Molecular Dissection of G-Protein Coupled Receptor Signaling and Oligomerization

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Dissection of G-Protein Coupled Receptor Signaling and Oligomerization MOLECULAR DISSECTION OF G-PROTEIN COUPLED RECEPTOR SIGNALING AND OLIGOMERIZATION BY MICHAEL RIZZO A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology December, 2019 Winston-Salem, North Carolina Approved By: Erik C. Johnson, Ph.D. Advisor Wayne E. Pratt, Ph.D. Chair Pat C. Lord, Ph.D. Gloria K. Muday, Ph.D. Ke Zhang, Ph.D. ACKNOWLEDGEMENTS I would first like to thank my advisor, Dr. Erik Johnson, for his support, expertise, and leadership during my time in his lab. Without him, the work herein would not be possible. I would also like to thank the members of my committee, Dr. Gloria Muday, Dr. Ke Zhang, Dr. Wayne Pratt, and Dr. Pat Lord, for their guidance and advice that helped improve the quality of the research presented here. I would also like to thank members of the Johnson lab, both past and present, for being valuable colleagues and friends. I would especially like to thank Dr. Jason Braco, Dr. Jon Fisher, Dr. Jake Saunders, and Becky Perry, all of whom spent a great deal of time offering me advice, proofreading grants and manuscripts, and overall supporting me through the ups and downs of the research process. Finally, I would like to thank my family, both for instilling in me a passion for knowledge and education, and for their continued support. In particular, I would like to thank my wife Emerald – I am forever indebted to you for your support throughout this process, and I will never forget the sacrifices you made to help me get to where I am today. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS………………………………………………………………ii TABLE OF CONTENTS………………………………………………………………...iii LIST OF ABBREVIATIONS…………………………………………………………….v LIST OF TABLES………………………………………………………………………..x LIST OF FIGURES………………………………………………………………………xi ABSTRACT……………………………………………………………………………..xii CHAPTER I: G-protein coupled receptors– A review of structure-function relationships critical for receptor signaling ……………………………………..………………………1 REFERENCES…………………………………………………………………..37 CHAPTER II: Unexpected role of a conserved domain in extracellular loop 1 in G protein coupled receptor trafficking……………………………………………………...56 ABSTRACT……………………………………………………………………...57 INTRODUCTION……………………………………………………………….58 METHODS………………………………………………………………………60 RESULTS………………………………………………………………………..63 DISCUSSION……………………………………………………………………68 REFERENCES…………………………………………………………………..72 iii CHAPTER III: Homodimerization of Drosophila Class A neuropeptide GPCRs: Evidence for conservation of GPCR dimerization throughout metazoan evolution…….89 ABSTRACT……………………………………………………………………..90 INTRODUCTION……………………………………………………………….91 METHODS………………………………………………………………………97 RESULTS………………………………………………………………………100 DISCUSSION…………………………………………………………………..104 REFERENCES…………………………………………………………………108 CHAPTER IV: Conclusions and future directions……………….…………………….125 REFERENCES…………………………………………………………………129 CURRICULUM VITAE………………………………………………………………..130 iv LIST OF ABBREVIATIONS 5HT 5 Hydroxytryptophan A2A Adenosine receptor 2A A3 Adenosine Adenosine receptor 3 AC Adenylyl cyclase AKHR AKH receptor AM Adrenomedullin AMP Adenosine monophosphate ANOVA Analysis of variance statistical models AOI Area of interest AstCR2 Drosophila allatostatin C receptor 2 AT1R Angiotensin 1 receptor B1AR Adrenergic receptor beta 1 B2AR Adrenergic receptor beta 2 BiFC Biomolecular fluorescence complementation BK 2R Bradykinin receptor 2 BLAST Basic local alignment search tool BN-PAGE Blue native polyacrylamide gel electrophoresis BRET Bioluminescent resonance energy transfer C5aR Complement component 5a receptor cAMP Cyclic adenosine monophosphate CCR 2b Chemokine receptor type 2b CCR 5 Chemokine receptor type 5 v CFP Cyan flourescent protein cGMP Cyclic guanosine monophosphate CGRP Calcitonin gene-related peptide CHO Chinese hamster ovary cells CLR Calcitonin-like receptor Co-IP Co-immunoprecipitation CPS Counts per second CRD Cysteine-rich domain CRE cAMP response elements CREB cAMP response element-binding protein CRZR Corazonin receptor CXCR4 C-X-C chemokine receptor type 4 D2R Dopamine receptor D2 DAF Abnormal Dauer formation DAG Diacylglycerol DMEM Dulbecco’s modified Eagle medium EL Extracellular loop EPAC Exchange protein activated by cyclic-AMP ER Endoplasmic reticulum FRET Fluorescent resonance energy transfer FSHR Follicle stimulating hormone receptor GABA Gamma aminobutyric acid GALR1 Galanin receptor vi GPCR G protein-coupled receptor GDP Guanosine diphosphate GEF Guanine nucleotide exchange factor GFP Green fluorescent protein GIPs GPCR interacting protein GIRK G protein-gated inwardly rectifying potassium GMP Guanosine monophosphate GnRH Gonadotropin releasing hormone GRKs G protein-coupled receptor kinases GRP Gastrin-releasing peptide GTP Guanosine triphosphate H1R Histamine receptor 1 H2R Histamine receptor 2 HA Hemaglutinin HEK Human embryonic kidney cells IP 3 Inositol triphosphate LH Luteinizing hormone LK Leucokinin M1R Muscarinic acetylcholine receptor 1 M3R Muscarinic acetylcholine receptor 3 MAPK Mitogen activated protein kinase mGlu 2R Metabotropic glutamate receptor 2 NFkB Nuclear factor kappa-light-chain-enhancer of B cells vii NK1R Neurokinin 1 Receptor NK2R Neurokinin 2 Receptor NKA Neurokinin A NMU Neuromedin U NPFR Drosophila NPF receptor NPY Neuropeptide Y ORF Open reading frame OX 1 Orexin receptor 1 PCR Polymerase chain reaction PIP 2 Phosphatidylinositol 4,5-bisphosphate PK1R Drosophila pyrokinin receptor 1 PKA Protein kinase A PKC Protein kinase C PLC Phospholipase C ProcR Proctolin receptor PSD-95 Postsynaptic density protein 95 RAMPs Receptor-activity modifying proteins RCP Receptor component protein RGS Regulators of G-protein signaling SpIDA Spatial intensity distribution analysis SPRINP Single primer reactions in parallel SRE-Luc Serum response element SSTR2 Somatostatin receptor 2 viii T1R1 Taste receptor type 1 receptor 1 T1R3 Taste receptor type 1 receptor 3 T2R Taste receptor type 2 TKR86C Tachykinin receptor at 86C TM Transmembrane domain TR-FRET Time-resolved fluorescence resonance energy transfer TRH Thyrotropin-releasing hormone TSHR Thyroid stimulating hormone receptor VFT Venus fly trap domain WGA Wheat germ agglutinin YFP Yellow fluorescent protein α2b -AR Alpha-2B adrenergic receptor β2AR Beta-2 adrenergic receptor ix LIST OF TABLES Table II.1: Comparison of representative extracellular loop 1 sequences across Class A GPCR subfamilies………………………………………………………………………77 Table III.1: Receptors utilized in FRET dimer screen………………………………...122 Table III.2: List of primers used for directional cloning of receptor cDNA into pcDNA3 CFP or pcDNA3 YFP expression vectors………………………………………………123 x LIST OF FIGURES FIGURE I.1: Two-state model of GPCR activation……………………………………54 FIGURE I.2: Functional importance of GPCR heterodimerization…………………….55 FIGURE II.1: Sequence weighting analysis shows that the WxFG motif’s tryptophan residue exhibits high conservation in Class A GPCR receptor subfamilies…………….79 FIGURE II.2: Mutagenesis of conserved tryptophan residue in LKR ECL1 ablates receptor signaling………………………………………………………………………..80 FIGURE II.3: Leucine substitution for the conserved tryptophan residue in extracellular loop 1 leads to a loss of function in multiple receptor types…………………………….82 FIGURE II.4: Substitution of the conserved tryptophan residue to leucine ablates constitutive activity in a constitutively active AKHR mutant…………………………...84 FIGURE II.5: The WxFG motif is critical for proper receptor trafficking..……………85 FIGURE II.6: Putative tertiary structures of wild type LKR and mutant W101L are superimposed to identify gross changes in receptor topology…………………………...88 FIGURE III.1: Demonstration of acceptor-photobleaching FRET assay……………..116 FIGURE III.2: Verification of experimental system………………………………….117 FIGURE III.3: Multiple Drosophila Class A neuropeptide receptors exhibit FRET responses consistent with homodimerization…………………………………………...119 FIGURE III.S1: Verification of signaling in fluorophore tagged receptors..................124 xi ABSTRACT G protein coupled receptors (GPCRs) are a superfamily of transmembrane proteins responsible for transducing extracellular stimuli into intracellular responses. GPCRs are indispensable to a vast variety of distinct physiologies and behaviors and represent approximately 50% of all human drug targets. However, considerable debate exists as to the structural basis for GPCR activation, with a classical monomeric (two state model) conflicting with a growing number of reports indicating that these receptors form higher order functional oligomers. These receptor-receptor interactions can impact receptor trafficking, ligand sensitivity, desensitization, and strength of effector response. As such, an understanding of GPCR oligomerization is indispensable to our overall understanding of receptor dynamics. Additionally, the specific molecular events underlying receptor activation and signaling remain incompletely understood. Since the initial discovery of the GPCR receptor family, a number of conserved amino acid motifs have been identified that have been shown to play specific and critical roles in GPCR activation, intracellular G-protein coupling, and receptor desensitization. Still, many of these motifs remain incompletely described, with some motifs having only been evaluated in a small subset of receptors, and experimental evidence suggests that in some cases, these conserved motifs may have divergent roles in specific receptor subfamilies.
Recommended publications
  • Characterisation of the Α1b-Adrenoceptor by Modeling, Dynamics and Virtual Screening Kapil Jain B.Pharm, M.S.(Pharm.)
    Characterisation of the α1B-Adrenoceptor by Modeling, Dynamics and Virtual Screening Kapil Jain B.Pharm, M.S.(Pharm.) A Thesis submitted for the degree of Master of Philosophy at The University of Queensland in 2018 Institute for Molecular Bioscience 0 Abstract G protein-coupled receptors (GPCRs) are the largest druggable class of proteins yet relatively little is known about the mechanism by which agonist binding induces the conformational changes necessary for G protein activation and intracellular signaling. Recently, the Kobilka group has shown that agonists, neutral antagonists and inverse agonists stabilise distinct extracellular surface (ECS) conformations of the β2-adrenergic receptor (AR) opening up new possibilities for allosteric drug targeting at GPCRs. The goal of this project is to extend these studies to define how the ECS conformation of the α1B-AR changes during agonist binding and develop an understanding of ligand entry and exit mechanisms that may help in the design of specific ligands with higher selectivity, efficacy and longer duration of action. Two parallel approaches were initiated to identify likely functional residues. The role of residues lining the primary binding site were predicted by online web server (Q-Site Finder) while secondary binding sites residues were predicted from molecular dynamics (MD) simulations. Predicted functionally significant residues were mutated and their function was established using FLIPR, radioligand and saturation binding assays. Despite the α1B-AR being pursued as a drug target for over last few decades, few specific agonists and antagonists are known to date. In an attempt to address this gap, we pursued ligand-based approach to find potential new leads.
    [Show full text]
  • Neuropeptides As Novel Insecticidal Agents
    Int.J.Curr.Microbiol.App.Sci (2019) 8(2): 869-878 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 02 (2019) Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2019.802.098 Neuropeptides as Novel Insecticidal Agents K. Elakkiya, P. Yasodha*, C. Gailce Leo Justin and Vijay Akshay Kumar Anbil Dharmalingam Agricultural College & Research Institute, Navalur Kuttapattu, Trichy–620027 Tamil Nadu, India *Corresponding author ABSTRACT Neuropeptides (protein molecules) are synthesised in the neurons, helps to communicate the impulse from the stimulant to the receptor. Neuropeptides are responsible for regulating a various physiological functions including development, metabolism, water and ion homeostasis, and as neuromodulators in circuits of the central nervous system. Neuropeptides are different from neurotransmitters because, former releases in the haemolymph and the later releases in the neuro-neuro junction or in the neuro-muscular K e yw or ds junction. The first neuropeptide isolated from Periplanata Americana was protocolin in the year 1975 which helps in muscle contractions in hindgut, reproductive, skeletal and Insect neuropeptide, heart muscle. At present a total of 4782 insect neuropeptide records were obtained which PBAN, backbone cyclic perform various related physiological functions. Thus it paves the way for the generation of novel type of putative insect control agents based on backbone cyclic (BBC) peptidomimetic antagonists peptidomimetic antagonists of insect-neuropeptides. At present four different neuropeptides such as proctolin, kinin, pheromone biosynthesis activating neuropeptide Article Info (PBAN) and allatostatin were studied thoroughly and their biologically active sequence Accepted: were identified. Using this sequence peptidomimetic analogues (either as agonists or 07 January 2019 antagonists) were synthesized in automated peptide synthesizer and tested for their Available Online: efficacy as insecticide.
    [Show full text]
  • Neuromedin U Directly Stimulates Growth of Cultured Rat Calvarial Osteoblast-Like Cells Acting Via the NMU Receptor 2 Isoform
    363-368 1/8/08 15:53 Page 363 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 22: 363-368, 2008 363 Neuromedin U directly stimulates growth of cultured rat calvarial osteoblast-like cells acting via the NMU receptor 2 isoform MARCIN RUCINSKI, AGNIESZKA ZIOLKOWSKA, MARIANNA TYCZEWSKA, MARTA SZYSZKA and LUDWIK K. MALENDOWICZ Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecicki St., 60-781 Poznan, Poland Received April 4, 2008; Accepted June 2, 2008 DOI: 10.3892/ijmm_00000031 Abstract. The neuromedin U (NMU) system is composed of nervous system. Among others, peptides involved in regulation NMU, neuromedin S (NMS) and their receptors NMUR1 and of energy homeostasis belong to this group of compounds NMUR2. This system is involved in the regulation of energy (1-3), and the best recognised is leptin, an adipocyte-derived homeostasis, neuroendocrine functions, immune response, anorexigenic hormone, which plays a role in regulating bone circadian rhythm and spermatogenesis. The present study formation. Acting directly this pleiotropic cytokine exerts a aimed to investigate the possible role of the NMU system in stimulatory effect on bone formation. While acting through regulating functions of cultured rat calvarial osteoblast-like the central nervous system (CNS) leptin suppresses bone (ROB) cells. By using QPCR, high expression of NMU formation (4-10). Moreover, OB-Rb mRNA is expressed in mRNA was found in freshly isolated ROB cells while after 7, osteoblasts, and in vitro leptin enhances their proliferation 14, and 21 days of culture, expression of the studied gene and has no effect on osteocalcin and osteopontin production by was very low.
    [Show full text]
  • Computational Methods for Prediction and Classification of G Protein-Coupled Receptors Khodeza Begum University of Texas at El Paso, [email protected]
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2017-01-01 Computational methods for prediction and classification of G protein-coupled receptors Khodeza Begum University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Bioinformatics Commons, Computer Sciences Commons, and the Mathematics Commons Recommended Citation Begum, Khodeza, "Computational methods for prediction and classification of G protein-coupled receptors" (2017). Open Access Theses & Dissertations. 408. https://digitalcommons.utep.edu/open_etd/408 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. COMPUTATIONAL METHODS FOR PREDICTION AND CLASSIFICATION OF G PROTEIN-COUPLED RECEPTORS KHODEZA BEGUM Master’s Program in Computational Science APPROVED: Ming-Ying Leung, Ph.D., Chair Rachid Skouta, Ph.D. Xiaogang Su, Ph.D. Charlotte M. Vines, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Khodeza Begum 2017 COMPUTATIONAL METHODS FOR PREDICTION AND CLASSIFICATION OF G PROTEIN-COUPLED RECEPTORS by KHODEZA BEGUM, B.S. THESIS Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE COMPUTATIONAL SCIENCE PROGRAM THE UNIVERSITY OF TEXAS AT EL PASO December 2017 Acknowledgements I would first like to thank my advisor Dr. Ming-Ying Leung for the continuous support and encouragement in my study and thesis.
    [Show full text]
  • GABA Receptors
    D Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews • BIOTREND Reviews Review No.7 / 1-2011 GABA receptors Wolfgang Froestl , CNS & Chemistry Expert, AC Immune SA, PSE Building B - EPFL, CH-1015 Lausanne, Phone: +41 21 693 91 43, FAX: +41 21 693 91 20, E-mail: [email protected] GABA Activation of the GABA A receptor leads to an influx of chloride GABA ( -aminobutyric acid; Figure 1) is the most important and ions and to a hyperpolarization of the membrane. 16 subunits with γ most abundant inhibitory neurotransmitter in the mammalian molecular weights between 50 and 65 kD have been identified brain 1,2 , where it was first discovered in 1950 3-5 . It is a small achiral so far, 6 subunits, 3 subunits, 3 subunits, and the , , α β γ δ ε θ molecule with molecular weight of 103 g/mol and high water solu - and subunits 8,9 . π bility. At 25°C one gram of water can dissolve 1.3 grams of GABA. 2 Such a hydrophilic molecule (log P = -2.13, PSA = 63.3 Å ) cannot In the meantime all GABA A receptor binding sites have been eluci - cross the blood brain barrier. It is produced in the brain by decarb- dated in great detail. The GABA site is located at the interface oxylation of L-glutamic acid by the enzyme glutamic acid decarb- between and subunits. Benzodiazepines interact with subunit α β oxylase (GAD, EC 4.1.1.15). It is a neutral amino acid with pK = combinations ( ) ( ) , which is the most abundant combi - 1 α1 2 β2 2 γ2 4.23 and pK = 10.43.
    [Show full text]
  • Activation of Hypermethylated P2RY1 Mitigates Gastric Cancer by Promoting Apoptosis and Inhibiting Proliferation
    Activation of hypermethylated P2RY1 mitigates gastric cancer by promoting apoptosis and inhibiting proliferation Yinggang Hua Xiamen University Medical College Long Li Xiamen University Medical College Liangliang Cai Zhongshan Hospital Xiamen University Guoyan Liu ( [email protected] ) Zhongshan Hospital Xiamen University Research Article Keywords: Diffuse type gastric cancer, DNA methylation 450K array, P2RY1 receptor, ERK signal pathway, Tumor suppressor gene Posted Date: July 26th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-351723/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/16 Abstract P2RY1 receptor is known to cause cancer by activating the ERK signal pathway, its DNA methylation status or even the corresponding regulatory mechanism remains unknown. In this study, DNA methylation chip was used to prole the genome-wide DNA methylation level in gastric cancer tissues. Proliferation and apoptosis of the SGC7901 gastric cancer cell line were determined after treatment with a selective P2RY1 receptor agonist, MRS2365. The promoter region of P2RY1 was found to be highly methylated with 4 hypermethylated sites (|Δβ value| >0.2) in diffuse gastric cancer and then were validated by bioinformatic analysis in TCGA database. Analysis of MRS2365-treated cells by annexin-V/PI staining and Caspase-3 activity assays indicated the induction of apoptosis in SGC7901 cells. P2RY1 receptor activation in human SGC7901 gastric cancer cells via the MRS2365 agonist induced apoptosis and reduced cell growth. High DNA methylation in the promoter region of P2RY1 may have contributed to the reduced expression of P2RY1’s mRNA, which is likely responsible for the “aggressive” nature of the diffuse type gastric cancer.
    [Show full text]
  • Identification of C3 As a Therapeutic Target for Diabetic Nephropathy By
    www.nature.com/scientificreports OPEN Identifcation of C3 as a therapeutic target for diabetic nephropathy by bioinformatics analysis ShuMei Tang, XiuFen Wang, TianCi Deng, HuiPeng Ge & XiangCheng Xiao* The pathogenesis of diabetic nephropathy is not completely understood, and the efects of existing treatments are not satisfactory. Various public platforms already contain extensive data for deeper bioinformatics analysis. From the GSE30529 dataset based on diabetic nephropathy tubular samples, we identifed 345 genes through diferential expression analysis and weighted gene coexpression correlation network analysis. GO annotations mainly included neutrophil activation, regulation of immune efector process, positive regulation of cytokine production and neutrophil-mediated immunity. KEGG pathways mostly included phagosome, complement and coagulation cascades, cell adhesion molecules and the AGE-RAGE signalling pathway in diabetic complications. Additional datasets were analysed to understand the mechanisms of diferential gene expression from an epigenetic perspective. Diferentially expressed miRNAs were obtained to construct a miRNA-mRNA network from the miRNA profles in the GSE57674 dataset. The miR-1237-3p/SH2B3, miR-1238-5p/ ZNF652 and miR-766-3p/TGFBI axes may be involved in diabetic nephropathy. The methylation levels of the 345 genes were also tested based on the gene methylation profles of the GSE121820 dataset. The top 20 hub genes in the PPI network were discerned using the CytoHubba tool. Correlation analysis with GFR showed that SYK, CXCL1, LYN, VWF, ANXA1, C3, HLA-E, RHOA, SERPING1, EGF and KNG1 may be involved in diabetic nephropathy. Eight small molecule compounds were identifed as potential therapeutic drugs using Connectivity Map. It is estimated that a total of 451 million people sufered from diabetes by 2017, and the number is speculated to be 693 million by 2045 1.
    [Show full text]
  • Expression of Neuromedins S and U and Their Receptors in the Hypothalamus and Endocrine Glands of the Rat
    255-259 4/7/07 20:57 Page 255 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 20: 255-259, 2007 255 Expression of neuromedins S and U and their receptors in the hypothalamus and endocrine glands of the rat MARCIN RUCINSKI1, AGNIESZKA ZIOLKOWSKA1, GIULIANO NERI2, MARCIN TREJTER1, TOMASZ ZEMLEDUCH1, MARIANNA TYCZEWSKA1, GASTONE G. NUSSDORFER2 and LUDWIK K. MALENDOWICZ1 1Department of Histology and Embryology, Poznan School of Medicine, Poznan PL-69781, Poland; 2Department of Human Anatomy and Physiology, University of Padua, I-35121 Padua, Italy Received March 14, 2007; Accepted April 20, 2007 Abstract. Neuromedin S (NMS) and neuromedin U (NMU) NMS because it is highly expressed in the hypothalamic are regulatory peptides that share the C-terminal amino-acid suprachiasmatic nucleus (7-9). sequence and act via common G protein-coupled receptors Available findings stress numerous differences between called NMUR1 and NMUR2. Semiquantitative real time-PCR NMS and NMU. NMS is a neuropeptide mainly involved in showed that in the rat hypothalamus and testis NMS gene the modulation of the immune response, regulation of circadian expression was markedly higher than that of the NMU gene, rhythms and spermatogenesis. Moreover, NMS has been also while the reverse occurred in the anterior pituitary and thyroid suggested to be a potent anorexigenic hormone that acts, gland. Low expression of both genes was detected in the among others, via CRH neurons (7-9). NMU is a brain-gut thymus, adrenal gland and ovary, whereas in the pancreatic peptide involved in the regulation of energy homeostasis and islets only the expression of NMU mRNA was detected. In neuroendocrine functions (4,5,10-18).
    [Show full text]
  • A 3-Fold Kernel Approach for Characterizing Late Onset Alzheimer’S Disease
    bioRxiv preprint doi: https://doi.org/10.1101/397760; this version posted August 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A 3-fold kernel approach for characterizing Late Onset Alzheimer’s Disease Margherita Squillarioa,*, Federico Tomasia, Veronica Tozzoa, Annalisa Barlaa and Daniela Ubertib “for the Alzheimer’s Disease Neuroimaging Initiative**” aDIBRIS, University of Genoa, Via Dodecaneso 35, I-16146 Genova, Italy. E-mail address: {squillario, federico.tomasi, veronica.tozzo}@dibris.unige.it, [email protected] bDepartment of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy. E-mail address: [email protected] * Corresponding author and Lead Contact. Tel: +39-010-353-6707; Fax: +39-010-353- 6699. ** Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp- content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 1 bioRxiv preprint doi: https://doi.org/10.1101/397760; this version posted August 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • A2B Adenosine Receptors and T Cell Activation 493
    Journal of Cell Science 112, 491-502 (1999) 491 Printed in Great Britain © The Company of Biologists Limited 1999 JCS0069 Expression of A2B adenosine receptors in human lymphocytes: their role in T cell activation Maribel Mirabet1, Carolina Herrera1, Oscar J. Cordero2, Josefa Mallol1, Carmen Lluis1 and Rafael Franco1,* 1Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Barcelona, Barcelona, Catalonia, Spain 2Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Santiago de Compostela, Spain *Author for correspondence (e-mail: [email protected]; homepage: www.bq.ub.es/recep/franco.html) Accepted 9 December 1998; published on WWW 25 January 1999 SUMMARY Extracellular adenosine has a key role in the development A2BRs but not of A2A receptors in these human cells. The and function of the cells of the immune system. Many of percentage of A2BR-expressing cells was similar in the the adenosine actions seem to be mediated by specific CD4+ or CD8+ T cell subpopulations. Interestingly surface receptors positively coupled to adenylate cyclase: activation signals delivered by either phytohemagglutinin A2A and A2B. Despite the fact that A2A receptors (A2ARs) or anti-T cell receptor/CD3 complex antibodies led to a can be easily studied due to the availability of the specific significant increase in both the percentage of cells agonist CGS21680, a pharmacological and physiological expressing the receptor and the intensity of the labeling. characterization of adenosine A2B receptors (A2BRs) in These receptors are functional since interleukin-2 lymphocytes has not been possible due to the lack of production in these cells is reduced by NECA but not by R- suitable reagents.
    [Show full text]
  • Examining the Roles of Octopamine and Proctolin As Co-Transmitters in Drosophila Melanogaster
    Examining the Roles of Octopamine and Proctolin as Co-Transmitters in Drosophila melanogaster By Amanda Lynne Kornel, B.Sc. (Hons.) A Thesis submitted to the Department of Biological Sciences, Faculty of Mathematics and Sciences In partial fulfillment of the requirements For the degree of Master of Science January 2020 Brock University St. Catharines, Ontario Canada © Amanda L. Kornel Abstract The nervous system is a highly complex and intricate system that interacts with and controls nearly all the other body systems. The basic functions of nerve cells are conserved across most species and are very similar between vertebrates and invertebrates. Chemical transmitters (neurotransmitters) facilitate communication between nerve cells and their targets. The effects of these signals can be modified by co-transmitters that are released from neurons in conjunction with neurotransmitters, and by neuromodulators that are released as hormones. This thesis examines the effect of two neuromodulators on neuromuscular junctions of the fruit fly, Drosophila melanogaster. Two modulators, proctolin and octopamine, have been identified in motor nerve terminals and are thought to be released as co-transmitters to modify the effects of glutamate, the neurotransmitter that depolarizes muscle cells and triggers contraction. The neuropeptide proctolin (Arg-Tyr-Leu-Pro-Thr) was found to increase the amplitude of body wall muscle contractions elicited by glutamate in the absence of nerve stimulation. Thus, proctolin appears to enhance contractions by acting postsynaptically. Previous work reported that increasing neural activity lowers the threshold and EC50 for proctolin’s ability to enhance nerve-evoked contractions by two orders of magnitude. To determine whether such activity-dependence is caused by increased release of glutamate, effects of varying glutamate concentrations on the effectiveness of proctolin are examined here.
    [Show full text]
  • Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes
    Tohoku J. Exp. Med., 2011,Differential 223, 161-176 Gene Expression in OPCs, Oligodendrocytes and Type II Astrocytes 161 Differential Gene Expression in Oligodendrocyte Progenitor Cells, Oligodendrocytes and Type II Astrocytes Jian-Guo Hu,1,2,* Yan-Xia Wang,3,* Jian-Sheng Zhou,2 Chang-Jie Chen,4 Feng-Chao Wang,1 Xing-Wu Li1 and He-Zuo Lü1,2 1Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China 2Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China 3Department of Neurobiology, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China 4Department of Laboratory Medicine, Bengbu Medical College, Bengbu, P.R. China Oligodendrocyte precursor cells (OPCs) are bipotential progenitor cells that can differentiate into myelin-forming oligodendrocytes or functionally undetermined type II astrocytes. Transplantation of OPCs is an attractive therapy for demyelinating diseases. However, due to their bipotential differentiation potential, the majority of OPCs differentiate into astrocytes at transplanted sites. It is therefore important to understand the molecular mechanisms that regulate the transition from OPCs to oligodendrocytes or astrocytes. In this study, we isolated OPCs from the spinal cords of rat embryos (16 days old) and induced them to differentiate into oligodendrocytes or type II astrocytes in the absence or presence of 10% fetal bovine serum, respectively. RNAs were extracted from each cell population and hybridized to GeneChip with 28,700 rat genes. Using the criterion of fold change > 4 in the expression level, we identified 83 genes that were up-regulated and 89 genes that were down-regulated in oligodendrocytes, and 92 genes that were up-regulated and 86 that were down-regulated in type II astrocytes compared with OPCs.
    [Show full text]