ERK1/2: an Integrator of Signals That Alters Cardiac Homeostasis and Growth
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent -
Molecular Dissection of G-Protein Coupled Receptor Signaling and Oligomerization
MOLECULAR DISSECTION OF G-PROTEIN COUPLED RECEPTOR SIGNALING AND OLIGOMERIZATION BY MICHAEL RIZZO A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology December, 2019 Winston-Salem, North Carolina Approved By: Erik C. Johnson, Ph.D. Advisor Wayne E. Pratt, Ph.D. Chair Pat C. Lord, Ph.D. Gloria K. Muday, Ph.D. Ke Zhang, Ph.D. ACKNOWLEDGEMENTS I would first like to thank my advisor, Dr. Erik Johnson, for his support, expertise, and leadership during my time in his lab. Without him, the work herein would not be possible. I would also like to thank the members of my committee, Dr. Gloria Muday, Dr. Ke Zhang, Dr. Wayne Pratt, and Dr. Pat Lord, for their guidance and advice that helped improve the quality of the research presented here. I would also like to thank members of the Johnson lab, both past and present, for being valuable colleagues and friends. I would especially like to thank Dr. Jason Braco, Dr. Jon Fisher, Dr. Jake Saunders, and Becky Perry, all of whom spent a great deal of time offering me advice, proofreading grants and manuscripts, and overall supporting me through the ups and downs of the research process. Finally, I would like to thank my family, both for instilling in me a passion for knowledge and education, and for their continued support. In particular, I would like to thank my wife Emerald – I am forever indebted to you for your support throughout this process, and I will never forget the sacrifices you made to help me get to where I am today. -
Plant Mitogen-Activated Protein Kinase Signaling Cascades Guillaume Tena*, Tsuneaki Asai†, Wan-Ling Chiu‡ and Jen Sheen§
392 Plant mitogen-activated protein kinase signaling cascades Guillaume Tena*, Tsuneaki Asai†, Wan-Ling Chiu‡ and Jen Sheen§ Mitogen-activated protein kinase (MAPK) cascades have components that link sensors/receptors to target genes emerged as a universal signal transduction mechanism that and other cellular responses. connects diverse receptors/sensors to cellular and nuclear responses in eukaryotes. Recent studies in plants indicate that In the past few years, it has become apparent that mitogen- MAPK cascades are vital to fundamental physiological functions activated protein kinase (MAPK) cascades play some of the involved in hormonal responses, cell cycle regulation, abiotic most essential roles in plant signal transduction pathways stress signaling, and defense mechanisms. New findings have from cell division to cell death (Figure 1). MAPK cascades revealed the complexity and redundancy of the signaling are evolutionarily conserved signaling modules with essen- components, the antagonistic nature of distinct pathways, and tial regulatory functions in eukaryotes, including yeasts, the use of both positive and negative regulatory mechanisms. worms, flies, frogs, mammals and plants. The recent enthu- siasm for plant MAPK cascades is backed by numerous Addresses studies showing that plant MAPKs are activated by hor- Department of Molecular Biology, Massachusetts General Hospital, mones, abiotic stresses, pathogens and pathogen-derived Department of Genetics, Harvard Medical School, Wellman 11, elicitors, and are also activated at specific stages during the 50 Blossom Street, Boston, Massachusetts 02114, USA cell cycle [2]. Until recently, studies of MAPK cascades in *e-mail: [email protected] †e-mail: [email protected] plants were focused on cDNA cloning [3,4] and used a ‡e-mail: [email protected] MAPK in-gel assay, MAPK and tyrosine-phosphate anti- §e-mail: [email protected] bodies, and kinase inhibitors to connect signals to MAPKs Current Opinion in Plant Biology 2001, 4:392–400 [2]. -
Diverse Physiological Functions for Dual-Specificity MAP Kinase
Commentary 4607 Diverse physiological functions for dual-specificity MAP kinase phosphatases Robin J. Dickinson and Stephen M. Keyse* Cancer Research UK Stress Response Laboratory, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK *Author for correspondence (e-mail: [email protected]) Accepted 19 September 2006 Journal of Cell Science 119, 4607-4615 Published by The Company of Biologists 2006 doi:10.1242/jcs.03266 Summary A structurally distinct subfamily of ten dual-specificity functions in mammalian cells and tissues. However, recent (Thr/Tyr) protein phosphatases is responsible for the studies employing a range of model systems have begun to regulated dephosphorylation and inactivation of mitogen- reveal essential non-redundant roles for the MKPs in activated protein kinase (MAPK) family members in determining the outcome of MAPK signalling in a variety mammals. These MAPK phosphatases (MKPs) interact of physiological contexts. These include development, specifically with their substrates through a modular kinase- immune system function, metabolic homeostasis and the interaction motif (KIM) located within the N-terminal non- regulation of cellular stress responses. Interestingly, these catalytic domain of the protein. In addition, MAPK binding functions may reflect both restricted subcellular MKP is often accompanied by enzymatic activation of the C- activity and changes in the levels of signalling through terminal catalytic domain, thus ensuring specificity of multiple MAPK pathways. action. Despite our knowledge of the biochemical and structural basis for the catalytic mechanism of the MKPs, we know much less about their regulation and physiological Key words: MAPK, MKP, Signal transduction, Phosphorylation Introduction the activation motif is required for MAPK activity, Mitogen-activated protein kinases (MAPKs) constitute a dephosphorylation of either residue inactivates these enzymes. -
In Vitro Pharmacological Profiling of R406 Identifies Molecular Targets
ORIGINAL ARTICLE In vitro pharmacological profiling of R406 identifies molecular targets underlying the clinical effects of fostamatinib Michael G. Rolf, Jon O. Curwen, Margaret Veldman-Jones, Cath Eberlein, Jianyan Wang, Alex Harmer, Caroline J. Hellawell & Martin Braddock AstraZeneca R&D Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom Keywords Abstract Blood pressure elevation, fostamatinib, in vitro pharmacological profiling, R406, SYK Off-target pharmacology may contribute to both adverse and beneficial effects of a new drug. In vitro pharmacological profiling is often applied early in drug Correspondence discovery; there are fewer reports addressing the relevance of broad profiles to Michael G. Rolf, AstraZeneca R&D Molndal,€ clinical adverse effects. Here, we have characterized the pharmacological profile Pepparedsleden 1, 431 83 Mo¨ lndal, Sweden. of the active metabolite of fostamatinib, R406, linking an understanding of drug Tel: +46 31 776 60 40; Fax: +46 31 776 37 selectivity to the increase in blood pressure observed in clinical studies. R406 60; E-mail: [email protected] was profiled in a broad range of in vitro assays to generate a comprehensive Funding Information pharmacological profile and key targets were further investigated using func- No funding information provided. tional and cellular assay systems. A combination of traditional literature searches and text-mining approaches established potential mechanistic links Received: 9 April 2015; Accepted: 14 July between the profile of R406 and clinical side effects. R406 was selective outside 2015 the kinase domain, with only antagonist activity at the adenosine A3 receptor in the range relevant to clinical effects. R406 was less selective in the kinase Pharma Res Per, 3(5), 2015, e00175, doi: 10.1002/prp2.175 domain, having activity at many protein kinases at therapeutically relevant con- centrations when tested in multiple in vitro systems. -
Eif2b Is a Decameric Guanine Nucleotide Exchange Factor with a G2e2 Tetrameric Core
ARTICLE Received 19 Feb 2014 | Accepted 15 Apr 2014 | Published 23 May 2014 DOI: 10.1038/ncomms4902 OPEN eIF2B is a decameric guanine nucleotide exchange factor with a g2e2 tetrameric core Yuliya Gordiyenko1,2,*, Carla Schmidt1,*, Martin D. Jennings3, Dijana Matak-Vinkovic4, Graham D. Pavitt3 & Carol V. Robinson1 eIF2B facilitates and controls protein synthesis in eukaryotes by mediating guanine nucleotide exchange on its partner eIF2. We combined mass spectrometry (MS) with chemical cross- linking, surface accessibility measurements and homology modelling to define subunit stoichiometry and interactions within eIF2B and eIF2. Although it is generally accepted that eIF2B is a pentamer of five non-identical subunits (a–e), here we show that eIF2B is a decamer. MS and cross-linking of eIF2B complexes allows us to propose a model for the subunit arrangements within eIF2B where the subunit assembly occurs through catalytic g- and e-subunits, with regulatory subunits arranged in asymmetric trimers associated with the core. Cross-links between eIF2 and eIF2B allow modelling of interactions that contribute to nucleotide exchange and its control by eIF2 phosphorylation. Finally, we identify that GTP binds to eIF2Bg, prompting us to propose a multi-step mechanism for nucleotide exchange. 1 Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK. 2 MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge CB2 0QH, UK. 3 Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK. 4 Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. -
G Protein Regulation of MAPK Networks
Oncogene (2007) 26, 3122–3142 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW G Protein regulation of MAPK networks ZG Goldsmith and DN Dhanasekaran Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, USA G proteins provide signal-coupling mechanisms to hepta- the a-subunits has been used as a basis for the helical cell surface receptors and are criticallyinvolved classification of G proteins into Gs,Gi,Gq and G12 in the regulation of different mitogen-activated protein families in which the a-subunits that show more than kinase (MAPK) networks. The four classes of G proteins, 50% homology are grouped together (Simon et al., defined bythe G s,Gi,Gq and G12 families, regulate 1991). In G-protein-coupled receptor (GPCR)-mediated ERK1/2, JNK, p38MAPK, ERK5 and ERK6 modules by signaling pathways, ligand-activated receptors catalyse different mechanisms. The a- as well as bc-subunits are the exchange of the bound GDP to GTP in the a-subunit involved in the regulation of these MAPK modules in a following which the GTP-bound a-subunit disassociate context-specific manner. While the a- and bc-subunits from the receptor as well as the bg-subunit. The GTP- primarilyregulate the MAPK pathwaysvia their respec- bound a-subunit and the bg-subunit stimulate distinct tive effector-mediated signaling pathways, recent studies downstream effectors including enzymes, ion channels have unraveled several novel signaling intermediates and small GTPase, thus regulating multiple signaling including receptor tyrosine kinases and small GTPases pathways including those involved in the activation of through which these G-protein subunits positivelyas well mitogen-activated protein kinase (MAPK) modules as negativelyregulate specific MAPK modules. -
Cofactor Dependent Conformational Switching of Gtpases
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 1704 Biophysical Journal Volume 95 August 2008 1704–1715 Cofactor Dependent Conformational Switching of GTPases Vasili Hauryliuk,*y Sebastian Hansson,z and Ma˚ns Ehrenberg* *Department of Cell and Molecular Biology, Molecular Biology Program, Uppsala University, Uppsala, Sweden; yEngelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; and zLaboratoire d’Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France ABSTRACT This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP g S. -
Mtor Mutations in Smith-Kingsmore Syndrome: Four Additional Patients and a Review
Received: 4 July 2017 Revised: 31 August 2017 Accepted: 5 September 2017 DOI: 10.1111/cge.13135 ORIGINAL ARTICLE mTOR mutations in Smith-Kingsmore syndrome: Four additional patients and a review G. Gordo1,2,3 | J. Tenorio1,2 | P. Arias1,2 | F. Santos-Simarro1,4 | S. García-Miñaur1,4 | J.C. Moreno1,2 | J. Nevado1,5 | E. Vallespin1,5 | L. Rodriguez-Laguna1,3 | R. de Mena1,5 | I. Dapia1,2 | M. Palomares-Bralo1,5 | A. del Pozo1,6 | K. Ibañez1,6 | J.C. Silla1,6 | E. Barroso1,2 | V.L. Ruiz-Pérez1,7 | V. Martinez-Glez1,3,4 | P. Lapunzina1,2,4 1Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain 2Molecular Endocrinology Section, Overgrowth Syndromes Laboratory, Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM), Madrid, Spain 3Vascular Malformations Section, Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM), Madrid, Spain 4Clinical Genetics Section, Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM), Madrid, Spain 5Structural and Functional Genomics Section, Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM), Madrid, Spain 6Bioinformatics Section, Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM), Madrid, Spain 7IIB, Instituto de Investigación “Alberto Sols”, Universidad Autónoma de Madrid (UAM), Madrid, Spain Correspondence Smith-Kingsmore syndrome (SKS) OMIM #616638, also known as MINDS syndrome (ORPHA Pablo Lapunzina, MD, PhD, Instituto de Genética Médica y Molecular (INGEMM), 457485), is a rare autosomal dominant disorder reported so far in 23 patients. -
Phospho-RPS6KA1(T359) Antibody Peptide Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap3497a
9765 Clairemont Mesa Blvd, Suite C San Diego, CA 92124 Tel: 858.875.1900 Fax: 858.622.0609 Phospho-RPS6KA1(T359) Antibody Peptide Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP3497a Specification Phospho-RPS6KA1(T359) Antibody - Product Information Application WB, DB,E Primary Accession Q15418 Other Accession P10666, P10665, P18652 Reactivity Human Predicted Chicken, Xenopus Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 82723 Phospho-RPS6KA1(T359) Antibody - Additional Information Gene ID 6195 Other Names Western blot analysis of extracts from Hela Ribosomal protein S6 kinase alpha-1, cells,untreated or treated with S6K-alpha-1, 90 kDa ribosomal protein S6 TPA,200nM,using phospho RPS6KA1-T359 (left) kinase 1, p90-RSK 1, p90RSK1, p90S6K, MAP or RPS6KA1 antibody(right) kinase-activated protein kinase 1a, MAPK-activated protein kinase 1a, MAPKAP kinase 1a, MAPKAPK-1a, Ribosomal S6 kinase 1, RSK-1, RPS6KA1, MAPKAPK1A, RSK1 Target/Specificity This RPS6KA1 Antibody is generated from rabbits immunized with a KLH conjugated synthetic phosphopeptide corresponding to amino acid residues surrounding T359 of human RPS6KA1. Dilution WB~~1:2000 DB~~1:500 Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. Dot blot analysis of anti-RPS6KA1-pT359 Pab (RB13385) on nitrocellulose membrane. 50ng Storage of Phospho-peptide or Non Phospho-peptide per Maintain refrigerated at 2-8°C for up to 6 dot were adsorbed. Antibody working months. For long term storage store at -20°C concentrations are 0.5ug per ml. in small aliquots to prevent freeze-thaw cycles. -
Emery and Rimoin's Principles and Practice Of
9 Disorders of the Venous System Pascal Brouillard,1 Nisha Limaye,1 Laurence M. Boon,1,2 Miikka Vikkula1,3 1Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium, 2Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires St-Luc, Université catholique de Louvain, Brussels, Belgium, 3Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Université catholique de Louvain, Brussels, Belgium 9.1 INTRODUCTION hemangioma) and more slow-growing vascular malfor- mations. The latter are subcategorized according to the The vasculature is the first organ system to develop during type(s) of vessel(s) altered [5–7] into capillary, venous, embryogenesis, delivering nutrients, growth factors, and arteriovenous, lymphatic, and combined malformations. oxygen to tissues and removing wastes. It is made up of four major types of vessels: arteries, capillaries, veins, and lymphatic vessels, all of which have a single layer of endo- 9.2 THE VENOUS SYSTEM thelial cells (ECs) forming the innermost layer. In blood Veins collect CO2-rich blood from the capillary net- vessels, the endothelial tubes are supported by a layer of work and contain about 75%–80% of the total volume of vascular smooth muscle cells (vSMCs) and/or pericytes blood in the body. They have larger lumens than arteries, (together called mural cells) of variable thickness. A base- with thinner, less muscular walls. Venous flow is passive, ment membrane separates the endothelial and vSMC essentially mediated by physical movements of the body layers, with an extracellular matrix (ECM) of fibrous and and the aspirating effect exerted by the heart. The pres- elastic proteins and carbohydrate polymers forming the ence of valves ensures correct orientation of blood flow. -
A Dissertation Entitled Characterization of the CXCR4
A Dissertation entitled Characterization of the CXCR4-LASP1-eIF4F Axis in Triple-Negative Breast Cancer by Cory M Howard Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences ___________________________________________ Dayanidhi Raman, B.V.Sc., Ph.D., Committee Chair ___________________________________________ Amit Tiwari, Ph.D., Committee Member ___________________________________________ Ritu Chakravarti, Ph.D., Committee Member ___________________________________________ Nagalakshmi Nadiminty, Ph.D., Committee Member ___________________________________________ Saori Furuta, Ph.D., Committee Member ___________________________________________ Shi-He Liu, M.D., Committee Member ___________________________________________ Amanda C. Bryant-Friedrich, Ph.D., Dean College of Graduate Studies The University of Toledo August 2020 © 2020 Cory M. Howard This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Characterization of the CXCR4-LASP1-eIF4F Axis in Triple-Negative Breast Cancer by Cory M. Howard Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences The University of Toledo August 2020 Triple-negative breast cancer (TNBC) remains clinically challenging as effective targeted therapies are still lacking. In addition, patient mortality mainly results from the metastasized