4. Lunar Architecture

Total Page:16

File Type:pdf, Size:1020Kb

4. Lunar Architecture 4. Lunar Architecture 4.1 Summary and Recommendations As defined by the Exploration Systems Architecture Study (ESAS), the lunar architecture is a combination of the lunar “mission mode,” the assignment of functionality to flight elements, and the definition of the activities to be performed on the lunar surface. The trade space for the lunar “mission mode,” or approach to performing the crewed lunar missions, was limited to the cislunar space and Earth-orbital staging locations, the lunar surface activities duration and location, and the lunar abort/return strategies. The lunar mission mode analysis is detailed in Section 4.2, Lunar Mission Mode. Surface activities, including those performed on sortie- and outpost-duration missions, are detailed in Section 4.3, Lunar Surface Activities, along with a discussion of the deployment of the outpost itself. The mission mode analysis was built around a matrix of lunar- and Earth-staging nodes. Lunar-staging locations initially considered included the Earth-Moon L1 libration point, Low Lunar Orbit (LLO), and the lunar surface. Earth-orbital staging locations considered included due-east Low Earth Orbits (LEOs), higher-inclination International Space Station (ISS) orbits, and raised apogee High Earth Orbits (HEOs). Cases that lack staging nodes (i.e., “direct” missions) in space and at Earth were also considered. This study addressed lunar surface duration and location variables (including latitude, longi- tude, and surface stay-time) and made an effort to preserve the option for full global landing site access. Abort strategies were also considered from the lunar vicinity. “Anytime return” from the lunar surface is a desirable option that was analyzed along with options for orbital and surface loiter. The duration, location, and centralization of lunar surface activities were analyzed by first determining the content of the science, resource utilization, Mars-forward technology demon- strations, and operational tests that could be performed during the lunar missions. The study team looked at high-priority landing sites and chose a reference site in order to further inves- tigate the operations at a permanent outpost. With the scientific and engineering activities defined, concept-level approaches for the deployment and buildup of the outpost were created. A comprehensive definition of lunar surface elements and infrastructure was not performed because development activities for lunar surface elements are still years in the future. There- fore, the ESAS team concentrated its recommendations on those elements that had the greatest impact on near-term decisions. 4. Lunar Architecture 75 The mission architecture decisions that most greatly affect near-term NASA development activities are mission mode, propulsion system types, and mission duration. The ESAS team recommends the use of an Earth Orbit Rendezvous-Lunar Orbit Rendezvous (EOR–LOR) mission mode. This mission mode, which can be executed with a combination of the launch of separate crew and cargo vehicles, was found to result in a Low Life Cycle Cost (LCC) and the highest crew safety and mission reliability combination. Further, the study found that pressure-fed Liquid Oxygen (LOX)/methane propulsion should be used for the lander ascent stage as well as the Crew Exploration Vehicle (CEV) Service Module (SM), which should be sized to perform the Trans-Earth Injection (TEI) propulsive maneuver for a lunar mission. The study also concluded that the lunar lander should use a LOX/hydrogen throttleable propulsion system for Lunar Orbit Insertion (LOI) and landing. The two-stage lander should include an airlock and be sized to support a 7-day surface mission with four crew members. 76 4. Lunar Architecture 4.2 Lunar Mission Mode The lunar mission mode is the fundamental lunar architecture decision that defines where space flight elements come together and what functions each of these elements perform. Mission mode analysis had its genesis early in the design of the Apollo Program, with notable NASA engineers and managers such as Wernher Von Braun, John Houbolt, Joe Shea, and Robert Seamans contributing to the decision to use LOR as the Apollo mission mode. This study built on the foundation of the Apollo decision but sought to question whether the LOR decision and overall Apollo mission approach were still valid, given new missions require- ments and technology. The ESAS team researched many of the Apollo lunar landing mode comparison studies as well as more recent studies performed by both NASA and industry. One study of interest, performed by a Massachusetts Institute of Technology (MIT)-Draper Laboratory team as part of a “Concept Exploration and Refinement” (CE&R) contract to NASA, suggested that the Apollo mission mode was no longer valid and that NASA should consider “direct return” modes for future human lunar missions. The ESAS team took special note of this study and sought to challenge all of the Apollo mission assumptions. 4.2.1 Previous Lunar Architecture Study Results Since its inception, NASA has conducted or sponsored numerous studies of human explo- ration beyond LEO. These studies have been used to understand requirements for human exploration of the Moon and Mars in the context of other space missions and Research and Development (R&D) programs. Each exploration architecture provides an end-to-end mission baseline against which other mission and technology concepts can be compared. The results from the architecture studies were used to: • Derive technology R&D plans; • Define and prioritize requirements for precursor robotic missions; • Define and prioritize flight experiments and human exploration mission elements, such as those involving the Space Shuttle, ISS, and other Space Transportation Systems (STSs); • Open a discussion with international partners in a manner that allows identification of participants’ potential interests in specialized aspects of the missions; and • Describe to the public, media, and Government stakeholders the feasible, long-term visions for space exploration. 4. Lunar Architecture 77 Each architecture study emphasized one or more critical aspects of human exploration in order to determine basic feasibility and technology needs. Examples of architectural areas of emphasis include: • Destination: Moon ↔ Mars ↔ Libration Points ↔ Asteroids; • System Reusability: Expendable ↔ Reusable; • Architecture Focus: Sorties ↔ Colonization; • Surface Mobility: Local ↔ Global; • Launch Vehicles (LVs): Existing ↔ New Heavy-Lift; • Transportation: Numerous stages and technologies traded; • LEO Assembly: None ↔ Extensive; • Transit Modes: Zero-gravity ↔ Artificial-gravity; • Surface Power: Solar ↔ Nuclear; • Crew Size: 4 ↔ 24; and • In Situ Resource Utilization (ISRU): None ↔ Extensive. The ESAS team extensively scrutinized the NASA studies that led to the Apollo Program, most notably studies to determine the shape of the Apollo capsule and the mode used for the Apollo missions. Additionally, the team reviewed the findings of human lunar and Mars mission studies performed over the past 15 years. A summary of these studies is shown in Table 4-1. Office of Exploration (OExP) - 1988 Case Studies First Lunar Outpost - 1993 Human Expedition to Phobos Early Lunar Resource Utilization - 1993 Human Expedition to Mars Human Lunar Return - 1996 Lunar Observatory Lunar Outpost to Early Mars Evolution Mars Exploration Missions Design Reference Mission Version 1.0 - 1994 Office of Exploration (OExP) - 1989 Case Studies Design Reference Mission Version 3.0 - 1997 Lunar Evolution Design Reference Mission Version 4.0 - 1998 Mars Evolution Mars Combo Lander (Johnson Space Center (JSC)) - 1999 Mars Expedition Dual Landers – 1999 NASA 90-Day Study - 1989 Decadal Planning Team (DPT)/NASA Exploration Team (NExT) - 2000–2002 Approach A - Moon as testbed for Mars missions Earth’s Neighborhood Architecture Approach B - Moon as testbed for early Mars missions Asteroid Missions Approach C - Moon as testbed for Mars Outposts Mars Short and Long Stay Approach D - Relaxed mission dates Exploration Blueprint - 2002 Approach E - Lunar outpost followed by Mars missions Space Architect - 2003 America at the Threshold - “The Synthesis Group” - 1991 Exploration Systems Mission Directorate (ESMD) 2004–2005 Mars Exploration Science Emphasis for the Moon and Mars The Moon to Stay and Mars Exploration Space Resource Utilization Table 4-1. Summary of Previous NASA Architecture Studies 78 4. Lunar Architecture 4.2.1.1 Summary of Previous Studies 4.2.1.1.1 Office of Exploration Case Studies (1988) In June 1987, the NASA Administrator established the Office of Exploration (OExP) in response to an urgent national need for a long-term goal to reenergize the U.S. civilian space program. The OExP originated as a result of two significant assessments conducted prior to its creation. In 1986, the National Commission on Space, as appointed by the President and charged by the Congress, formulated a bold agenda to carry America’s civilian space enter- prise into the 21st century (number 1 in Section 4.5, Endnotes). Later that year, the NASA Administrator asked scientist and astronaut Sally Ride to lead a task force to look at potential long-range goals of the U.S. civilian space program. The subsequent task force report, “Lead- ership and America’s Future in Space,” (number 2 in Section 4.5, Endnotes) outlined four initiatives which included both human and robotic exploration of the solar system. In response to the task force report, the OExP conducted
Recommended publications
  • N98-L7433 World Space Foundation P.O
    175 A LUNAR POLAR EXPEDITION Richard Dowling, Robert L. Staehle, and Tomas Svitek N98-l7433 World Space Foundation P.O. Box Y South Pasadena CA 91031 Advanced exploration and development in harsh environments require mastery of basic human suroival skills. F.xpeditions into the lethal climates of Earth's polar regions offer useful lessons for tommrow's lunar pioneers. In Arctic and Antarctic exploration, "wintering over" was a cruciaJ milestone. 7be ability to establish a supply base and suroive months of polar cold and da1*ness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's, may offer the most hospitable site for habitation. 7be World space Foundation ts examining a scenario for establishing a .five.person expeditionary team on the lunar north pole for one year. 1bi.s paper ts a status report on a point design addressing site selection, transportation, power, and life support requirements. POLAR EXPWRATION AND North Pole on 6 April, 1909, and Roald Amundson's magnificently LUNAR OBJECl1VFS planned expedition reaching the South Pole on 14 December, 1911. Today there are permanent residents in both the Arctic and In March 1899, almost one hundred years ago, the explorer Antarctic pursuing commercial and scientific activities. Indeed, the Carsten E. Borchgrevnik established the first winter camp on the International Antarctic Treaty may prove a useful example for "white continent," Antarctica. Unlike the north polar regions, those trying to determine who "owns" the Moon. Antarctica had never been inhabited by man. Though marine birds Unlike Earth's polar regions, the lunar poles may be the most and animals visit the coastal regions, only primitive mo.....s and hospitable locations for early long-term human habitats, so we do lichen can survive the polar deserts of ice and snow.
    [Show full text]
  • How Doc Draper Became the Father of Inertial Guidance
    (Preprint) AAS 18-121 HOW DOC DRAPER BECAME THE FATHER OF INERTIAL GUIDANCE Philip D. Hattis* With Missouri roots, a Stanford Psychology degree, and a variety of MIT de- grees, Charles Stark “Doc” Draper formulated the basis for reliable and accurate gyro-based sensing technology that enabled the first and many subsequent iner- tial navigation systems. Working with colleagues and students, he created an Instrumentation Laboratory that developed bombsights that changed the balance of World War II in the Pacific. His engineering teams then went on to develop ever smaller and more accurate inertial navigation for aircraft, submarines, stra- tegic missiles, and spaceflight. The resulting inertial navigation systems enable national security, took humans to the Moon, and continue to find new applica- tions. This paper discusses the history of Draper’s path to becoming known as the “Father of Inertial Guidance.” FROM DRAPER’S MISSOURI ROOTS TO MIT ENGINEERING Charles Stark Draper was born in 1901 in Windsor Missouri. His father was a dentist and his mother (nee Stark) was a school teacher. The Stark family developed the Stark apple that was popular in the Midwest and raised the family to prominence1 including a cousin, Lloyd Stark, who became governor of Missouri in 1937. Draper was known to his family and friends as Stark (Figure 1), and later in life was known by colleagues as Doc. During his teenage years, Draper enjoyed tinkering with automobiles. He also worked as an electric linesman (Figure 2), and at age 15 began a liberal arts education at the University of Mis- souri in Rolla.
    [Show full text]
  • Domi Inter Astra
    Team members Alice Sueko Müller | Anshoo Mehra | Chaitnya Chopra | Ekaterina Seltikova Isabel Alonso Serrano | James Xie | Jay Kamdar | Julie Pradel | Kunal Kulkarni Matej Poliaček | Myles Harris | Nitya Jagadam | Richal Abhang | Ruvimbo Samanga | Sagarika Rao Valluri Sanket Kalambe | Sejal Budholiya | Selene Cannelli Space Generation Advisory Council Team 1 Contents Society and Culture 3 Tourist Attractions 3 Astronaut and Tourist Selection 3 Architecture 4 Module 1: Greenhouse, Guest Amenities, Medicine, and Environmental Control 5 Module 2: Social Space and Greenhouse 5 Module 3: Kitchen, Fitness, Hygiene, and Social 6 Module 3: Sky-view 6 Module 4: Crew Bedrooms and Private Social Space 6 Module 5: Workspace 6 Management and Politics 7 Governance, Ownership, and Intellectual Property 7 Crew Operations 7 Base Management System 8 Safety & Emergency Planning 8 Engineering 9 Landing & Settlement Site 9 Settlement Structure 10 Robotics and Extravehicular Activities (EVAs) 10 Construction Timeline 11 Communications System 12 Critical Life Support (Air & Water) Systems 12 Thermal System 13 Food & Human Waste Recycling 14 Other Waste 14 Technical Floor Plan 14 Power Generation & Storage 14 Economy 16 Capital & Operating Costs 16 Revenue Generation 17 Tourism & Outreach 17 Commercial Activities 18 Lunar Manufacturing 18 References 20 ntariksha, aptly meaning ‘the universe’ in to be a giant leap for all the young girls around the Sanskrit, is an avid stargazer fascinated world, and she knew something incredible is waiting by the blanket of splurging stars she saw to be known. from her village in North East India. To- day, her joy knew no bounds upon learn- “Each civilization must become space-faring or ex- ingA that she would get a chance to visit Domi Inter tinct”.
    [Show full text]
  • Gryphon: a Flexible Lunar Lander Design to Support a Semi-Permanent Lunar Outpost
    AIAA SPACE 2007 Conference & Exposition AIAA 2007-6169 18 - 20 September 2007, Long Beach, California The Gryphon: A Flexible Lunar Lander Design to Support a Semi-Permanent Lunar Outpost Dale Arney1, Joseph Hickman,1 Philip Tanner,1 John Wagner,1 Marc Wilson,1 and Dr. Alan Wilhite2 Georgia Institute of Technology/National Institute of Aerospace, Hampton, VA, 23666 A lunar lander is designed to provide safe, reliable, and continuous access to the lunar surface by the year 2020. The NASA Exploration System Architecture is used to initially define the concept of operations, architecture elements, and overall system requirements. The design evaluates revolutionary concepts and technologies to improve the performance and safety of the lunar lander while minimizing the associated cost using advanced systems engineering capabilities and multi-attribute decision making techniques. The final design is a flexible (crew and/or cargo) lander with a side-mounted minimum ascent stage and a separate stage to perform lunar orbit insertion. Nomenclature ACC = Affordability and Cost Criterion AFM = Autonomous Flight Manager AHP = Analytic Hierarchy Process ALHAT = Autonomous Landing and Hazard Avoidance Technology ATP = Authority to Proceed AWRS = Advanced Air & Water Recovery System CDR = Critical Design Review CER = Cost Estimating Relationship CEV = Crew Exploration Vehicle CH4 = Methane DDT&E = Design, Development, Testing and Evaluation DOI = Descent Orbit Insertion DSM = Design Structure Matrix ECLSS = Environmental Control & Life Support System
    [Show full text]
  • LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
    Space Sci Rev DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 © The Author(s) 2011.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Project Selene: AIAA Lunar Base Camp
    Project Selene: AIAA Lunar Base Camp AIAA Space Mission System 2019-2020 Virginia Tech Aerospace Engineering Faculty Advisor : Dr. Kevin Shinpaugh Team Members : Olivia Arthur, Bobby Aselford, Michel Becker, Patrick Crandall, Heidi Engebreth, Maedini Jayaprakash, Logan Lark, Nico Ortiz, Matthew Pieczynski, Brendan Ventura Member AIAA Number Member AIAA Number And Signature And Signature Faculty Advisor 25807 Dr. Kevin Shinpaugh Brendan Ventura 1109196 Matthew Pieczynski 936900 Team Lead/Operations Logan Lark 902106 Heidi Engebreth 1109232 Structures & Environment Patrick Crandall 1109193 Olivia Arthur 999589 Power & Thermal Maedini Jayaprakash 1085663 Robert Aselford 1109195 CCDH/Operations Michel Becker 1109194 Nico Ortiz 1109533 Attitude, Trajectory, Orbits and Launch Vehicles Contents 1 Symbols and Acronyms 8 2 Executive Summary 9 3 Preface and Introduction 13 3.1 Project Management . 13 3.2 Problem Definition . 14 3.2.1 Background and Motivation . 14 3.2.2 RFP and Description . 14 3.2.3 Project Scope . 15 3.2.4 Disciplines . 15 3.2.5 Societal Sectors . 15 3.2.6 Assumptions . 16 3.2.7 Relevant Capital and Resources . 16 4 Value System Design 17 4.1 Introduction . 17 4.2 Analytical Hierarchical Process . 17 4.2.1 Longevity . 18 4.2.2 Expandability . 19 4.2.3 Scientific Return . 19 4.2.4 Risk . 20 4.2.5 Cost . 21 5 Initial Concept of Operations 21 5.1 Orbital Analysis . 22 5.2 Launch Vehicles . 22 6 Habitat Location 25 6.1 Introduction . 25 6.2 Region Selection . 25 6.3 Locations of Interest . 26 6.4 Eliminated Locations . 26 6.5 Remaining Locations . 27 6.6 Chosen Location .
    [Show full text]
  • Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon
    minerals Article Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon Claire L. McLeod 1,* and Barry J. Shaulis 2 1 Department of Geology and Environmental Earth Sciences, 203 Shideler Hall, Miami University, Oxford, OH 45056, USA 2 Department of Geosciences, Trace Element and Radiogenic Isotope Lab (TRaIL), University of Arkansas, Fayetteville, AR 72701, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-513-529-9662 Received: 5 July 2018; Accepted: 8 October 2018; Published: 16 October 2018 Abstract: The abundance of the rare earth elements (REEs) in Earth’s crust has become the intense focus of study in recent years due to the increasing societal demand for REEs, their increasing utilization in modern-day technology, and the geopolitics associated with their global distribution. Within the context of chemically evolved igneous suites, 122 REE deposits have been identified as being associated with intrusive dike, granitic pegmatites, carbonatites, and alkaline igneous rocks, including A-type granites and undersaturated rocks. These REE resource minerals are not unlimited and with a 5–10% growth in global demand for REEs per annum, consideration of other potential REE sources and their geological and chemical associations is warranted. The Earth’s moon is a planetary object that underwent silicate-metal differentiation early during its history. Following ~99% solidification of a primordial lunar magma ocean, residual liquids were enriched in potassium, REE, and phosphorus (KREEP). While this reservoir has not been directly sampled, its chemical signature has been identified in several lunar lithologies and the Procellarum KREEP Terrane (PKT) on the lunar nearside has an estimated volume of KREEP-rich lithologies at depth of 2.2 × 108 km3.
    [Show full text]
  • A Guideline for a Sustainable Lunar Base Design for Constructed in Lunar Lava Tubes and Their Vertical Skylights
    50th International Conference on Environmental Systems ICES-2021-186 12-15 July 2021 A Guideline for a Sustainable Lunar Base Design for Constructed in Lunar Lava Tubes and Their Vertical Skylights Masato Sakurai1, Asuka Shima2, Isao Kawano3, Junichi Haruyama4 Japan Aerospace Exploration Agency (JAXA), Chofu-shi, Tokyo, 182-8522, Japan. and Hiroyuki Miyajima5 International University of Health and Welfare, Narita Campus 1, 4-3, Kōzunomori, Narita, Chiba, 286-8686 Japan The lunar surface is a hostile environment subject to harmful radiation and meteorite impacts. A recently discovered lava tube avoids these risks and, as it undergoes only slight temperature changes, it is a promising location for constructing a lunar base. JAXA engages in research in regenerative ECLSS (Environmental Control Life Support Systems), particularly addressing water and air recycling and treating organic waste. Overcoming these challenges is essential for long-term lunar habitation. This paper presents a guideline for a sustainable lunar base design. Nomenclature ECLSS = Environmental Control Life Support System HTV = H-II Transfer Vehicle ISS = International Space Station JAXA = Japan Aerospace Exploration Agency JSASS = Japan Society for Aeronautical and Space Science MHH = Marius Hills Hole MIH = Mare Ingenii Hole MTH = Mare Tranquillitatis Hole SELENE = Selenological and Engineering Explorer UZUME = Unprecedented Zipangu Underworld of the Moon Exploration (name of the research group for vertical holes) SDGs = Sustainable Development Goals SELENE = Selenological and Engineering Explorer I. Introduction uture space exploration will extend beyond low Earth orbit and dramatically expand in scope. In particular, F industrial activities are planned for the Moon with the development of infrastructure that includes lunar bases. This paper summarizes our study of the construction of a crewed permanent settlement, which will be essential to support long-term habitation, resource utilization, and industrial activities on the Moon.
    [Show full text]
  • Project Horizon Report
    Volume I · SUMMARY AND SUPPORTING CONSIDERATIONS UNITED STATES · ARMY CRD/I ( S) Proposal t c• Establish a Lunar Outpost (C) Chief of Ordnance ·cRD 20 Mar 1 95 9 1. (U) Reference letter to Chief of Ordnance from Chief of Research and Devel opment, subject as above. 2. (C) Subsequent t o approval by t he Chief of Staff of reference, repre­ sentatives of the Army Ballistic ~tissiles Agency indicat e d that supplementar y guidance would· be r equired concerning the scope of the preliminary investigation s pecified in the reference. In particular these r epresentatives requested guidance concerning the source of funds required to conduct the investigation. 3. (S) I envision expeditious development o! the proposal to establish a lunar outpost to be of critical innportance t o the p. S . Army of the future. This eva luation i s appar ently shar ed by the Chief of Staff in view of his expeditious a pproval and enthusiastic endorsement of initiation of the study. Therefore, the detail to be covered by the investigation and the subs equent plan should be as com­ plete a s is feas ible in the tin1e limits a llowed and within the funds currently a vailable within t he office of t he Chief of Ordnance. I n this time of limited budget , additional monies are unavailable. Current. programs have been scrutinized r igidly and identifiable "fat'' trimmed awa y. Thus high study costs are prohibitive at this time , 4. (C) I leave it to your discretion t o determine the source and the amount of money to be devoted to this purpose.
    [Show full text]
  • Materials for Liquid Propulsion Systems
    https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost.
    [Show full text]
  • Go for Lunar Landing Conference Report
    CONFERENCE REPORT Sponsored by: REPORT OF THE GO FOR LUNAR LANDING: FROM TERMINAL DESCENT TO TOUCHDOWN CONFERENCE March 4-5, 2008 Fiesta Inn, Tempe, AZ Sponsors: Arizona State University Lunar and Planetary Institute University of Arizona Report Editors: William Gregory Wayne Ottinger Mark Robinson Harrison Schmitt Samuel J. Lawrence, Executive Editor Organizing Committee: William Gregory, Co-Chair, Honeywell International Wayne Ottinger, Co-Chair, NASA and Bell Aerosystems, retired Roberto Fufaro, University of Arizona Kip Hodges, Arizona State University Samuel J. Lawrence, Arizona State University Wendell Mendell, NASA Lyndon B. Johnson Space Center Clive Neal, University of Notre Dame Charles Oman, Massachusetts Institute of Technology James Rice, Arizona State University Mark Robinson, Arizona State University Cindy Ryan, Arizona State University Harrison H. Schmitt, NASA, retired Rick Shangraw, Arizona State University Camelia Skiba, Arizona State University Nicolé A. Staab, Arizona State University i Table of Contents EXECUTIVE SUMMARY..................................................................................................1 INTRODUCTION...............................................................................................................2 Notes...............................................................................................................................3 THE APOLLO EXPERIENCE............................................................................................4 Panelists...........................................................................................................................4
    [Show full text]