John F. Kennedy Space Center
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Space Administration
https://ntrs.nasa.gov/search.jsp?R=19700024651 2020-03-23T18:20:34+00:00Z TO THE CONGRESSOF THE UNITEDSTATES : Transmitted herewith is the Twenty-first Semiannual Repol* of the National Aeronautics and Space Administration. Twen~-first SEMIANNUAL REPORT TO CONGRESS JANUARY 1 - JUNE 30, 1969 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546 Editors: G. B. DeGennaro, H. H. Milton, W. E. Boardman, Office of Public Affairs; Art work: A. Jordan, T. L. Lindsey, Office of Organiza- tion and Management. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402-Price $1.25 THE PRESIDENT May 27,1970 The White House I submit this Twenty-First Semiannual Report of the National Aeronautics and Space Aldministration to you for transmitttal to Congress in accordance with section 206(a) of the National Aero- nautics and Space Act of 1958. It reports on aotivities which took place betiween January 1 and June 30, 1969. During this time, the Nation's space program moved forward on schedule. ApolIo 9 and 10 demonstrated the ability of ;the man- ned Lunar Module to operate in earth and lunar orbit and its 'eadi- ness to attempt the lunar landing. Unmanned observatory and ex- plorer class satellites carried on scientific studies of the regions surrounding the Earth, the Moon, and the Sun; a Biosatellite oarwing complex biological science experiment was orbited; and sophisticated weather satellites and advanced commercial com- munications spacecraft became operational. Advanced research projects expanded knowledge of space flighk and spacecraft engi- neering as well as of aeronautics. -
Gryphon: a Flexible Lunar Lander Design to Support a Semi-Permanent Lunar Outpost
AIAA SPACE 2007 Conference & Exposition AIAA 2007-6169 18 - 20 September 2007, Long Beach, California The Gryphon: A Flexible Lunar Lander Design to Support a Semi-Permanent Lunar Outpost Dale Arney1, Joseph Hickman,1 Philip Tanner,1 John Wagner,1 Marc Wilson,1 and Dr. Alan Wilhite2 Georgia Institute of Technology/National Institute of Aerospace, Hampton, VA, 23666 A lunar lander is designed to provide safe, reliable, and continuous access to the lunar surface by the year 2020. The NASA Exploration System Architecture is used to initially define the concept of operations, architecture elements, and overall system requirements. The design evaluates revolutionary concepts and technologies to improve the performance and safety of the lunar lander while minimizing the associated cost using advanced systems engineering capabilities and multi-attribute decision making techniques. The final design is a flexible (crew and/or cargo) lander with a side-mounted minimum ascent stage and a separate stage to perform lunar orbit insertion. Nomenclature ACC = Affordability and Cost Criterion AFM = Autonomous Flight Manager AHP = Analytic Hierarchy Process ALHAT = Autonomous Landing and Hazard Avoidance Technology ATP = Authority to Proceed AWRS = Advanced Air & Water Recovery System CDR = Critical Design Review CER = Cost Estimating Relationship CEV = Crew Exploration Vehicle CH4 = Methane DDT&E = Design, Development, Testing and Evaluation DOI = Descent Orbit Insertion DSM = Design Structure Matrix ECLSS = Environmental Control & Life Support System -
Soft Kites—George Webster
Page 6 The Kiteflier, Issue 102 Soft Kites—George Webster Section 1 years for lifting loads such as timber in isolated The first article I wrote about kites dealt with sites. Jalbert developed it as a response to the Deltas, which were identified as —one of the kites bending of the spars of large kites which affected which have come to us from 1948/63, that their performance. The Kytoon is a snub-nosed amazingly fertile period for kites in America.“ The gas-inflated balloon with two horizontal and two others are sled kites (my second article) and now vertical planes at the rear. The horizontals pro- soft kites (or inflatable kites). I left soft kites un- vide additional lift which helps to reduce a teth- til last largely because I know least about them ered balloon‘s tendency to be blown down in and don‘t fly them all that often. I‘ve never anything above a medium wind. The vertical made one and know far less about the practical fins give directional stability (see Pelham, p87). problems of making and flying large soft kites– It is worth nothing that in 1909 the airship even though I spend several weekends a year —Baby“ which was designed and constructed at near to some of the leading designers, fliers and Farnborough has horizontal fins and a single ver- their kites. tical fin. Overall it was a broadly similar shape although the fins were proportionately smaller. —Soft Kites“ as a kite type are different to deal It used hydrogen to inflate bag and fins–unlike with, compared to say Deltas, as we are consid- the Kytoon‘s single skinned fin. -
Materials for Liquid Propulsion Systems
https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost. -
Turks and Caicos Islands
Important Bird Areas in the Caribbean – Turks and Caicos Islands ■ TURKS & CAICOS ISLANDS LAND AREA 500 km2 ALTITUDE 0–49 m HUMAN POPULATION 21,750 CAPITAL Cockburn Town, Grand Turk IMPORTANT BIRD AREAS 9, totalling 2,470 km2 IMPORTANT BIRD AREA PROTECTION 69% BIRD SPECIES 204 THREATENED BIRDS 3 RESTRICTED-RANGE BIRDS 4 MIKE PIENKOWSKI (UK OVERSEAS TERRITORIES CONSERVATION FORUM, AND TURKS AND CAICOS NATIONAL TRUST) Caribbean Flamingos on the old saltpans at Town Salina, in the capital, Grand Turk. (PHOTO: MIKE PIENKOWSKI) INTRODUCTION Middle and South Caicos are inhabited, and resorts are being developed on many of the small island. The smaller Turks The Turks and Caicos Islands (TCI), a UK Overseas Territory, Bank holds the inhabited islands of Grand Turk (10 km by 3 lie north of Hispaniola as a continuation of the Bahamas km) and Salt Cay (6 km by 2 km), as well as numerous smaller Islands chain. The Caicos Islands are just 50 km east of the cays. southernmost Bahamian islands of Great Inagua and The Turks Bank islands plus South Caicos (the “salt Mayaguana. The Turks and Caicos Islands are on two shallow islands”) were used to supply salt from about 1500. They were (mostly less than 2 m deep) banks—the 5,334 km² Caicos Bank inhabited by the 1660s when the islands were cleared of trees and the 254-km² Turks Bank—with deep ocean between them. to facilitate salt production by evaporation. By about 1900, There are further shallow banks, namely Mouchoir, Silver and Grand Turk was world famous for its salt. -
Turks and Caicos
Riskline / Country Report / 29 August 2021 TURKS AND CAICOS Overall risk level High Reconsider travel Can be dangerous and may present unexpected security risks Travel is possible, but there is a potential for disruptions Overview Upcoming Events 01 September 2021 - 02 September 2021 Medium risk: Entry to be limited to vaccinated travellers only from 1 September – Update Effective 1 September, only travellers with a proof of a full vaccination against COVID-19 by a Pfizer/BioNTech, Moderna, AstraZeneca or Johnson and Johnson vaccine at least 14 days prior to arrival will be allowed entry. A negative COVID-19 test no older than 72 hours and an insurance that covers COVID-19 are also required. Those in transit or under 16 years, medically exempted travellers and crew members are exempted. Riskline / Country Report / 29 August 2021 / Turks and Caicos 2 Travel Advisories Riskline / Country Report / 29 August 2021 / Turks and Caicos 3 Summary Turks and Caicos is a High Risk destination: reconsider travel. High Risk locations can be dangerous and may present unexpected security risks. Travel is possible, but there is a potential for severe or widespread disruptions. Covid-19 High Risk An uptick in infection rates prompted authorities to reimpose curfew measures from November 2020. A slight increase in infection rates was reported in July, although the rates have reduced considerably since February. A curfew remains in effect, however. International travel has resumed. Political Instability Low Risk A parliamentary dependency of the United Kingdom (UK), the Turks and Caicos Islands are led by Premier Washington Misick, the local representative who liaises with his British counterpart, Governor Nigel Dakin. -
Meteorological Equipment Data Sheets
TM 750-5-3 TECHNICAL MANUAL METEOROLOGICAL EQUIPMENT DATA SHEETS HEADQUARTERS, DEPARTMENT OF THE ARMY 30 APRIL 1973 *TM 750–5–3 TECHNICAL MANUAL HEADQUARTERS DEPARTMENT OF THE ARMY No. 750–5–3 WASHINGTON, D.C., 30 April 1973 METEOROLOGICAL EQUIPMENT DATA SHEETS Paragraph Page SECTION I. INTRODUCTION Scope _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 3 Purpose _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 3 Organization of content _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ 3 3 US Army type classifications _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 4 3 Currency of information _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 5 4 Omitted data_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 6 4 II. -
John F. Kennedy Space Center
1 . :- /G .. .. '-1 ,.. 1- & 5 .\"T!-! LJ~,.", - -,-,c JOHN F. KENNEDY ', , .,,. ,- r-/ ;7 7,-,- ;\-, - [J'.?:? ,t:!, ;+$, , , , 1-1-,> .irI,,,,r I ! - ? /;i?(. ,7! ; ., -, -?-I ,:-. ... 8 -, , .. '',:I> !r,5, SPACE CENTER , , .>. r-, - -- Tp:c:,r, ,!- ' :u kc - - &te -- - 12rr!2L,D //I, ,Jp - - -- - - _ Lb:, N(, A St~mmaryof MAJOR NASA LAUNCHINGS Eastern Test Range Western Test Range (ETR) (WTR) October 1, 1958 - Septeniber 30, 1968 Historical and Library Services Branch John F. Kennedy Space Center "ational Aeronautics and Space Administration l<ennecly Space Center, Florida October 1968 GP 381 September 30, 1968 (Rev. January 27, 1969) SATCIEN S.I!STC)RY DCCCIivlENT University uf A!;b:,rno Rr=-?rrh Zn~tituta Histcry of Sciecce & Technc;oGy Group ERR4TA SHEET GP 381, "A Strmmary of Major MSA Zaunchings, Eastern Test Range and Western Test Range,'" dated September 30, 1968, was considered to be accurate ag of the date of publication. Hmever, additianal research has brought to light new informetion on the official mission designations for Project Apollo. Therefore, in the interest of accuracy it was believed necessary ta issue revfsed pages, rather than wait until the next complete revision of the publiatlion to correct the errors. Holders of copies of thia brochure ate requested to remove and destroy the existing pages 81, 82, 83, and 84, and insert the attached revised pages 81, 82, 83, 84, 8U, and 84B in theh place. William A. Lackyer, 3r. PROJECT MOLL0 (FLIGHTS AND TESTS) (continued) Launch NASA Name -Date Vehicle -Code Sitelpad Remarks/Results ORBITAL (lnaMANNED) 5 Jul 66 Uprated SA-203 ETR Unmanned flight to test launch vehicle Saturn 1 3 7B second (S-IVB) stage and instrment (IU) , which reflected Saturn V con- figuration. -
4. Lunar Architecture
4. Lunar Architecture 4.1 Summary and Recommendations As defined by the Exploration Systems Architecture Study (ESAS), the lunar architecture is a combination of the lunar “mission mode,” the assignment of functionality to flight elements, and the definition of the activities to be performed on the lunar surface. The trade space for the lunar “mission mode,” or approach to performing the crewed lunar missions, was limited to the cislunar space and Earth-orbital staging locations, the lunar surface activities duration and location, and the lunar abort/return strategies. The lunar mission mode analysis is detailed in Section 4.2, Lunar Mission Mode. Surface activities, including those performed on sortie- and outpost-duration missions, are detailed in Section 4.3, Lunar Surface Activities, along with a discussion of the deployment of the outpost itself. The mission mode analysis was built around a matrix of lunar- and Earth-staging nodes. Lunar-staging locations initially considered included the Earth-Moon L1 libration point, Low Lunar Orbit (LLO), and the lunar surface. Earth-orbital staging locations considered included due-east Low Earth Orbits (LEOs), higher-inclination International Space Station (ISS) orbits, and raised apogee High Earth Orbits (HEOs). Cases that lack staging nodes (i.e., “direct” missions) in space and at Earth were also considered. This study addressed lunar surface duration and location variables (including latitude, longi- tude, and surface stay-time) and made an effort to preserve the option for full global landing site access. Abort strategies were also considered from the lunar vicinity. “Anytime return” from the lunar surface is a desirable option that was analyzed along with options for orbital and surface loiter. -
12' Spacecraft
' - NA'I',NAL AER /'iAJIICS AYD SPACE ADMINISTRATION Am 2-41 55 NAS+1INCTON D C 29546 lELSHJg 2-69'_5 FOR RELEASE: SUNDAY August 21, 1966 RELEASE NO: 66-213 . PROJECT: Apollo/Saturn 202 (To be launched no E earlier than Aug. 25) S CONTENTS S i b U ITHRU) z0 UCCESSION NUMBER) 0 (CODE) T -D. (PAGES) 4 2 31 (CATEGORY) (NASA CR OR TMX OR AD NUMBER) RELXASE NO: 66-213 APOLLO SATURN HEAT SHIELD IN ORBIT TEST The third unmanned Apolloflprated Saturn I flight will be launched no earlier than Aug. 25. Thfs will be the second flight test of the Apollo spacecraft command and service modules and the third flight test of the Saturn I rocket in pre- paration for manned rnissicns orbiting the Earth. The 17,825-mile flight will carry the spacecraft three- quarters of the way around the Earth. Landing will be in the north central Pacific about 300 miles southeast of Wake Island. The National Aeronautics and Space Administration will launch the space vehicle from Launch Complex 34, Kennedy Space Center, Fla., at l2:3O a.m. EDT to provide a long period of daylight for spacecraft recovery operations. The flight will take almost 93 minutes. The mission is the second performance check of the Apollo command module ablative heat shield. The shield will be subjected to extended high heat loads -- about 23,000 BTU/per square foot -- resulting from a reentry path resembling a "roller coaster" ride on Earth. -more- 8/15/66 -2 - On the first unmanned Apollo mission last February, the heat shield underwent high heating rates at a very steep angle. -
Desind Finding
NATIONAL AIR AND SPACE ARCHIVES Herbert Stephen Desind Collection Accession No. 1997-0014 NASM 9A00657 National Air and Space Museum Smithsonian Institution Washington, DC Brian D. Nicklas © Smithsonian Institution, 2003 NASM Archives Desind Collection 1997-0014 Herbert Stephen Desind Collection 109 Cubic Feet, 305 Boxes Biographical Note Herbert Stephen Desind was a Washington, DC area native born on January 15, 1945, raised in Silver Spring, Maryland and educated at the University of Maryland. He obtained his BA degree in Communications at Maryland in 1967, and began working in the local public schools as a science teacher. At the time of his death, in October 1992, he was a high school teacher and a freelance writer/lecturer on spaceflight. Desind also was an avid model rocketeer, specializing in using the Estes Cineroc, a model rocket with an 8mm movie camera mounted in the nose. To many members of the National Association of Rocketry (NAR), he was known as “Mr. Cineroc.” His extensive requests worldwide for information and photographs of rocketry programs even led to a visit from FBI agents who asked him about the nature of his activities. Mr. Desind used the collection to support his writings in NAR publications, and his building scale model rockets for NAR competitions. Desind also used the material in the classroom, and in promoting model rocket clubs to foster an interest in spaceflight among his students. Desind entered the NASA Teacher in Space program in 1985, but it is not clear how far along his submission rose in the selection process. He was not a semi-finalist, although he had a strong application. -
Consumables Analysis for the Apollo 10 Spacecraft Operational Trajectory
................................... ::::::::::::::::::::::: .:.:.:.:.:.:.:.:.:.:.:. \ :.:.:.:.:.:.:.:.:.:.:.: . jj:.t~:~:~:~:t~~~: .: ......:. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ::., .=:: ......................:.:. .. .-:.:.: .:.:.:.:.:.:.:.:.:.:.:. ::::::::::::::::::::::: MSC INTERNAL NOTE NO. 69-FM-76 ::::::::::::::::::::::: :~:~:t~:~:t~:~:~:. April 7, 1969 ~ ~~~~~~~~~~~~~~~~~~~~~~~ , • N..................······················... ~ ~:ttttt~ · ~~::::::::::::.::::::::::"\ .......... ::::::::::::::::::::::: .:::::::::::::::::::::: , I~III~~I ":':':':':':':':':':':........... ~.:::::::::::::::::::::: ~.......................... .:::::::::::::::::::::: ::::::::::::::::::::::: CONSUMABLES ANALYSIS ::::::::::::::::::::::: FOR THE APOLLO 10 (MISSION F) ----- -------- SPACECRAFT OPERATIONAL 1IIIIIilllllllllllllili TRAJECTORY :::::::::::::::::.:::::: • ~t{ttmm • I Guidance and Performance Branch, MISSION PLANNING AND ANALYSIS DIVISION • • .:~~~ 'i •••~...••~.~~.;·7) MANNED HS:U~~OEN~T~~~TCENTER ~'. :!I~"!I CNASA-TM-X-69384) CONSUMABLESAN AL YSIS N74-70735 ~FOB THE APOLLO 10 (MISSION F) SPACECBAFT :::.OFERATIONAL TRAJECTORY (NASA) 64 p Unclas • 00/99 16454 :::::::::::::::::::::.' • MSC INTERNAL NOTE NO. 69-FM-76 • PROJECT APOLLO CONSUMABLES ANALYSIS FOR THE APOLLO 10 (MISSION F) SPACECRAFT OPERATIONAL TRAJECTORY By Martin L. Alexander, Sam A. Kamen, Arnold J. Loyd, Samuel O. Mayfield, Dwight G. Peterson, and Walter Scott, Jr. , Guidance and Performance Branch ~ April 7, 1969 " MISSION PLANNING AND ANALYSIS DIVISION • NATIONAL AERONAUTICS