 3,1117. I• ~ 702.8 52.

176.2 MIOCOURSE CORREc.TION NO 311,,6. I• ~ 701.3 ~2. I'INVR TO BURN ATT •

176.2 ATT ~OL [) .~ DE" 1')8 PGNCS 311,,5. ... 70 I .0 ~2.

17t-.2 ReS -x TRANS 5 FI-'5 311 .. 7. \ 8. I 682.8 5 I•

17 b • 7 ORIENT rOR PiC 311&+6. .7 682. I 5 I• JAXIS 0.2 DE(,/sEe

176.7 ATTITUDE HOLe. U.2 OEG 01:1 SCs 3\1 .. 6. .8 681.3 ~ 1 •

176.7 EST. 0.3 OEc;/SEC ROLL 3\1&+'. .2 68\ •I !J , • •

176.7 PITCH AND YA" CONTROL 31137. 9.0 612. 1 ~a.

187.U P52 II'IU ALlCaN 31IJ~. I• ~ 61U'6 ~O.

1S8.3 ~11 OCOURSE CORRECTION NO 7 31133. 1.5 669.1 ~o. MNVR To BURN ATT

18 B• J ATT HOLD .~ DECi DB PCiI~CS 31133. .3 "68.9 50 •

188.3 UEL vEL • NO", zERO 31133. .0 668.9 ~o. 189.& PS2 IMU ALIGN 3113l. I.~ 667.3 So. • 191 .0 MANEuvER To REENTRY ATTITUDE 31130. 1 • S 665.8 SO. 19 I .0 ATTITUDe: ,",Olo 0.2 OEC'i os SCs J I 12' • .8 ••S.O So. • 19 •

TABLE 2-III.- 8M RCS PROPELLANT BUDGET _ Concluded

T P"E EvENT SiC .. T s" ReS S"RCS 5" CL8!) U![D LEFT Res CHR) ILBS) L£FT • CLltSJ n-l ~ITCH ,7 ..... :a .,... 1'1,0 TO ACQuIRE HO'ltl lON 1112'.

,7 't,. 191,0 'AI 'i~ CEca H 128. "3.'

tt9 • 191 .0 ATT HOLD .s DlCi 08 PfiNCS n128. ... ••:a.z

, Q. 1 a'iJ'~~ ,. 193,U C~/S.. SEPARATIO~ lal07. .. DEL lA VEL-) rPS

~his is the total propellant remalnlng and does not account for mission duty cycle mixture ratio shift or other unusables. Usable propellant re.aining is • 490 pounds as shown in table 2-II •

• _. ------1220 1200 100 ------,.---,------I ---~Totalf :f! 1000 80 T.D,andE 0; I 1- c 'c r Nav sightings ';0 c E - I 800 u ....'" ....'" [ MCC-3 0- 60 C '" .- t . - 0; .!!! a; c 600 '0> 8-.... 0. '"= "C.... I V'l 40 --I '---r---~ u 0 0:: .c'" 400 c :E 0 V'l : , :0'" V> 20 ::::l'" 200

0 o 20 40 60 80 100 120 140 160 ISO 200 220 240 Ground elapsed time, hr

(a) Total.

Figure 2-1. - SM RCS propellant profile.

• • • • • • • • • • ~ .~------______. " , __ -r-_._' 305 300 100 , 'I t i 280 :! ,j, 80 r--_· c: 240 'c 'r; 0- E I ,--I <» 200 ... t I .- ~ ·_'-----1 'E ..!!! '" 40 : i ' , I ' I r ' -+-----_. ! 0 305 300 i : ----r-,-I .1' iii 280 ---~- ;l,-----~ - ~. !--'f---i---~---:,'------t--- :! I 't i.'" '-r__i~ ,j, --; .. ------.---r--r--f------r----;--+---i---+--t---i c: 240 80 'c ! I I 'I ; i- 'r; c: r------~-j~-j--- --~ E ­ '- ----f--- r-- <» 200 B ...... I ' -c: 8. 60 __ , -L_L ------L- ..!!! 160 g. i... .~ Q. en ! -·l· -0 .,_.1- V\u 120 ~ 0:: 40 I :E: c: i i I -~-- V\ o + --t-- -i---(------j--- <» 80 :is i '"VI :::> 20-r -i--t---t- 40 'j, ",' j I

0 o 20 40 60 80 100 120 140 160 180 200 220 240 Grou nd elapsed ti me, hr

lb) Quads Aand C.

Figu re 2-1. - Conti nUed. 305 300 100 280 i . i £! --'Q~~dBr_j 0; L__-._ -t-- ---i------_ j c 240 80 c .... c l_ ~"'-' '.- ! -' : ,,- . ! E OJ --!-" '" U :: '!': I .....OJ 200 ..... ~ , : i • • I I c 60 1- ~----~T-_r-'- I --i-'-- '--i--~t------~~: ~ c::n i c : I r, l!t 160 .~ I ' 1: 0 ..... o> C- ! I I I : I I i l'--,-4---!....;- "C..... I i -----'-f--:------: Vl 40 u 120 0 --~ 0:: .c'" ---t-t---r-", ---r,:, I ,-t---'------c !' -f-r---j---+--r--t---r-rj--+-t; , I" I, II :E 0 I: Vl --r, I, -', ------,"- -- ~ 80 (,..,-r"---'-----! --t- -'--"'t-,' -,-,"- ---r---T--t-,~! .----+---- -+-l'·,' .c r: ,! I l ! I. -- i I - - I I ~------T--- i ::::>'" 20 --- -<----r---T-'!----'----'-i-i-,--y-t----t--T--"---- "--;------i------1 40 i-I '- "1 L_ --~-l--r-- -1- - ~--- ,--. -----f i I ' I I : o l . ! ; 0

305 300 100 I-r --'---,---'-r I : '--T--i! 280 I I i, 1-I £! N N C; c 240 80 c .... 'i ---t...... o> C- "C'" Vl ..... u 120 0:: .8 c ~~tl+:m' :E 0 Vl OJ 80 ; :c I I. 20 1- +__ -+_1 -.:'f----.--' -t------::::>'" ,I J L , 40 .-jI , 0 o 20 40 60 80 100 120 140 160 180 200 220 240 Ground elapsed time. hr

lc) Quads Band D.

Figure 2-1. - Concluded. • • • • • • 23 3.0 THE SPS ANALYSIS

Weight assumptions for the SPS analysis are shown in table 3-1 (ref. 3, amendment 41); SPS performance parameters were taken from • reference 1. The SPS propellant budget for a May 17 launch, 72° launch aZimuth, first opportunity injection is presented in table 3-II(a). The propellant budget for a May 18 launch with a 72° launch azimuth, first opportunity injection, 61-hour lunar orbit time, and 2-day return is shown in table 3-II(b). Both budgets include a contingency ~v of 900 fps to provide the capability to perform a worst case 1M rescue, to return by use of the SCS, or to return from any lunar orbit.

The May 18 launch has two other sets of ~V associated with it, one which assumes a 51-hour lunar stay (TEl of 3198.8 fps), and the other which assumes a 61-hour lunar stay and 3-day return (TEl of 2818.8 fps). The propellant margins associated with these trajectories are shown in table 3-II(b). The contingency ~v of 900 fps would be used for a quick earth return or for a 1M rescue in the last case. Propellant margin for the May 17 launch [table 3-II(a)] • is 1837 pounds, and for the May 18 launch, fast return [table 3-II(b)] is 818 pounds .

• • 24 •

TABLE 3-1.- ASSUMPTIONS FOR THE SPS ANALYSIS

1. Each SPS engine start used 14.4 lb of propellant in nonpropulsive losses. 2. Spacecraft weights • CM, lb • 12 276.8 SM, lb 10 641.8 SLA ring, lb 98.0 Tanked SPS, lb 40 633.7 LM (unmanned), lb 30 848.8 Spacecraft at TLC, lb 94 499.1

3. SM RCS, EPS, and ECS weight losses

Mission Period Incremental weight loss, lb

Lift-off to MCC-l 89.4 MCC-l to LOI-l ...... 185.5 LOI-l to L01-2 30.5 • LOI-2 to TEl 234.8

• • • 25 TABLE 3-11.- SPS PROPELLANT SUMMARY

(a) May 17 launch, 72° launch azimuth, first opportunity injection

Propellant Propellant Item • required, Ib remaining, Ib

Loaded -- 40 836.0 Trapped and unavailable 441.4 40 394.6 Outage 78.5 40 316.1 Unbalanced meter bias 100.0 40 216.1 Available for /::" V -- 40 216.1 Required for /::"V TLMC (120 fps) 1 128.4 39 087.7 LOI-l (2866.3 fps) 23 004.0 16 083.7 LOI-2 (137.7 fps) 962.9 15 120.8 TEl (3252.2 fps) 10 507.8 4 613.0 • Nominal remaining -- 4 613.0 Contingency /::"V (900 fps) 2 238.7 2 374.3 Dispersions (-30) 537.6 1 836.7 Propellant margin 1 836.7

• • 26 • TABLE 3-11.- SPS PROPELLANT SUMMARY - Concluded

(b) May 18 launch, 72° launch azimuth, first opportunity injection

Propellant Propellant Item required, Ib remaining, Ib • Loaded 40 836.0 Trapped and unavailable 441.4 40 394.6 Outage 78.5 40 316.1 Unbalanced meter bias 100.0 40 216.1

Available for [).V 40 216.1

Required for [).V TLMC (120 fps) 1 128.4 39 087.7 LOI-l (2856 fps) 22 932.5 16 155.2 LOI-2 (137.4 fps) 961.8 15 193.4 TEl (3693.5 fps) 11 711.6 3 481.8 Nominal remaining 3 481.8 • Contingency ~V (900 fps) 2 123.4 1 358.4 Dispersions (-30) 540.0 818.4 a Propellant margin 818.4

• ~or a 51-hour lunar orbit time and a TEl [).V of 3199 fps, propellant margin is 1884.3 lb. For a 61-hour lunar orbit time and a TEl [).V of 2819 fps (3-day return), the propellant margin is 2852.9 lb. • • 27 4.0 THE 1M RCS PROPELLANT ANALYSIS

TABLE 4-1.- GROUND RULES AND ASSUMPTIONS

1. Data for the LM RCS engine performance and • propellant requirements were obtained from reference 2. 2. All orientation maneuvers were assumed to be made at 2.0 deg/sec.

3. All orientation maneuvers were assumed to be 3-axis maneuvers.

4. Line-of-sight with the CSM was assumed to be maintained in the minimum impulse mode.

TABLE 4-11.- LM RCS PROPELLANT SUMMARY

Propellant Description weight, lb • Loaded .. 633.0 Trapped 40.6 Nominal deliverable 592.4 Gaging inaccuracy and loading tolerance .••.... 39.5 Mixture ratio uncertainty 17.0 Usable ...... 535.9 Nominal mission requirement 359.7 Nominal remaining 176.2 • • 28

TABLE 4-111.- 1M Res PROPELLANT BUDGET • TIMt. t.VENI TITL.E SIC lilT L.H L.M L.M - HR M lL.IISI RCS HCS RCs USED ~HT ~EfT IL.BSI IL.BSt 4II U 0 OUTPUT PROPEL.L.IINT L.OAUINGs 9'19!t9. .0 633.0 100. • 96 !>8 RCS HOT FIRI:: 9'19!t'l. !t.O 628.0 99.

98 l!i AGS ACCEL.t.RATIUN AND bYHO CAL.I 9'19!t2. 2.0 62,.0 99. - BRATIONS 'II 33 UNOOCKING 31J01. • 0 6;l6.0 99 • 911 '17 MNV H FOR INSP liND FOR FL.Y 31297. 10.0 616.0 97.

99 20 P20 RR L.OCI( ON 31293. '1.1 611.9 97.

99 28 MAINTAIN HR TWIICKINb II MIN 31292. • 8 61 I•I 91 •

99 29 IHU REAL.lbN sINGL.t. STIIH J12811. '1.1 607.1 '6.

99 29 If'1U REAL.lbN SINGL.E STAH 3128'1. '1.1 6U3.0 9!u

9'# 19 I HU REAL.lbN sINGL.t. STAH J1280. '1.1 ~98.9 9!t.

9'1 !>'1 HNyH TO lIlJRN AITlTUUE 31216. '1.1 ~'I'I.8 9'1. ,'# !>'f ATTITUDE HOL.U 31276. .0 lo9'1.8 ''I. 99 !>'I ATTITUDE HOL.O 31276. .2 5'1'1.6 9'1. • 99 S'I 2 JET UL.L.AGE 31270. !t.9 lollB.7 93.

9'1 S'I DESCENT OWIIIT INSI::RT. lIUHN 31036. .0 ~1I8.7 93.

99 !>'I HOMENT CONTRUL. 31029. 7.0 ~111.7 92.

9'1 li'l ATTITUDE HOL.D 310211. .!t ~111.2 92.

IUU 20 RR L.OCK ON 3102'1. '1.1 lo77.2 91.

IUU so MAINTAIN WH THACKING 2S MIN 31022. 2.S 57'1.7 91.

IUU lOO PITCH DOIIIN 9U UEG. 3102U. I .7 lo/3.0 91.

IUU SO YIIW L.EFT 18U ut.G. 31019. I.!t 57105 90.

IUU lOU YAlii RIGHT 18U LJEG. 31U17. I.S !i70.0 90.

IOU !>U PITCH UP '1O Dt.b. 31017. •I &70.0 90. IOU !>9 MNyR TO BURN AlTITUDE 31013. '1.0 56S.9 89. • • 29

TABLE 4-III.- LM RCS PROPELLANT BUDGET - Continued • TIME EVENT TI TLE SIC WT LM LM LH Hft M IL8s) ReS Ncs ItCS USED L.EFT LEFT IL8S) ILSSi III

lUU !il9 ATTITUDE HOLD 310U. • 0 ilUt •, 8' •

IOU 59 ATTITUDE HOLD 31013. • 2 !il6S.7 89 • • 100 il9 2 JET ULLAGE 31007. 5.9 !;il,.1 18. 101 6 DPS PHASING BUNN 303'''. .0 i59.8 18.

101 6 MOHENT CONTRUL 30392. l.i !ilS8.3 88.

101 6 AlT ITUDE HOLD 30392. .5 557.1 88.

10 I 6 YAW 30391. 1 ... !;b6 ... 88.

101 6 PITCH 30389. I .7 !ilS ... 7 88.

lUI 10 RR LOCI( ON 30385. ... 0 bSO.7 87.

1UI l8 MAINTAIN HR TI( ACI( I fiG 30383. 1.8 !iI't8.9 87.

101 28 IHU REALlliN SINGLE STAI( 30379. ".0 il ..... ' 86. 101 l8 II1U REALIGN SINGLE STAI( 30375. ... 0 !iI't0.9 85.

101 28 COAS CALI8RA!IUN 30371. ...0 i36.9 8S.

101 3'f RR LOCI( ON 30367 • 't.o bl2.9 8", • 102 ilJ MAINTAIN TRACKING 303i9. 7.6 il2S.3 83. 1112 53 ORIENT FOR STAlolNli 30355. '1.0 b21 .3 82.

102 ilJ STAGING 8J6'1. • 0 b21.3 12 •

102 bJ START STAIoINCo 8362. 1.9 l»1,.5 82.

102 53 COMPLETE STAc.lNCii 8361. 1., !il17.6 82.

102 53 MNyR TO BUNN ATTITUDE 8360. .8 516.8 82.

102 5J ATTITUDE HOLD 8360. .2 516.6 82.

102 il3 ATTITUDE HOLD 8359. .9 !":tlS.7 81.

IUZ 53 'I JET ULLA(;E 8353. 5.7 !ill0.0 81. - - 103 .. MOHENT CONTHOL INSE;KTION BURN 8116. 1.3 bD8.8 80. • 103 .. NULL DYEL lFPS ,(AXIS 8115. ., !aU7.' BO. • 30

TABLE 4-III.- 1M RCS PROPELLANT BUDGET - Continued THIL EYENT TITLE SiC IT LM LM LM • HR H (LaS) RCS RCS RCS USED LEFT L.EFT (LBS) (L.aSt (15' IUJ If NULL DYEL IFf'S lUIS 117". 1 • I 506.7 80.

10J If NULL. DYEL IFf'S UXIS 1173. 1.0 ~OS.7 .0.

10J If ATTITUDE HOLL> '170. 2.3 503." .0.

103 If ~U2.S • IHU REALIIIN SINGLE STAR 1170. •• 7" 103 If IMU REALIIIN SINGLt:: STAR 116'. .1 bOI.7 7'.

103 If IHU REALlliN SINGLE STAM '161. • 8 bOO.' 7' •

10J l2 RR LOCI( ON 8167. .8 1000.0 7" 103 22 MAINTAIN KR TKACKING l~ MIN 8163. ".2 "'5., 78. IUJ l2 MNyR TO BURN A!TJTUDE 81.l. • 8 "'5.0 78 • IUJ l2 UTI TUO!:: HOLD 81.Z. .2 .. ,... , 78. IUJ 22 ATTITUDE HOLD 81.1. ., .. , ...0 78 • 103 10 .. CSI RCS B~RN II U. 1... 2 "7'.8 7" 103 51f ATTITUDE HOLD 'IIJ. 2 ... .. 77 ... H..

IUJ 10 .. RR LOCK ON 8112. • 1 "'6.6 75 • 10J 10'1 MAINTAIN KR TRACKING 1108. ...1 .. 71.7 75. 10'1 23 PLANE CHANGE 810•• 2.0 '1.,.7 • 7'" IU't b3 MAINTAIN KR TKACKINl'i 8101. ".2 ".5 •• 7... 10'1 !o3 MNyR TO BVRI'l ATTITUDE 8101. • 8 '1 .... 7 73 • - . IU't 53 ATTITUDE HOLD 8100. • 2 ...... 73 • 10'1 53 ATTITUDE HOLD 810U. ., .. 63.7 73 • 10" 53 CDH .z BURN 80'''. 5.7 .. 58.0 72. 10'1 103 ATTITUDE HOLD 80'1. 2 ... .. 55 •• 72.

10'1 !o3 UPDATE AGS wiTH RK DURING ATTI 107'. 12.3 .... 3.3 70. TUDE HOLD

IUS 23 MNyR TO BURN ATTITUDE - 8078. .8 ....2.5 70. I o lit 23 ATTITUDE HOLD 8071. • 2 ""2.3 70 • • • 31

TABLE 4-111.- 1M RCS PROPELLANT BUDGET - Concluded • TI"'l t.YI::NI TITLE SIC IT L'" I." L'" HR eLBS ) RCS RCS RCS '" USLD ~E'T ~En eLas) eI.BS, (1)- IDS 23 ATTITUDE HaLL! 8077 • ., ~"l ... 70 • IDS TPI I'CS BURN 'U7.2 .7. 2' 8055. 1".2 - 105 2, ATT nUDE 1'101.0 8053. 2 ... "l...8 .7 • • IDS SI Ol'IENT To ATTITUOl IOSl. .. l ...O .7. .a - lOS St ATT ITUDE 1'101.0 803... 17.8 "0••2 .... 10. 12 "'NyR TO BURN A!TI!UDE 8033. .8 ..US ...... 106 lZ ATT nUDE 1'101.0 8033. .Z '105.2 .... 10' 12 ATTITUDE HOL.D 1032. ., ..-0 ... 3 .... 106 lZ TPF +Z BURN 7982. "'.7 JS... 7 5••

10. 12 ATTITUDE HOLD 7'80. 2.'1 3SZ.3 5 ••

10' 12 ATT nUDE "'NYHlt AND LOS CONTHoL 7,5'1. 26.0 326.3 !il.

106 38 FOR". FLYINCi 7,.. Z. 12.0 311103 SO.

106 S5 DOCKIN' 715.. 6. "1.0 l73 • .l .. 3 •

NOTE: The APS propellant used through the RCS for moment control • during the APS burn to depletion (assumes Z = 2.1 in. at c.g. burnout) is 139 lb•

• • 100 100 90

80 80 ...... 70 c: c: QJ QJ (.) (.) a:; a:; 60 c. 60 c. w ~ f\) ~ Ol -0 c: QJ 50 Ol -0 III III ~ Ol 40 "E 40

10 o " 0 00:00 96:00 98:00 100:00 102:00 104:00 106:00 108:00 Ground elapsed time, hr:min

Figure 4-1- LM ReS propellant profile . •• • • • ~ 33

5.0 THE DPS ANALYSIS

The assumptions for the DPS analysis are presented in table 5-1, and the DPS propellant requirements are shown in table 5-11. The loading ~ numbers are from amendment 41 of reference 3. Burn requirements reflect the following thrust profiles: DOl performed at 10 percent for 15 seconds and at 40 percent for 11.7 seconds, phasing performed at 10 percent for 26 seconds and F.T.P. at 10 percent for 15 seconds. A propellant margin of 16 767 pounds exists.

TABLE 5-1.- ASSUMPTIONS FOR THE DPS ANALYSIS

1. Mixture ratio = 1.6 ± 0.024.

2. Propellant cost for engine and valve operation is 8.6 lb per engine start.

3. Buildup and tailoff cost is 19.15 lb of propellant per burn.

4. Propellant flow rates for various throttle settings were taken ~ from reference 2.

~

~ 34 • TABLE 5-11.- DPS PROPELLANT SUMMARY

Propellant Propellant Item required, lb remaining, lb

Loaded 18 229.5 a • Trapped outside tanks 95.5 18 134.0 Tanked 18 134.0 a Trapped inside tanks 272.0 17 862.0 30 outage 214.5 17 647.5 Available for /::,.V 17 647.5 b Required for /::,.V c DOl, 72.8 fps, 26.7 sec 255.7 17 391.8 d Phasing, 193.5 fps, 41.0 sec 625.0 16 766.8 Propellant margin 16 766.8 •

a Reference 3, amendment 41. b . Includes nonpropuls1ve usage and buildup/tailoff usage. c 15 seconds at 10% and 11.7 seconds at 40%. d 26 seconds at 10% and 15 seconds at F.T.P. • • 35

• 6.0 THE APS ANALYSIS

The assumptions for the APS analysis are presented in table 6-1 . The APS propellant budget is presented in table 6-11. The data for usable propellant were taken from amendment 41 of reference 3 and as­ sume a 50 percent APS propellant loading. The CSI was performed with • RCS propellant for 10 seconds and with APS propellant through the RCS/APS interconnect for 22 seconds. Because of the APS burn to depletion, a zero APS propellant margin exists.

TABLE 6-1.- ASSUMPTIONS FOR THE APS ANALYSIS

1. I sp = 306.3 ± 1.5 sec.

2. APS propellant tanks are 50% loaded.

3. Ascent stage at earth lift-off weighs 8012 Ib (unmanned).

4. LM RCS and EECOM weight loss is 88.6 Ib prior to insertion burn.

5. Mixture ratio = 1.6 ± 0.0183. • 6. Engine and valve operation uses 3.6 Ib of propellant per APS burn.

TABLE 6-11.- APS PROPELLANT SUMMARY

Propeliant Propellant Item re'luired, Ib reIllaining, Ib

Loaded 2631.7 a Trapped outside tanks 12.7 2631.7 a Tanked 2619.0 a Trapped in tanks 40.4 2578.6 Available for ~v 2578.6 Required for ~V • Insertion, 213.3 fps, 14.5 sec 182.1 2396.5 CSI, 50.3 fps, 22 sec through interconnect 32.3 2364.2 Burn to depletion 2364.2 0 Propellant margin 0 • aReference 3, amendment 41. 36

7.0 ASSUMPTIONS AND RESULTS OF THE EPS ANALYSIS •

The power levels of each component were obtained from reference 1; the cryogenic loading data were obtained from reference 3. However, because the component data for F mission were not available, the D mis­ sion component values were used. Cislunar heater cyclic rates were used for TLC and TEC. • The EPS profile presented in figure 7-1 indicates that no serious problems exist. There are ample cryogenics (figs. 7-2 and 7-3) for the May 17 launch date even with a one-tank failure at TEl. However, a May 18 launch date will require power~ng the vehicle down during TEC with a tank failure. The cryogenics become marginal because the mission duration is increased by 24 hours. Figure 7-4 presents the total DC energy that accumulates during the mission.

The metabolic 02 requirements were altered to 0.197 Ib/hr, rather than 0.23 Ib/hr, based on postflight analyses of Apollo 7 and 8. This alteration corresponds to approximately 400 Btu/hr as compared with 467 Btu/hr.

The 45 A-h rating mentioned in assumption 3 also was based on, postflight testing of the entry and postlanding batteries. •

• • • TABLE 7-1.- ASSUMPTIONS FOR THE CSM EPS ANALYSIS

1. The system was assumed to operate with three fuel cells and two inverters.

2. The fuel cells were purged every 900 A-h. • 3. Three entry and postlanding batteries were considered available to supply the total spacecraft power required for entry, parachute descent and postlanding time. Each battery was assumed to have a 40 A-h capacity until splashdown, at which time the capacity was uprated to 45 A~h.

4. Two batteries were considered to be in parallel with the fuel cells during ascent and for each SPS maneuver.

5. No cryogenic venting was assumed.

6. The EPS hydrogen consumption rate (lb!hr) 0.00257 x I . = fc

7. The EPS oxygen consumption rate (lb!hr) 7.936 x H • = 2

8. Two SPS midcourse corrections were assumed.

9. Six battery charges were assumed: three on battery A and three • on battery B. 10. Five percent uncertainty in the EPS profile is included in the cryogenic requirements .

• • 38

TABLE 7-11.- CRYOGENICS SUMMARY •

Item H , lb O , lb 2 2

Loaded (two tanks) 58.60 660.2 Less residual 2.32 13.0 • Less 2.65% instrumentation error 1.53 17.5 Total usable 54.75 629.7 Prelaunch requirements t minus 28.5 hr to t minus 6 hr at 40A 2.38 18.4 6-hr built-in hold at 40A .63 4.9 t minus 6 hr to t minus 2 hr at 40A .42 3.3 ECS requirements (3 hr) -- .7 t minus 2 hr to t (hr) at 75A .39 3.1 Total 3.82 30.4

Mission requirements EPS 35.21 268.5 ECS -- 91.5 Total 35.21 360.0 • Uncertainties 4.5-hr launch window at 75A .87 7.8 5% uncertainty 1.76 13.4 Total 2.63 21.2

Total required 41.66 411.6

Margin 12.09 218.1 • • • • • • • •

115

107

Q. ...E 99 c' ...Q> ...::> u :=... 91 U Q> U W ~ t-t~ :;;: t l,t, 'j W '" i

75

67

59 fijlll iLTf'liT:Ji!l,,!lin:!'r:1 qr"lii;111~1!lIl!lli,r'l++-+-'--I,-+~++~-;"""j.cF-r,"-+--j~":I-"H"j..:2J++-~--+++-!,-+ijWJ++-+'illlqI q1';1

-I I f ,t; I 'I',' l' ,:; ! :, '1,:1 :i:i· iJ I:J: I! I I II d'i I II. I I llilli I ,j- II ill" , , ,_., ., 51 o 20 40 60 80 100 120 140 160 180 200 220 240 260 280 Ground elapsed time, hr

Figure 7-1. - Total spacecraft current versus time. iO • •

..; E :;:: V> :::::J ...V> Cl> > ~ c .t!! cCl> ...o .s::;... .E c 0; o E "in - "eV> •

N ....I Cl>... :::::J c> u:: • • • • • • •

310 ~:'ljiHD!1i'!l;m:i:II:i1

290

270

:e 250 ~ r:: C ii E ...CD C CD '~!lfIJUjlB&tHnmWjjlllll!l!ll.lWllllit~.lUI1Jllffijjm!tllU1i!Hj+lmrr~Ift.lmIWUIIOOlllml!l~. """~ 9 210

190

170

ISO

130 o 20 40 60 so 100 120 140 160 ISO 200 220 240 260 280 Ground el~sed time, hr

Figure 7-3. - Oxygen remaining for mission for one tank versus time. 2 140 x 10 , ,I .,.. i i' ,. I. I· !' '. 'i" Tf TIT! .': h i'i ~'. . :. " ,,;. i,: ',,,I.', !:I!jH4t~1~f#it4H1i~;+~ 'i ';[;i: Ie; :-.-- ITt' 'f ~ I'"~ .t;Tth: "i [( 1. H!: i , 1Ifti u· f~ IH iii ;nl iT ,1 • ~tt~~ ~ IF') :': -..- ::U'I :' H Ii f!M ;i ii,'; '!l,:' Hi:. " ... ". ,,, ... ,,. "'ji'-' ··~Ei-!'I. ~ ,~h-, , ... , ,I, . ,,,II. 1 '1 \"l it Iftc ·Hi t: t 120 ., . I ,. . ill'" , ,. .'-r::: ~ l [;l~:::;i T:".:.~. H~"" "' ~; c; I :I l W . i>fI !I tili ~:I mr ilt '-t-;-n~ ,;J -r.:c r-" , ,H' rt; .. , . : I f: I .,:', t h~!' :lIr I;!: ,. . . Ii :!ii 4l.ff \j:'1 II: 'lJ!! tlU!~ t,n ,err H' f (::Jr(l,il'. il" i1! ":.' '.' :; ;'i ;t!! I itt ,.•"! #if" '11 i;.': T " (,!I'.~ 1i": 'ii;' 'L ,,:::, '''.- .: . t' . = " iTti . \ L:; I ~ ! \'#r: 4' ... . tt:' l' tH tH ':" '-.i ' \" I. .i::.; f- 100 Hi ' 'it t~ It 'I i \'; 1f~:l ,.:-.. f#.14 IH'. 'm.'. I' j., :. ,1[; :1 1 I" fi @p'~It1+i+!ttl: , ;.; fi . . ;.ru I f I,! lUi ::, ild 811illf .m II' :. , j'.:, :~ ,! II 11 II :Hi #t' 1 I~Wj!: i:, :" t],i;!ti ffu1illl 'h .;+' :n r: . . I, 1]:t , , 11$ '~}I !:!!II;i; ": f' I I, dtt~dHf, fill.;,.. 80 i'.' ". finn, ~ ~lli"" ''''''''''I''. f I' T;" 1~lj1 \" m' ,. I t ~ r;!-!t~,;r¥:FH"I . ~ r 'f . ": di: j I W. ) ; . J I j q c. i I) •~t! ,,;,!: tUl ! ' . ll\ 1 f'Hi1liP !;~:f#'ff ' lij g : . ,'". J ] Ud4 .( /U,[ tw." ,ti ['It: I l [L r . ri Illi. 1.g ui' ~~-r" Ert.. ,t 1 o ~\, • H' ~ bO -fllB I 8'. ;t," ,':,:: , . 1 l • , h": dn J: .:e'f': "'t +::­ .. l\) ~.!;:;:.."-.... ~ l:~ till! UiJ # ,"i I. f i#tis ;;:::1....•. fW ;: :of'.":: 'i'. ,-, !Iiililt..", ~! ~~t \\ t\'I'llil Ii, ,. .1; '·f>:',.l.l t It i: r\ ; 'l~ . -,tilllt ,d L~i : i~;;'11 Hi~: :~~~; IT' 1;;. .',' :;;:~t~ ::r: 40 : ::1: ",.. ;h { ;" t ~ t t· f~ I Wi,~i\~ j'.' ,-,~;,Ii'· I".~ ,]X 't;.~ ~J . I, ".\ ., "'''1':f~ ::~:' t . k J' 1t':''''t:w_: ','to,; r:1- _.: .j' ,I t'l. I) i 'nn ill)' , 1fT! :i.; n;1 il' Ull 1,1:' . :::rhhJ ~'i ~i, ~:, iffh c ;: t I:'''' i ,If; i ; Ii hi} - tfH :~ fit o 20 40 60 80 100 120 140 160 180 200 220 Ground elapsed time, hr

Figure 7-4. - Total DC energy profile versus time• • • • • • • 43 8.0 THE CSM ECS ANALYSIS

The CSM ECS analysis will be supplied when the detailed operational • trajectory time line is available.

• • 4h • 9.0 THE 1M EPS ANALYSIS

The 1M descent and ascent stage battery energy used for the nominal mission is 550 A-h and 432 A-h, respectively. Unusables defined in as­ sumptions 2, 3, and 4 of table 9-1 indicate that the descent stage and ascent stage have 62 and 21 percent energy remaining, respectively. •

This particular analysis was performed by an individual block type approach rather than by the integration of crew procedures switch set­ tings through the mission. As Apollo 10 becomes more defined, more de­ tailed data will be published, including total spacecraft current profiles.

TABLE 9-1.- ASSUMPTIONS FOR THE 1M EPS ANALYSIS

1. Energy available for the descent stage batteries is 1600 A-h and for the ascent stage batteries is 592 A-h.

2. Energy unusable for the descent stage batteries and the ascent stage batteries because of lack of MSFN coverage is 21 A-h and 7 A-h, respectively.

3. Energy unusable for the descent stage batteries and the ascent • stage batteries because of telemetry inaccuracy is 8 A-h for both vehicles.

4. Energy unusable for the descent stage batteries and the ascent stage batteries because of equipment power dispersions is 28 A-h and 22 A-h, respectively.

5. The descent stage batteries would go on the line at lift-off minus 30 minutes with no recycle on the pad. They would go off the line again at transposition and docking.

6. All ReS quad heaters were considered to be on continuously for 1 hour prior to the first ReS hot fire test.

7. All S-band equipment was considered to be on continuously from initial activation until the completion of the mission. • • • • • • '.

1900

Summary 1800 Total loaded =1600 A-h Total unusable for pre-mission planning = 1700 t-IVT to LM 56.4 A-h (4.5%) Total used =550 A-h (34.4%) Usable remaining at I staging = 994 A-h (62.0%) 1600

C> <: "c 1500 ~ 2! ..c I

1300

1200

1100 SIT""

1000 I I I I I 95 I I I I 96 97 98 99 100 101 102 103 104 Ground elapsed time, hr

Figure 9-1. - Descent electrical power profile for an F mission flight plan. 700

Total loaded = 592.0 A-h 600 Staging and ins CAPS) Total unusable for ~ -01'--... I pre-mission planning = 36.6 A-h (6.2'70) - --...... ~I (RCS) Total used = 432.0 A-h (73.0'70 500 Usable remaining at - ~ .s:: burn to depletion = I ~ CDH (RCS) 123.4 (20.80/0) ~ , ....Qj ...... ~ Docking ..cCll 300 .j::"" -U 0\ ....<:: OJ r-----... I'--... <..l

Dispersion 21.6 A-hT 100 v-Lack-of-sight coverage 6.9 A-h TM =8.1 A-r / 1 1 / o 102:00 103:00 104:00 105:00 106:00 107:00 108:00 109:00 110:00 Ground elapsed time, hr:min

Figure 9-2.- Ascent electrical load analysis for an F mission flight plan •

•• • • • • • 10.0 THE 1M ECS ANALYSIS

The LM ECS analysis will be supplied when the detailed operational • trajectory time line is available .

• • TABLE 11-1.- TIME HISTORY OF C0I1SUMABLES WEIGHT LOSS

EECOM weight loss, Ib I"'leS weight loss, Ib APS weight loss, DPS weight loss, SPS weight loss, Nission time, Event Ib Ib Ib hr CSM I1~ CSM 1M

3: 15 Lift-off to extraction 10 83.3 ------9:30 Extraction to il;CC-l 2 58.3 ------I 128.4

26:30 r~CC-l to MCC-2 45 58.9 ------

54:08 r~CC-2 to MCC-3 51 88.4 ------11:08 MCC-3 to Mcc-4 42 46 29.1 ------76:08 Mcc-4 to LOI-l 2 35.8 ------22 932.5

80:32 LOI-l to LOI-2 2 24.3 ------961.8

98: 55 LOI-2 to CSM/U~ SEP 42 41 .8 ------

99: 54 SEP to DOl I 38 -- 255.7 -- 100: 58 DOl to 1M phasing 7 1 29 -- 625.0 -- 102:53 1M phasing to staging 14 63.1 45 ------+" CO 103:03 Staging to 1M insertion 1 5 182.1 -- --

103: 54 Insertion to CSI 12 6 22 ------

104: 52 CSI to CDH I 36 32.3 -- --

105:29 CDH to TPl 4 11 ------

106: 55 TPl to Docking 10 168 ------

108: 34 Docking to 1M jettison 11 8.8 ------

109:03 APS burn to depletion 3 -- -- 2364.2 -- --

129: 51 1M jettison to TEl -- 58.1 ------11 111.6 144: 51 TEl to MCC-5 41 -- 21.2 ------116:18 MCC-5 to Mcc-6 41 -- 16.9 ------188: 18 Mcc-6 to MCC-1 5 -- 13.9 ------193:00 MCC-1 to CM/SM SEP 2 -- 15.1 ------

• • • • •• • • ,~ • ••

3 100 .x: W r -MCC-l J Docked / ~LOI-l -"" N ,-' Docked I 90 -- ...... CSM r ....,..~...... /~~LM I

80

v-~OII-2 .c 70 /' . ~"-N .s::. CSM /' .s:'- CSM/LM separation --/ Q) :!: 60 -"N"' ;t:: ...l'll U OJ u ~ 50 en c.. -F" « \D Cl CSM/LM separation___, 3 40 I\. 1"'- , - r--'i\f' t LM J\ 30 1\ 'f ,~ V CSM/LM separation-~ 20

10 "- "- "I "'-. 4 5 6 7 8 9 10 76 77 78 79 80 81 98 99 Ground elapsed time, hr

Figure 11-1. - Spacecraft weight versus ground elapsed time. 3 48 )<.!u I j v- LM Jettis6n Docked ,...... uIICSM 44 IV~/~/...... LM r--

40 I-Transfer cre~ V V- TEl ~CSM ...... """ ...... ~...... • IHII U ..II ..... •U ...... N 36

~ 001 . == 32 LM v Phasing I-Staging . :E V i Ol Qi ;;: I ;t:: 28 ~ u I J\. Q) u \1 ~ Vl 24 a.. I c.n « c:::; Cl I I :5 20

I 16

12 ____ Insertion 1/ V CS1 VE~c-TPI v- APS bu rn to depletion 8 /' I 4 ....., "- ..... , 99 100 101 102 103 104 105 106 107 108 109 110 '" 129 130 190 191 Ground elapsed time, hr

Figure 11-1.- Concluded.

•• I. • J •• 51' • 12.0 REFERENCES 1. CSM!LM Spacecraft Operational Data Book, Volume I- CSM Data Book, Revision 1. MSC SNA-8-D-027, November 1968•

2. CSM!LM Spacecraft Operational Data Book, Volume II - LM Data Book. MSC SNA-8-D-027, June 1968. • 3. CSM!LM Spacecraft Operational Data Book, Volume III - Mass Properties, Revision 1. MSC SNA-8-D-027, November 1968.

4. Anderson, W. M.: Preliminary Flight Plan Apollo 10 AS-505!CSM-I06!LM-4. (Draft copy, February 14, 1969.)

5. Lunar Mission Design Section: Spacecraft Operational Trajectory for Apollo Mission F, Volume I- Operational Mission Profile Launched May 17,1969. MSC IN 69-FM-65, March 26,1969. •

• • DISTRIBUTION D

.£I.e Electronics Attn: S. Baron (1) • Bellcomm, Inc. Attn: V. Mummert (5) Boeing Data Management HA-04 (1) Boeing/Houston Attn: R. B. McMurdo (1) Grumman Aircraft Eng. Corp. Attn: R. L. Pratt (12) • Grumman Aircraft Engineering Corp. Attn: J. Marino (4) Bethpage Grumman Aircraft Engineering Corp. Attn: RASPO (1) Bethpage General Electric/Houston Attn: W. M. Starr/743 (1) IBM Houston/J. Be~~arcyk (1) IBM Houston/60E/J. H. Winters (1) IBM-FSP Attn: G. K. Tomlin (1) Link Group General Precision Attn~ Director (2) Massachusetts Institute of Techliology Attn: N. Sears (1) North American Rockwell Corp. Attn: BASPO (1) • North American Rockwell Corp. Attn: J. R. Potts/AB74 (10) North American Rockwell Corp. Attn: G. Dimitruk/BB49 (1) TRW/M. Barone (1) TRW/Houston/B. J. Gordon (1) TRW Houston/I. Zipper (1) ~RW Houston/M. M. Green (1) TTIW/J. Coffman (1) TRW Houstoli/Library (4) NASA/Goddard Spaceflight Center Attn: J. Shaughnessy/834 (1) .. NASA/Goddard Spaceflight Center Attn: Dr. F. o. VonBun/550 (1) John F. Kennedy Space Center - NASA Attn: Dr. A. H. Knothe, EX-SCI (1) John F. Kennedy Space Center - NASA Attn: A. H. Moore/AP-SYS-l (1) • John F. Kennedy Space Center - NASA Attn: R. D. McCafferty (4) NASA/Marshall Space Flight Center Attn: A. MCNair/l-MO-R (2) NASA/Marshall Space Flight Center • Attn: R. Barraza/I-V-F (1) NASA/Marshall Space Flight Center Attn: T. J. McCullogh/I-VE (1) NASA/Marshall Space Flight Center Attn: J. Cremin/R-AERO-DAP (1) NASA/Marshall Space Flight Center • Attn: C. Hagood/R-AERO-P (1) NASA/Marshall Space Flight Center Attn: L. Stone/R-AERO-F (1) NASA/Marshall Space Flight Center Attn: O. Hardage/R-AERO-M (1) NASA/Marshall Space Flight Center Attn: J. McQueen/R-AERO-P (1) NASA/Marshall Space Flight Center • Attn: L. Thionnet/R-AERO-P (1) NASA/Marshall Space Flight Center Attn: H. Hosenthien/R-ABTR-F (1) NASA/Marshall Space Flight Center Attn: J. Kerr/R-ASTR-IR (l) NASA/Marshall Space Flight Center Attn: F. Moore/R-ASTR-N (1) NASA/Marshall Space Flight Center Attn: W. Chubb/R-ASTR-NG (1) NASA/Marshall Space Flight Center Attn: S. Seltzer/R-ASTR-NG (3) NASA/Marshall Space Flight Center Attn: J. Mack/R-ASTR-S (1) NASA/Marshall Space Flight Center Attn: H. Ledford/R-SE-S (1) NASA Headquarters Attn: Gen. Phillips (1) NASA Headquarters • Attn: Apollo Mission Director (1) NASA Headquarters Attn: L. Abernathy (1) NASA Headquarters Attn: J. T. McClanahan (1) (O.T. only) NASA Headquarters Attn: Aller/MAO-4 (2) NASA Headquarters Attn: Hickey/MAS-4 (1) DDMS-TAG Patrick Air Force Base (1) GNSO Patrick Air Force Base Attn: O. Thiele (1) (0. T. only) AFETR/ETOOP-2 Patrick Air Force Base (5) AP/Public Info. Office (7) (O.T. only) BM6/Technical Library (2) • BM86/Mission Data Package (15) CA!D. K. Slayton (2) CB/A. B. Shepard (5) CF/W. J. North (1) CF24/p. Kramer (1) CF32/H. Kuehnell (1) CF34/J. Oneill (1) • CF34/T. Holloway (1) DA/H. R. Hair (1) EB/P. H. Vavra (1) ED3/M. T. Cunningham (1) ED3/S. M. Keathly (1) • EE/G. Bills (1) EE/R. W. Sawyer (1) EG/Chief, G&CD (1) EG21/M. K~ton (1) EG23/C. F. Lively (1) EG41/J. Hanaway (2) EP /J. G. Thibodeau (1) EP2/C. H. Lambert (1) • ES12/Project Support Office (1) EW/C. C. Johnson (1) EX2/B. Redd (1) FA/C. C. Kraft, Jr. (1) FA/R. G. Rose (1) FG/E. F. Kranz (30) FC4/Edlin (GAEC) (1) Fc6/c. B. Shelley (3) FL/J. B. Hammack (1) FL/H. Granger (2) FM/J. P. M~rer (1) FM!H. W. Tindall (1) FM/C. R. Huss (1) FM/~. H. Owen (1) FM2/F. Bennett (1) FM2/C. A. Graves (1) FM2/J. Harpold (1) FM3/C. Allen (4) • FMl~/,T. McPherson (1) FM5/F.. L. Berry (3) FM6/E. Lineberry (1) FM1/M. D. Cassetti (2) FM8/J. Funk (1) FMl3!R. P. Parten (1) FMJ-3/G. Michos (1) FMl5/Editing (1) FMl3/M. A. Collins (2) FMl3/K. Henley (1) FMl5/Report Control Files (25) FS /Dungan (5) FS!L. DID1seith (10) HA58/J. Pittman (TBC) (1) HM23/D. W. Hackbert (1) NA/W. M. Bland (1) PD/R. J. Ward (1) • PD/A. Dennett (1) PD/C. H. Perrine (1) PD/L. Jenkins (1) PD3/R. V. Battey (1) PD1/M. Sil'ler - NR (1) PD7/R. Kohrs (1) PD7/J. Mistrot (1) • PD9/J. W. Craig (1) PT3/Test Division Document Library (3) (O.T. only) PT4/J. Lobb (1) SA/J. French (1) TD4/Stephenson (1) • TE/Jackson (1) TG/Dr. S. C. Freden (1) ZR2/E. W. Ivy (2) •

• •