Nuclear Fission Reactors: Boiling Water and Pressurized Water Reactors

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Fission Reactors: Boiling Water and Pressurized Water Reactors Nuclear Fission Reactors: Boiling Water and Pressurized Water Reactors DOUGLAS K. VOGT Lawrence Livermore National Laboratory Livermore, California, United States from hydrogen enriched in deuterium are called heavy 1. Electricity Production from Light Water Reactors water. light water reactor (LWR) Any reactor that is cooled and 2. Pressurized Water Reactors moderated by ordinary or light water. Both pressuri- 3. Boiling Water Reactors zed water and boiling water reactors are light water 4. Ship Propulsion reactors. pressurized water reactor (PWR) A reactor that operates at high pressure (typically 42000 psia). At this pressure, PWR coolant water does not experience significant Glossary boiling. Reactor coolant is heated by thermal energy from nuclear fission, resulting in a temperature increase. boiling water reactor (BWR) A light-water-cooled and - Heated coolant flows to a heat exchanger with lower B moderated reactor that operates at a pressure of 1000 pressure water (B1000 psia) on the ‘‘nonreactor side.’’ pounds per square inch at atmospheric pressure (psia). The lower pressure water is converted to steam. The At this pressure, reactor coolant is converted from steam from the steam generator flows to a conventional liquid water to steam by thermal energy from nuclear turbine-generator system, where it is converted to fission. The boiling occurs within the reactor core. electricity. Steam from the core of a BWR flows to a conventional turbine-generator system, where it is converted to electricity. decommissioning At the end-of-life stage of a nuclear power plant, the facility contains highly radioactive Scientists in the former Soviet Union and in the West components. As part of decommissioning, these com- ponents, including the reactor and other plant areas, are who developed nuclear weapons in World War II and decontaminated to reduce the amount of radioactivity. in the early days of the Cold War realized that the Some components will be removed from the reactor site tremendous energy produced by nuclear fission could and buried in an engineered disposal site. Pressurized be tapped either for direct use or for generating water, boiling water, and naval reactors are decommis- electricity. It was also clear that nuclear fission sioned. energy would allow development of compact, long- high-level radioactive waste repository An engineered lasting power sources that could have various facility that isolates spent fuel or the radioactive waste applications, including powering ships, especially from spent fuel reprocessing, safeguarding the environ- submarines. From their roots in naval nuclear power ment. programs, light water reactors have become an light water Hydrogen has two stable isotopes, (1) protium important source of electric power in many coun- (99.985% natural abundance), which has a nucleus consisting of one proton, and (2) deuterium (0.015% tries. Light water reactors built over the past 30 years natural abundance), which has a nucleus consisting of continue to generate electricity, and new reactor one proton and one neutron. Water molecules formed designs, the advanced boiling water reactor and the from water with natural abundance hydrogen (99.985% advanced pressurized water reactor, are planned for protium) are called light water. Water molecules formed operation in the 21st century. Encyclopedia of Energy, Volume 4. r 2004 Elsevier Inc. All rights reserved. 333 334 Nuclear Fission Reactors: Boiling Water and Pressurized Water Reactors 1. ELECTRICITY PRODUCTION Laboratory and General Electric Company were FROM LIGHT WATER REACTORS developing the boiling water reactor (BWR). A small prototype BWR, Vallecitos, generated electricity in The first nuclear reactor to produce electricity (albeit Pleasanton, California from 1957 to 1963. Dresden- a trivial amount) was the small experimental breeder 1, which was designed by General Electric, was the reactor (EBR-1) in Idaho, in the United States. EBR-1 first large commercial BWR (200 MWe). Dresden-1 started operating in December 1951. In 1953, was constructed 50 miles southwest of Chicago, President Eisenhower proposed his ‘‘Atoms for Illinois and operated from 1960 until 1978. Peace’’ program, setting the course for civilian In 1964, the first Soviet land-based PWR power nuclear energy development in the United States. reactor began power operations in Novovoronezh However, it was the U.S. effort under Admiral (Volga region). This reactor was a new 210-MWe Hyman Rickover that led to the development of the pressurized water reactor known as a VVER (an pressurized water reactor (PWR) for submarine use. acronym in Russian for veda-vodyanoi energetiches- As part of the PWR development, Westinghouse ky reaktor, meaning ‘‘water-cooled power reactor’’). Electric Corporation built a land-based submarine In the Murmansk region of the Arctic Northwest, a rector prototype at the National Reactor Testing slightly bigger VVER with a capacity of 440 MWe Station near Arco, Idaho. The prototype started was constructed at the Kola Nuclear Power Plant. operation in March 1953, and in 1954, the first This became a standard Russian PWR design. nuclear-powered submarine, the USS Nautilus, was By the end of the 1960s, electric utilities world- launched. In 1959, both the United States and the wide were placing orders for PWR and BWR units former Soviet Union launched their first nuclear- of 400 MWe to more than 1000 MWe. Other powered surface vessels. countries have built primarily PWR and BWR types, The success of the submarine prototype reactor so that today, 65% of the world nuclear electric led to the U.S. Atomic Energy Commission decision generating capacity is PWR and 23% is BWR. to build the 90-megawatt electric (MWe) output Overall, 16% of the world’s electricity now comes Shippingport demonstration PWR near Pittsburgh, from nuclear energy. Throughout the world, there Pennsylvania. Shippingport started operation in are 438 commercial nuclear generating units with 1957 and operated as a commercial nuclear power a total capacity of about 351,000 MWe. Worldwide, plant until 1982. In the United States, Westinghouse LWRs generated over 2,000,000,000 megawatt- Electric Corporation designed the first fully commer- hours (MWh) of electricity in 2001. Figure 1 shows cial 250-MWe PWR, Yankee Rowe, which started the location of nuclear power plants worldwide operation in 1960 and operated until 1992. As the that are under construction, in operation, or under- PWR was being developed, Argonne National going decommissioning. Figure 2 summarizes the Europe Russia 60°N North America Asia 45°N 30°N Africa 15°N East Asia West Asia 0° South America 15°S 30°S 45°S 120°W90°W60°W30°W0° 30°E 60°E 90°E 120°E 150°E FIGURE 1 Location of nuclear power plants worldwide. Map from the International Nuclear Safety Center (Argonne National Laboratory). Nuclear Fission Reactors: Boiling Water and Pressurized Water Reactors 335 United States WA France NH MT ME ND VT Japan MN OR Germany MA ID SD WI NY MI RI Russian Federation WY CT Ukraine PA NV NE IA NJ UT South Korea CO IN OH DE WV Sweden CA KS IL VA MD MO KY Spain NC AZ NM TN Belgium OK SC AR MS Bulgaria AL GA Taiwan TX LA Slovak Republic Switzerland FL Czech Republic Hungary Finland Years of Number of Average China commercial operation reactors capacity (MDC) India 0−9 2 1134 South Africa 10−19 47 1092 Mexico 20−29 55 779 Brazil United Kingdom FIGURE 3 Locations of operating light water reactors in the Pakistan United States as of December 2000 (there are no commercial Slovenia reactors in Alaska or Hawaii). MDC, Maximum dependable Netherlands capacity. This map and additional data are available on the Armenia Internet at the Web site of the U.S. Nuclear Regulatory 020406080 100 120 Commission (http://www.nrc.gov). Power plants FIGURE 2 Number of light water reactor nuclear power plants worldwide. Containment structure Steam line number of operating LWR nuclear power plants in Control rods Steam Reactor Generator each country. vessel generator To minimize dependence on fossil fuel imports, Pump Reactor several countries have placed significant dependence Turbine Cooling tower on nuclear energy from LWRs. The following Condensor Pump cooling countries generate more than 30% of electricity water output using LWRs: France, Belgium, Slovak Repub- lic, Ukraine, Sweden, Bulgaria, South Korea, Hun- FIGURE 4 Schematic view of a pressurized water reactor. gary, Slovenia, Switzerland, Armenia, Japan, Finland, and Germany. Eight countries have manu- active material from the reactor under accident factured large LWRs for electricity generation: the conditions; a steam-powered turbine-generator that United States, France, Japan, Germany, Russia, produces electricity; and a condenser and cooling South Korea, Sweden, and the United Kingdom. towers for heat rejection. Figure 3 shows the 32 states with operating LWRs in The nuclear steam supply system includes nuclear the United States. fuel that is configured as the ‘‘reactor core’’ in a reactor pressure vessel. Reactor coolant water is pumped through the reactor core and heated. Heated water passes through tube-and-shell heat exchangers 2. PRESSURIZED WATER REACTORS called ‘‘steam generators.’’ On the reactor side of the steam generator, the water enters the inside, or tube 2.1 Plant Design Characteristics side, of the steam generator, passes through, and Figure 4 provides a schematic view of a pressurized eventually returns to the reactor through a closed water reactor power plant. The power plant systems piping system, to be reheated. On the turbine- include a nuclear reactor and steam generator (called generator side, the water passes over the outside, or the nuclear steam supply system), which produce shell side, of the steam generator tubes and is heated. steam using energy from nuclear fission; a reactor Heat transfer through the tubes provides the energy ‘‘containment system,’’ which limits release of radio- to convert liquid water to steam on the shell side of 336 Nuclear Fission Reactors: Boiling Water and Pressurized Water Reactors the steam generator.
Recommended publications
  • Integrity of Reactor Pressure Vessels in Nuclear Power Plants: Assessment of Irradiation Embrittlement Effects in Reactor Pressure Vessel Steels No
    156 pages, 9mm IAEA Nuclear Energy Series IAEA Nuclear No. No. NP-T-3.11 No. No. Steels Vessel Pressure Reactor in Effects Embrittlement Irradiation of Assessment Plants: Power Nuclear in Vessels Pressure Reactor of Integrity IAEA Nuclear Energy Series No. NP-T-3.11 Basic Integrity of Reactor Principles Pressure Vessels in Nuclear Power Plants: Objectives Assessment of Irradiation Embrittlement Guides Effects in Reactor Pressure Vessel Steels Technical Reports INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–101709–3 ISSN 1995–7807 P1382_covI-IV.indd 1 2009-05-05 11:14:48 INTEGRITY OF REACTOR PRESSURE VESSELS IN NUCLEAR POWER PLANTS: ASSESSMENT OF IRRADIATION EMBRITTLEMENT EFFECTS IN REACTOR PRESSURE VESSEL STEELS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA OMAN ALBANIA HAITI PAKISTAN ALGERIA HOLY SEE PALAU ANGOLA HONDURAS PANAMA ARGENTINA HUNGARY PARAGUAY ARMENIA ICELAND PERU AUSTRALIA INDIA PHILIPPINES AUSTRIA INDONESIA POLAND AZERBAIJAN IRAN, ISLAMIC REPUBLIC OF PORTUGAL BANGLADESH IRAQ QATAR BELARUS IRELAND REPUBLIC OF MOLDOVA BELGIUM ISRAEL ROMANIA BELIZE ITALY RUSSIAN FEDERATION BENIN JAMAICA SAUDI ARABIA BOLIVIA JAPAN SENEGAL BOSNIA AND HERZEGOVINA JORDAN SERBIA BOTSWANA KAZAKHSTAN SEYCHELLES BRAZIL KENYA SIERRA LEONE BULGARIA KOREA, REPUBLIC OF SINGAPORE BURKINA FASO KUWAIT SLOVAKIA CAMEROON KYRGYZSTAN SLOVENIA CANADA LATVIA SOUTH AFRICA CENTRAL AFRICAN LEBANON SPAIN REPUBLIC LIBERIA SRI LANKA CHAD LIBYAN ARAB JAMAHIRIYA SUDAN CHILE LIECHTENSTEIN SWEDEN CHINA LITHUANIA
    [Show full text]
  • Annual Report JSC CONCERN ROSENERGOATOM for 2009
    Annual Report JSC CONCERN ROSENERGOATOM FOR 2009 Safety Effi ciency Responsibility Safety Effi ciency Responsibility JSC Concern Rosenergoatom Annual report for 2009 Content I. GENERAL INFORMATION 1. Preamble 7 1.1. On the Annual Report 7 2. Statements of top management of Rosenergoatom 8 2.1. Statement of the Chairman of the Board of Directors of Rosenergoatom 8 2.2. Statement of the General Director of Rosenergoatom 9 3. General information on Rosenergoatom 10 4. Key corporate events in 2009 11 5. Mission of Rosenergoatom 13 6. Management 13 6.1. Management structure 13 6.2. Management methods and corporate policy 24 II. CORE BUSINESS 7. Strategy 29 7.1. Positions of Rosenergoatom within the industry 29 7.2. Strategy of Rosenergoatom 30 7.3. Rosenergoatom’s medium-term development objectives and tasks (2009–2011) 30 7.4. Key performance indicators of Rosenergoatom 31 7.5. Key risks associated with Rosenergoatom’s operations 31 8. Rosenergoatom. Facts and fi gures 32 8.1. Generating capacities of Rosenergoatom 34 8.2. Electricity generation at Russian NPPs 44 8.3. Maintenance and repairs 45 8.4. Lifetime extension of NPP units 46 8.5. Production growth program 46 8.6. Construction of new power units 47 9. Priority areas of operations of Rosenergoatom 49 9.1. Production and marketing activities of Rosenergoatom 49 9.2. Investments 50 9.3. Innovation and competitive growth 50 III. CORPORATE RESPONSIBILITY 10. Safety 53 10.1. Safety indicators 53 10.2. Ensuring nuclear and radiation safety and non-proliferation of nuclear materials 55 4 JSC Concern Rosenergoatom 10.3.
    [Show full text]
  • Passive Safety Injection System Design and Simulation for Small Scale Pressurized Water Reactor
    Passive Safety Injection System Design and Simulation for Small Scale Pressurized Water Reactor Muhammad Tahir A dissertation submitted for the degree of “Doctor of Philosophy” (PhD) in Pakistan Institute of Engineering and Applied Sciences Islamabad Pakistan May 2011 Declaration I declare that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree in this or in any other university. Signature: __________________________ Author’s Name: (Muhammad Tahir) Supervisor Dr. Imran Rafiq Chughtai Principal Engineer Department of Chemical and Materials Engineering Pakistan Institute of Engineering and Applied Sciences [PIEAS] Islamabad, Pakistan. Head, DNE, PIEAS 2 Acknowledgements All praises and thanks to God, the most Merciful, Compassionate, Gracious and Beneficent who has created man and is a source of knowledge and wisdom. At the very outset, I am thankful to my supervisors, Dr. Imran Rafiq Chughtai, PE and Dr. Muhammad Aslam, CE for their supervision, technical advices throughout the investigations and preparation of this manuscript. I am greatly indebted to director Imtiaz Rabbani for his administrative guidance. I am also grateful to my professors at PIEAS especially Dr. Muhammad Aslam, Dr. Tehsin Hamid, Dr. Naseem Irfan, Dr. Mansoor Hamid Inayat, Dr. Nasir Majid Mirza, Dr. Sikandar Majid Mirza and Dr. Muhammad Tufail. I am thankful to Dr. Muhammad Arfin Khan for his assistance in visiting Texas Tech University USA and guidance in educational and research activities. I am also grateful to my friends and colleagues who ensured a creative and good working environment and helped me in technical and non-technical matters.
    [Show full text]
  • Cooperation in Nuclear Waste Management, Radiation Protection, Emergency Preparedness, Reactor Safety and Nuclear Non-Proliferat
    Författare: Lars van Dassen et.al. 2010:19 Cooperation in Nuclear Waste Management, Radiation Protection, Emergency Prepared- ness, Reactor Safety and Nuclear Non-Proli- feration with the Russian Federation, Ukraine, Armenia, Georgia and Belarus Rapportnummer: 2010:19 ISSN:2000-0456 Tillgänglig på www.stralsakerhetsmyndigheten.se Titel: Cooperation in Nuclear Waste Management, Radiation Protection, Emergency Pre- paredness, Reactor Safety and Nuclear Non-Proliferation with the Russian Federation, Ukraine, Armenia, Georgia and Belarus. Rapportnummer: 2010:19 Författare: : Lars van Dassen, Sarmite Andersson, Gabriela Bejarano, Zlatan Delalic, Christer Ekblad, Olga German, Sten Grapengiesser, Olof Karlberg, Kjell Olsson, Viviana Sandberg, Tor Stenberg, Roland Turner and Irene Zinger Datum: June 2010 Foreword The Swedish Radiation Safety Authority (SSM) is trusted with the task of implementing Sweden’s bilateral cooperation with Russia, Ukraine, Ge- orgia, Belarus and Armenia in the fields of reactor safety, nuclear waste management, nuclear non-proliferation as well as radiation protection and emergency preparedness. In these fields, SSM also participates in a number of projects financed by the European Union. This report gives an overview of the cooperation projects in 2009 as well as the framework in which they are performed. Summaries of each project are given in an Appendix. The project managers in the Section for Cooperation and Development in the Department of International Affairs are responsible for the cooperation projects and the implementation of the bilateral programmes. But the posi- tive outcome of the projects is also dependent on a large number of experts at SSM who work with the regulatory functions in the nuclear and radiation protection fields in a Swedish context as well as on external consultants.
    [Show full text]
  • Nuclear Reactors in Arctic Russia
    NUCLEAR REACTORS IN ARCTIC RUSSIA Scenario 2035 The nuclearification of Russian Arctic territories is by Moscow given highest priority for development in shipping, infrastructure and exploration of natural resources. Additionally, the number of navy military reactors in the north will increase substantially over the next 15 years. This scenario paper gives an overview of the situation. The paper is part of the Barents Observer’s analytical popular science studies on developments in the Euro-Arctic Region. Thomas Nilsen June 2019 June 2019 The Barents Observer – Nuclear Reactors in Northern Russia, June 2019 1 June 2019 Published by: The Independent Barents Observer Address: Storgata 5, 9900 Kirkenes, Norway E-mail: [email protected] thebarentsobserver.com (English, Russian and Chinese versions of the news-portal) Twitter @BarentsNews Instagram: @BarentsObserver Facebook.com/BarentsObserver/ Author: Thomas Nilsen, E-mail: [email protected] Twitter: @NilsenThomas Photos and illustrations: Rosatom, Rosatomflot, Thomas Nilsen, Oleg Kuleshov, H I Sutton, Atle Staalesen, Alexey Mkrtchyan, Wikimedia Commons. Keywords: Nuclear, Reactors, Icebreakers, Submarines, Northern Fleet, Russia, Arctic, Northern Sea Route, Nuclear Power, Kola Peninsula, Siberia, Arkhangelsk, Severodvinsk, Severomorsk, Murmansk, Pevek, Barents Sea, Kara Sea, White Sea. This publication is financially supported with a grant from the Norwegian Government’s Nuclear Action Plan administrated by the Norwegian Radiation and Nuclear Safety Authority. (www.dsa.no/en/). The Barents Observer – Nuclear Reactors in Northern Russia, June 2019 2 June 2019 Introduction At the peak of the Cold War some 150 nuclear-powered submarines were based on the Barents Sea coast of the Kola Peninsula. Many ships were transporting and storing nuclear waste and at shipyards and bases, spent nuclear fuel and radioactive waste was accumulated.
    [Show full text]
  • Nuclear Reactors in Arctic Russia
    NUCLEAR REACTORS IN ARCTIC RUSSIA Scenario 2035 The nuclearification of Russian Arctic territories is by Moscow given highest priority for development in shipping, infrastructure and exploration of natural resources. Additionally, the number of navy military reactors in the north will increase substantially over the next 15 years. This scenario paper gives an overview of the situation. The paper is part of the Barents Observer’s analytical popular science studies on developments in the Euro-Arctic Region. Thomas Nilsen June 2019 0 June 2019 The Barents Observer – Nuclear Reactors in Northern Russia, June 2019 1 June 2019 Published by: The Independent Barents Observer Address: Storgata 5, 9900 Kirkenes, Norway E-mail: [email protected] thebarentsobserver.com (English, Russian and Chinese versions of the news-portal) Twitter @BarentsNews Instagram: @BarentsObserver Facebook.com/BarentsObserver/ Author: Thomas Nilsen, E-mail: [email protected] Twitter: @NilsenThomas Photos and illustrations: Rosatom, Rosatomflot, Thomas Nilsen, Oleg Kuleshov, H I Sutton, Atle Staalesen, Alexey Mkrtchyan, Wikimedia Commons. Keywords: Nuclear, Reactors, Icebreakers, Submarines, Northern Fleet, Russia, Arctic, Northern Sea Route, Nuclear Power, Kola Peninsula, Siberia, Arkhangelsk, Severodvinsk, Severomorsk, Murmansk, Pevek, Barents Sea, Kara Sea, White Sea. This publication is financially supported with a grant from the Norwegian Government’s Nuclear Action Plan administrated by the Norwegian Radiation and Nuclear Safety Authority. (www.dsa.no/en/). The Barents Observer – Nuclear Reactors in Northern Russia, June 2019 2 June 2019 Introduction At the peak of the Cold War some 150 nuclear-powered submarines were based on the Barents Sea coast of the Kola Peninsula. Many ships were transporting and storing nuclear waste and at shipyards and bases, spent nuclear fuel and radioactive waste was accumulated.
    [Show full text]
  • Russian-Federation-National-Report.Pdf
    First National Report of the Russian Federation on compliance with the obligations of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management THE NATIONAL REPORT OF THE RUSSIAN FEDERATION ON COMPLIANCE WITH THE OBLIGATIONS OF THE JOINT CONVENTION ON THE SAFETY OF SPENT FUEL MANAGEMENT AND THE SAFETY OF RADIOACTIVE WASTE MANAGEMENT Prepared for the second Review Meeting in frames of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management Moscow 2006 First National Report of the Russian Federation on compliance with the obligations of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management This first National Report of the Russian Federation has been drafted in accordance with Article 32 of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management. The Report describes in detail the obligations concerning the Joint Convention and compliance with them by the Russian Federation. The Report has been prepared by the Federal Atomic Energy Agency with involvement of: • Federal Environmental, Industrial and Nuclear Supervision Service • Federal Agency for Construction and Housing Utilities • Federal Medical and Biological Agency • Nuclear Safety Institute of the Russian Academy of Sciences (IBRAE RAS) 2 First National Report of the Russian Federation on compliance with the obligations of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management List of Abbreviations................................................................................................ 5 Section А. Introduction.......................................................................................... 7 A.1. Purpose of the Report ..................................................................................
    [Show full text]
  • 18.06.01 Status Report 2017
    Decommissioning Russia’s old nuclear power reactors: Status update on key processes 2017 The report is made in the frame of the project “From closed rooms to openness”, financially supported by the Norwegian Radiation Protection Authority over the Nuclear Action Plan. Project partners from Russia, Ukraine and Norway cooperate to promote safe, social and environmental acceptable decommissioning of old nuclear power plant reactors, including handling of radioactive waste and spent nuclear fuel. We believe in openness and participation of all stakeholders in the decision-making processes, including authorities at all levels, business and civil society. Published by • Russian Social-Ecological Union / Friends of the Earth Russia (Russia) • Kola Environmental Center (Apatity, Murmansk Region, Russia) • Public Council of the South Coast of the Gulf of Finland (St. Petersburg – Leningrad Oblast, Russia) • Za Prirodu/ For Nature (Chelyabinsk, Russia) • Naturvernforbundet/ Friends of the Earth Norway (Norway) Edited by Kjersti Album, Naturvernforbundet/Friends of the Earth Norway Contributions by Oleg Bodrov, Yuri Ivanov, Dag Arne Høystad, Daria Matveenkova, Olga Senova, Vitaly Servetnik, Andrey Talevlin Front page design Kristine Kleppo For more information, please contact the participating partners directly or refer to our reports, which can be found at the pages of Russian Social-Ecological Union: http://rusecounion.ru/decomatom St.Petersburg, Sosnovy Bor, Chelyabinsk, Apatity/Murmansk, Oslo – May 2018 2 Decommissioning Russia’s old nuclear power reactors: Status update on key processes 2017 Decommissioning Russia’s old nuclear power reactors Status update on key processes 2017 3 Decommissioning Russia’s old nuclear power reactors: Status update on key processes 2017 Content 1. Introduction 4 2.
    [Show full text]
  • Russia Nuclear Power Development Chronology
    Russia Nuclear Power Development Chronology 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998-1997 | 1996 | 1995 | 1994 | 1993 Last update: January 2008 This annotated chronology is based on the data sources that follow each entry. Public sources often provide conflicting information on classified military programs. In some cases we are unable to resolve these discrepancies, in others we have deliberately refrained from doing so to highlight the potential influence of false or misleading information as it appeared over time. In many cases, we are unable to independently verify claims. Hence in reviewing this chronology, readers should take into account the credibility of the sources employed here. Inclusion in this chronology does not necessarily indicate that a particular development is of direct or indirect proliferation significance. Some entries provide international or domestic context for technological development and national policymaking. Moreover, some entries may refer to developments with positive consequences for nonproliferation. 2004 16 January 2004 GOSATOMNADZOR EXTENDS NPP SERVICE LIVES On 16 January 2004, Interfax reported that Rosenergoatom had received a license from Gosatomnadzor to extend the service life of Bilibino NPP Unit 1 for a year. In 2001-2002, licenses were issued to extend the service lives of Novovoronezh NPP Units 3 and 4, and in 2003 a similar license was issued to Unit 1 at Kola NPP. As of January 2004, work was under way to upgrade the equipment at Leningrad NPP Unit 1 and Kola NPP Unit 2. Requests to extend the service lives of both units will be submitted to Gosatomnadzor in 2004. -"Gosatomnadzor prodlil ekspluatatsiyu 1-go bloka Bilibinskoy AES na god," Interfax, 16 January 2004.
    [Show full text]
  • Nuclear Security: a Fortnightly Newsletter from Caps
    NUCLEAR SECURITY: A FORTNIGHTLY NEWSLETTER FROM CAPS NUCLEAR SECURITY: A FORTNIGHTLY NEWSLETTER FROM CAPS Vol 10, No. 21, 01 September 2016 OPINION – Edward H. Klevans CONTENTS Nuclear Power’s Time Has Come OPINION Something new and promising is happening with NUCLEAR STRATEGY nuclear energy in the United States. A belief that BALLISTIC MISSILE DEFENCE nuclear technology is dispensable is giving way NUCLEAR ENERGY to a new measure of its worth – the proposition NUCLEAR COOPERATION that it is playing a quiet yet effective role in NUCLEAR DISARMAMENT reducing global-warming emissions. NUCLEAR PROLIFERATION The evidence can be found in New York state’s NUCLEAR NON-PROLIFERATION farsighted decision to reward nuclear plants for NUCLEAR SAFETY their chief advantage in electricity production: NUCLEAR SECURITY They produce zero carbon emissions. Due to a NUCLEAR WASTE MANAGEMENT clean-energy standard approved by the state’s Public Service Commission and backed by Gov. plants, including small modular reactors that Andrew Cuomo, a credit can be paid to nuclear could be built in factories for a fraction of the plants in upstate by utilities cost of today’s large that use their power. This Growing concern over climate change nuclear plants. payment is part of an effort has become a critical element in state- Most of this activity is to wean the state off fossil level discussions of nuclear energy’s being funded privately, and fuels and save reactors future. Four reactors are under it includes work on a so- battered economically by construction in the Southeast – two called traveling wave competition from cheap each in Georgia and South Carolina – reactor that, theoretically, natural gas.
    [Show full text]
  • Perfect Nuclear Storm Waiting to Happen in Russia's
    EURASIA REVIEW | BY ASSOC. PROF. RICHARD ROUSSEAU* PERFECT NUCLEAR STORM WAITING TO HAPPEN IN RUSSIA’S NORTHWEST REGION he large-scale nuclear disaster at dicted that an accident involving nuclear infrastruc- Japan’s Fukushima Daiichi Nuclear tures in that region could easily be more devastating Power Plant has acted as a wakeup than that at Chernobyl in Ukraine in April 1986. T call for the international community, engendering deep reflection on the consequences of The North West Region, which includes the Mur- using nuclear energy. The maintenance and servicing mansk and Archangelsk Oblasts (provinces), the No- of nuclear plants either currently in operation or un- vaya Zemlya Territory (Okrug) and the White, Barents der construction, and the dismantling of those al- and Kara Seas, contains the largest concentration of ready decommissioned or on their way to being shut fissile, radioactive and nuclear materials for either down, are issues of heated debate, as are possible military or civilian application found anywhere on the future nuclear projects. planet. A crucial issue for European Union members, the Civilian Nuclear Energy fleet United States, China and the whole world, is how to ensure appropriate maintenance practices and tech- Polyarny Zori, a city on the outermost western edge nology of Russia’s nuclear waste disposal sites, partic- of the Murmansk Fjord, is the largest energy produc- ularly those in the north west of the country. It is pre- ing locality in the Murmansk Oblast. The city is home WWW.CESRAN.ORG/POLITICALREFLECTION 14 EURASIA REVIEW | BY ASSOC. PROF. RICHARD ROUSSEAU to the Kola Power Plant (NPP-1), whose 4 PWRs These emergency repairs in the month of February, in (pressurized water reactors) were built in two phases.
    [Show full text]
  • Slovak Nuclear Society
    European Nuclear Society Czech Nuclear Society INIS-CZ--0028 Slovak Nuclear Society ^SVTS CZ0129400 PROCEEDINGS of International Topical Meeting on WER TECHNICAL INNOVATIONS FOR NEXT CENTURY April 17-20, 2000 PYRAMIDA HOTEL Prague, Czech Republic 32/ 1 1 PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK LIST OF CONTENTS pg- 1. R. Kirmse (Gesellschaft fiir Anlagen- und Reactorsicherheit GRS mbH): Assessment of the Function of Major Passive Safety Systems of the New Russian WER-640 with Medium Power 15. 0. Matal, P. Sousek, T. Simo (ENERGOVYZKUM, Ltd.): Innovated Feed Water Distributing System of WER Steam Generators 23. O. Matal, P. Sousek, T. Simo (ENERGOVYZKUM, Ltd.): Blow-Down of WER 440 Steam Generators 29. V. Slugen, J. Lipka, I. Toth, A. Zeman, J. Hascik (Department of Nuclear Physics and Technology, Slovac Technical University Bratislava), M. Lehota (NPP Jaslovske Bohunice, SE-EBO, Slovakia): Corosion Products from WER-440 Nuclear Power Plant Bohunice Studied by Mossbauer Spectroscopy 37. R. Litchkov (NPP Kozloduy): Complementary System for Monitoring and Control of Neutron Flux During a Fuel Outage and During Reactor Start up Stage 45. G. Lunin, V. Voznesenskiy (Russian Research Centre "Kurchatov Institute", Moscow): Conception of WER Advanced Projects 53. A. Keskinen (Fortum Engineering Ltd, Finland): Modernisation and Power Upgrading of the LOVIISA NPP 59. J. Vita (CEZ,a.s. - NPP Temelin): Safety Improvements of TEMELIN NPP 75. M. Protze (SIEMENS / KWU): Modernization Program of NPP Kozloduy, Units 5 & 6 79. D. M. Popp (Westinghouse Electric Company, LLC Nuclear Projects Business Unit): The Use of U.S. NRC Licencing Practices for WERs 87.
    [Show full text]