Neuropeptides As Novel Insecticidal Agents

Total Page:16

File Type:pdf, Size:1020Kb

Neuropeptides As Novel Insecticidal Agents Int.J.Curr.Microbiol.App.Sci (2019) 8(2): 869-878 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 02 (2019) Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2019.802.098 Neuropeptides as Novel Insecticidal Agents K. Elakkiya, P. Yasodha*, C. Gailce Leo Justin and Vijay Akshay Kumar Anbil Dharmalingam Agricultural College & Research Institute, Navalur Kuttapattu, Trichy–620027 Tamil Nadu, India *Corresponding author ABSTRACT Neuropeptides (protein molecules) are synthesised in the neurons, helps to communicate the impulse from the stimulant to the receptor. Neuropeptides are responsible for regulating a various physiological functions including development, metabolism, water and ion homeostasis, and as neuromodulators in circuits of the central nervous system. Neuropeptides are different from neurotransmitters because, former releases in the haemolymph and the later releases in the neuro-neuro junction or in the neuro-muscular K e yw or ds junction. The first neuropeptide isolated from Periplanata Americana was protocolin in the year 1975 which helps in muscle contractions in hindgut, reproductive, skeletal and Insect neuropeptide, heart muscle. At present a total of 4782 insect neuropeptide records were obtained which PBAN, backbone cyclic perform various related physiological functions. Thus it paves the way for the generation of novel type of putative insect control agents based on backbone cyclic (BBC) peptidomimetic antagonists peptidomimetic antagonists of insect-neuropeptides. At present four different neuropeptides such as proctolin, kinin, pheromone biosynthesis activating neuropeptide Article Info (PBAN) and allatostatin were studied thoroughly and their biologically active sequence Accepted: were identified. Using this sequence peptidomimetic analogues (either as agonists or 07 January 2019 antagonists) were synthesized in automated peptide synthesizer and tested for their Available Online: efficacy as insecticide. Among those four PBAN showed good result as insecticide by 10 February 2019 reducing pheromone production up to 73% in Helicoverpa peltigera. Based on this many neuropeptides were under in vitro test for their antagonist activity. In 2016, a synthetic antagonistic neuropeptide based on pheromone biosynthesis activating neuropeptide was registered for patent by Altstein. This neuropeptide based insecticide is highly insect specific and can be incorporated as apart in integrated pest management though the production of synthetic peptide is critical. Introduction To overcome those difficulties, strategies were approached based on integrated pest To meet the requirements of population green management which includes the revolution has started which results in the use characteristics of insect specific, non toxic, of toxic chemicals and insects too gained compatible with other insect control agents, resistance to overcome these toxic substances. etc. Initially to meet these requirements Continuous use of those toxic substances in various compounds such as bio control turn results in the degradation of environment. agents, newer insecticides, transgenic plants 869 Int.J.Curr.Microbiol.App.Sci (2019) 8(2): 869-878 were introduced. Now a days insects are by Coast and Schooley (2011). gaining resistance to those compounds and so an innovative approach for pest management Families of neuropeptide such as neuropeptide based pest control were established. Neuropeptides are the At present, roughly 54 insect neuropeptide neurohormones which are synthesised in the families were classified which covers 23 neurons or neuro endocrine cells and are insect orders. Among those 54 neuropeptide released in the haemolymph. Neuropeptides families only four neuropeptides (Proctolin, coordinates complex of physiological kinin, pheromone biosynthesis activating functions like mating, oviposition, moulting, neuropeptide and allatostatin) were studied water balance, fat mobilization, etc. (Yeoh et thoroughly and tested for their bioassay al., 2017). Neuropeptides are produced from activity against various insects (Table 1). larger precursor proteins which are known as prepropeptides. Prepropeptide comprise of a Steps involved in isolation of signal peptide (which directs the protein to the neuropeptide:n secretary pathway), progenitors of mature peptides (the biologically active peptides), Sequencing of protein is done by isolating the spacer peptides (peptide fragments with no specific gene of interest using AQUA and known biological function and non conserved PROCHECK-NMR (Laskowski et al., 1996). sequences) and cleavage sites (monobasic and Then artificial synthesis of peptide is done by dibasic) (Yeoh et al., 2017). The first the condensation reaction of the carboxyl neuropeptide isolated was proctolin from group of one amino acid to the amino cockroach which was found to have group of another using Fmoc myostimulatory activity (Starratt and Brown, (fluorenylmethoxycarbonyl) resin (Shin et al., 1975). One year later AKH, the adipokinetic 1999). After isolation, in vitro and in vivo hormone of Locusta migratoria was found. protein docking is done using various AKH-related peptides have now been softwares such as ADAM, AutoDock, identified in numerous insects, and several DARWIN, DIVALI, DOCK, DockVision, other protostomes including arthropods, EUDOC, FlexX, FLOG, FTDOCK, GOLD, nematodes, annelids and mollusks (Gade, Hammerhead, ICM, LIGIN, LUDI, 1997). MCDOCK, Prodock, Proleads, QXP, SANDOCK, etc. (Sousa et al., 2006). Only with the advent of genomics, protein Structural modification of synthesised protein mass spectrometry and high-field NMR is done to obtain the antagonist activity either spectroscopy in the late 1980s and 1990s by Linear replacement /side chain knowledge on insect neuropeptides was modification (Fig. 1) or by backbone increased. Later in the year 1989 PBAN was cyclization (Fig. 2) (Gilon et al., 1997).The found to regulate sex pheromone synthesis in final product is produced in the form of dry female moths (Raina et al., 1989) with this powder (Alstein, 2003). the knowledge on insect neuropeptide has been increased. Neuropeptides were classified Proctolin into different families based on the homology of amino acid sequence. In order to Proctolin is produced by motor neurons in standardize classification of neuropeptides, locusts and found to regulate corpora cardiac DINeR (Database for Insect Neuropeptide crawling behaviour in Drosophila (Clark et Research) adopts the nomenclature for al., 2006). The biologically active sequence of naming insect neuropeptide families proposed proctolin contains arginin, tyrosine, leucine, 870 Int.J.Curr.Microbiol.App.Sci (2019) 8(2): 869-878 threonine (Fig. 3). Replacing an amino group to Bombyx mori as diapause hormone. C- with O2 between Tyr2 and Leu3 was almost terminal hexapeptide, H-Tyr-Phe-Ser-Pro- found to inactivate the muscle contraction in Arg-Leu-NH2, the active sequence of PBAN Locusta migratoria at a concentration of 1 was found to dissolve in the solvent and mmol/L. Replacing an amino group with O2 hence choosed for insecticidal activity. The between Arg1 and Tyr2 was found to retained peptide H-Arg-Tyr-Phe-D-Phe-Pro-Arg-Leu- the activity of muscle O2 significantly. NH 2 exhibited the highest antagonistic Cyclization of proctolin (Cycloproctolin) was activity is because when using dextro (d) phe. found to be a potent antagonist of proctolin- It caused jitters action in insect. Injection of induced production of the second messengers 100 pmol of this peptide, inhibited sex InsP3 (insulin P3) and InsP4 (insulin P4) pheromone biosynthesis by 63% after 2 h (Scherkenbeck, 2009). (Gilon et al., 1997). Based on substitution of l-amino acids with d-Phe followed by Kinins backbone cyclization (Fig. 4), has led to the discovery of several highly potent linear and The first members of the kinin family was conformationally constrained, selective, isolated from Leucophaea maderae also metabolically stable backbone cyclic (BBC) found to be present in nematodes, annelids pure antagonists for PBAN (Harinton, 2010). and molluscs (Radford et al., 2002) triggers ecdysis behaviour. Kinin shares a common C- Allatostatin –A, B, C terminal pentapetide sequence of Phe-Phe- Aib- Trp- Gly-NH2. When Gly is replaced The first member of the insect AST family using any of the following substitute and its was isolated in the year 1989 from brain aphicidal activity was tested (Zang, 2015). extracts of the cockroach Diploptera punctata (Woodhead et al., 1989). AST is Pyrokinins /pheromone biosynthesis found to be three types. AST-A as cockroach activating neuropeptides (PBANs) type, AST- B as cricket type and AST C as moth type. These peptides were called Pheromone Biosynthesis Activating allatostatins due to their ability to inhibit Neuropeptide (PBAN) regulates pheromone juvenile hormone (JH) biosynthesis by the biosynthesis and is a peptide of pyrokinin corpora allata. AST also regulates various type. Since no PK precursor gene was yet aspects of feeding and metabolism in several known these peptides were named after their species (Yeoh et al., 2017). Allatostatins functions: Pheromone Biosynthesis contains 8-13 amino acids and are amidated. Activating Neuropeptides (PBAN), Diapause The biologically active peptide sequences of Hormone (DH), Melanization and Reddish allatostatin are Ala-Pro-Ser-Gly-Ala-Gln- Coloration Hormone (MRCH) and so on. Arg-Leu-Tyr-Gly-Phe Gly-Leu- NH2. An in PBAN and DH were
Recommended publications
  • Molecular Dissection of G-Protein Coupled Receptor Signaling and Oligomerization
    MOLECULAR DISSECTION OF G-PROTEIN COUPLED RECEPTOR SIGNALING AND OLIGOMERIZATION BY MICHAEL RIZZO A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology December, 2019 Winston-Salem, North Carolina Approved By: Erik C. Johnson, Ph.D. Advisor Wayne E. Pratt, Ph.D. Chair Pat C. Lord, Ph.D. Gloria K. Muday, Ph.D. Ke Zhang, Ph.D. ACKNOWLEDGEMENTS I would first like to thank my advisor, Dr. Erik Johnson, for his support, expertise, and leadership during my time in his lab. Without him, the work herein would not be possible. I would also like to thank the members of my committee, Dr. Gloria Muday, Dr. Ke Zhang, Dr. Wayne Pratt, and Dr. Pat Lord, for their guidance and advice that helped improve the quality of the research presented here. I would also like to thank members of the Johnson lab, both past and present, for being valuable colleagues and friends. I would especially like to thank Dr. Jason Braco, Dr. Jon Fisher, Dr. Jake Saunders, and Becky Perry, all of whom spent a great deal of time offering me advice, proofreading grants and manuscripts, and overall supporting me through the ups and downs of the research process. Finally, I would like to thank my family, both for instilling in me a passion for knowledge and education, and for their continued support. In particular, I would like to thank my wife Emerald – I am forever indebted to you for your support throughout this process, and I will never forget the sacrifices you made to help me get to where I am today.
    [Show full text]
  • Examining the Roles of Octopamine and Proctolin As Co-Transmitters in Drosophila Melanogaster
    Examining the Roles of Octopamine and Proctolin as Co-Transmitters in Drosophila melanogaster By Amanda Lynne Kornel, B.Sc. (Hons.) A Thesis submitted to the Department of Biological Sciences, Faculty of Mathematics and Sciences In partial fulfillment of the requirements For the degree of Master of Science January 2020 Brock University St. Catharines, Ontario Canada © Amanda L. Kornel Abstract The nervous system is a highly complex and intricate system that interacts with and controls nearly all the other body systems. The basic functions of nerve cells are conserved across most species and are very similar between vertebrates and invertebrates. Chemical transmitters (neurotransmitters) facilitate communication between nerve cells and their targets. The effects of these signals can be modified by co-transmitters that are released from neurons in conjunction with neurotransmitters, and by neuromodulators that are released as hormones. This thesis examines the effect of two neuromodulators on neuromuscular junctions of the fruit fly, Drosophila melanogaster. Two modulators, proctolin and octopamine, have been identified in motor nerve terminals and are thought to be released as co-transmitters to modify the effects of glutamate, the neurotransmitter that depolarizes muscle cells and triggers contraction. The neuropeptide proctolin (Arg-Tyr-Leu-Pro-Thr) was found to increase the amplitude of body wall muscle contractions elicited by glutamate in the absence of nerve stimulation. Thus, proctolin appears to enhance contractions by acting postsynaptically. Previous work reported that increasing neural activity lowers the threshold and EC50 for proctolin’s ability to enhance nerve-evoked contractions by two orders of magnitude. To determine whether such activity-dependence is caused by increased release of glutamate, effects of varying glutamate concentrations on the effectiveness of proctolin are examined here.
    [Show full text]
  • Identification and Characterization of a G Protein-Coupled Receptor for the Neuropeptide Proctolin in Drosophila Melanogaster
    Identification and characterization of a G protein-coupled receptor for the neuropeptide proctolin in Drosophila melanogaster Erik C. Johnson*, Stephen F. Garczynski†, Dongkook Park*, Joe W. Crim†, Dick R. Na¨ ssel‡, and Paul H. Taghert*§ *Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110; †Department of Cellular Biology, University of Georgia, Athens, GA 30602; and ‡Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden Edited by John H. Law, University of Arizona, Tucson, AZ, and approved March 24, 2003 (received for review January 8, 2003) Proctolin is a bioactive neuropeptide that modulates interneuronal through heterotrimeric G proteins in the cockroach (20), we and neuromuscular synaptic transmission in a wide variety of arthro- included this peptide among other potential ligands with which pods. We present several lines of evidence to propose that the orphan to test functional activation of the orphan peptide GPCR G protein-coupled receptor CG6986 of Drosophila is a proctolin potentially encoded by CG6986. We found that CG6986 expres- receptor. When expressed in mammalian cells, CG6986 confers second sion confers selective proctolin sensitivity to a heterologous cell messenger activation after proctolin application, with an EC50 of 0.3 type. We then extended our studies to further implicate CG6986 nM. In competition-based studies, the CG6986 receptor binds proc- as a strong candidate for a Drosophila proctolin receptor. nM). By microarray analysis, CG6986 4 ؍ tolin with high affinity (IC50 transcript is consistently detected in head mRNA of different geno- Materials and Methods types, and under different environmental conditions. By blot analysis, Molecular Cloning.
    [Show full text]
  • The Contribution of the Neuropeptide Proctolin to the Regulation of Acoustic Communication in the Grasshopper Chorthippus Biguttulus
    WAGENINGEN UNIVERSITY LABORATORY OF ENTOMOLOGY The contribution of the neuropeptide proctolin to the regulation of acoustic communication in the grasshopper Chorthippus biguttulus No: 09.05 Name: Loes Duivenvoorde Period: September – December 2008 Thesis ENT- 80424 Examinators: Prof. Dr. Ralf Heinrich and Dr. Hans Smid The contribution of the neuropeptide proctolin to the regulation of acoustic communication in the grasshopper Chorthippus biguttulus No: 09.05 Name: Loes Duivenvoorde Period: September – December 2008 Thesis ENT- 80424 Examinators: Prof. Dr. Ralf Heinrich and Dr. Hans Smid 2 Index SUMMARY...............................................................................................................................5 1. INTRODUCTION..................................................................................................................7 1.1 PROCTOLIN ..........................................................................................................................7 1.2 NEUROPEPTIDES IN THE INSECT NERVOUS SYSTEM ................................................................7 1.3 DISTRIBUTION OF PROCTOLIN IN THE INSECT CNS.................................................................9 1.4 MECHANISM OF ACTION OF PROCTOLIN ...............................................................................10 1.5 GRASSHOPPER ACOUSTIC COMMUNICATION........................................................................11 1.6 REGULATION OF STRIDULATION BY THE CENTRAL COMPLEX ................................................12
    [Show full text]
  • The Actions of Proctolin, Octopamine and Serotonin on Crustacean Proprioceptors Show Species and Neurone Specd7icity
    J. exp. Biol. 152, 485-504 (1990) 485 Printed in Great Britain © The Company of Biologists Limited 1990 THE ACTIONS OF PROCTOLIN, OCTOPAMINE AND SEROTONIN ON CRUSTACEAN PROPRIOCEPTORS SHOW SPECIES AND NEURONE SPECD7ICITY BY VALERIE M. PASZTOR AND DAVID L. MACMILLAN Biology Department, McGill University, 1205 Avenue Dr Penfield, Montreal, Quebec, Canada H3A 1B1 and Department of Zoology, University of Melbourne, Parkville, Victoria 3052, Australia Accepted 14 May 1990 Summary A comparative survey is presented of the responsiveness of crustacean mechanoreceptors to the neurohormones proctolin, octopamine and serotonin. Seven identifiable primary afferents were examined in the crayfish Cherax destructor and the lobster Homarus americanus: three from the oval organ (OO) of the second maxilla, two from the non-spiking stretch receptor (NSSR) of the swimmeret and two from the muscle receptor organ (MRO) of the abdomen. Proctohn modulation was observed in 10 of the 14 fibres tested and was invariably potentiating, resulting in enhanced receptor potential amplitudes and increased firing. Octopamine and serotonin each modulated 8 of the 14 fibres and their effects were excitatory or depressive depending upon the target fibre. In the latter case the receptor potentials became attenuated, often to subthreshold levels, with loss of spiking. A comparison of results from Cherax with those of Homarus shows that there is species specificity in the responses of homologous neurones. Neurohormones that are excitatory in one species may be ineffective or depressive in the other. The broad distribution of modulatory effects observed here suggests that sensitivity to biogenic amines and peptides is a general property of proprioceptors. Introduction In recent reviews of the importance of neurohormones in facilitating the expression of particular types of behaviour in animals (Kravitz, 1988; Bicker and Menzel, 1989), emphasis was placed upon the multiplicity of loci at which neuromodulation can occur.
    [Show full text]
  • Tspace.Library.Utoronto.Ca
    TSPACE RESEARCH REPOSITORY tspace.library.utoronto.ca 2011 The proctolin gene and biological effects of proctolin in the blood-feeding bug, Rhodnius prolixus article version: published manuscript Orchard, Ian Lee, DoHee da Silva, Rosa Lange, Angela B. Orchard I., Lee D.H., da Silva R., and Lange A.B. (2011). The proctolin gene and biological effects of proctolin in the blood-feeding bug, Rhodnius prolixus. Front. Neuroendocrinol. 2: 59. https://doi.org/10.3389/fendo.2011.00059. HOW TO CITE TSPACE ITEMS Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the TSpace version (original manuscript or accepted manuscript) because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page. ORIGINAL RESEARCH ARTICLE published: 21 October 2011 doi: 10.3389/fendo.2011.00059 The proctolin gene and biological effects of proctolin in the blood-feeding bug, Rhodnius prolixus Ian Orchard*, Do Hee Lee, Rosa da Silva and Angela B. Lange Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada Edited by: We have reinvestigated the possible presence or absence of the pentapeptide proctolin Eric W. Roubos, Radboud University in Rhodnius prolixus and report here the cloning of the proctolin cDNA. The transcript is Nijmegen, Netherlands expressed in the central nervous system (CNS) and some peripheral tissues.The proctolin Reviewed by: Cornelis J. P.Grimmelikhuijzen, prepropeptide encodes a single copy of proctolin along with a possible proctolin-precursor- University of Copenhagen, Denmark associated peptide.
    [Show full text]
  • Peptide Neuromodulation of Synaptic Dynamics in an Oscillatory Network
    The Journal of Neuroscience, September 28, 2011 • 31(39):13991–14004 • 13991 Behavioral/Systems/Cognitive Peptide Neuromodulation of Synaptic Dynamics in an Oscillatory Network Shunbing Zhao,1 Amir Farzad Sheibanie,2 Myongkeun Oh,3 Pascale Rabbah,1 and Farzan Nadim1,3 1Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, 2Department of Neuroscience, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07102, and 3Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 Although neuromodulation of synapses is extensively documented, its consequences in the context of network oscillations are not well known. We examine the modulation of synaptic strength and short-term dynamics in the crab pyloric network by the neuropeptide proctolin. Pyloric oscillations are driven by a pacemaker group which receives feedback through the inhibitory synapse from the lateral pyloric (LP) to pyloric dilator (PD) neurons. We show that proctolin modulates the spike-mediated and graded components of the LP to PDsynapse.Proctolinenhancesthegradedcomponentandunmasksasurprisingheterogeneityinitsdynamicswherethereisdepression or facilitation depending on the amplitude of the voltage waveform of the presynaptic LP neuron. The spike-mediated component is influenced by the baseline membrane potential and is also enhanced by proctolin at all baseline potentials. In addition to direct modu- lation of this synapse, proctolin also changes the shape and amplitude of the presynaptic voltage waveform which additionally enhances synaptic output during ongoing activity. During ongoing oscillations, proctolin reduces the variability of cycle period but only when the LP to PD synapse is functionally intact. Using the dynamic clamp technique we find that the reduction in variability is a direct conse- quence of modulation of the LP to PD synapse.
    [Show full text]
  • CCAP) from Pericardial Organs of the Shore Crab Carcinus Maenas (Crustacean Neuropeptide/Amino Acid Sequence/Cardioactive Neurohormone/Neurosecretion) J
    Proc. Natl. Acad. Sci. USA Vol. 84, pp. 575-579, January 1987 Neurobiology Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab Carcinus maenas (crustacean neuropeptide/amino acid sequence/cardioactive neurohormone/neurosecretion) J. STANGIER*, C. HILBICHt, K. BEYREUTHERt, AND R. KELLER* *Institut fur Zoophysiologie, Rheinische Friedrich Wilhelms-Universitat, D-5300 Bonn, Federal Republic of Germany; and tInstitut fur Genetik der Universitat zu Koin, Weyertal 121, D-5000 Cologne, Federal Republic of Germany Communicated by Berta Scharrer, September 23, 1986 ABSTRACT An unusual crustacean cardioactive peptide The sequence of this peptide, for which we propose the (CCAP) from the pericardial organs of the shore crab Carcinus acronym CCAP (for crustacean cardioactive peptide), does maenas has been purified to homogeneity by a two-step not resemble that of any known invertebrate or vertebrate reversed-phase HPLC procedure. Manual microsequencing neuropeptide. using the 4-(NN-dimethylamino)azobenzene 4'-isothiocyanate/ phenylisothiocyanate double-coupling technique and automat- MATERIALS AND METHODS ed gas-phase sequencing of the oxidized peptide revealed that CCAP is a nonapeptide (Mr 957) of the sequence Pro-Phe- Animals. Shore crabs, Carcinus maenas, from the North Sea were supplied by the Nederlands Instituut voor de Cys-Asn-Ala-Phe-Thr-Gly-Cys-NH2. We have confirmed the Onderzoek van de Zee, Texel Island. They were kept in sequence by chemical synthesis of the C-terminally amidated recirculating and filtered seawater at 12°C and were fed on and nonamidated forms of the peptide. The presence of the pelleted cat food. amide group was indicated by lack of susceptibility to car- Heart Bioassay.
    [Show full text]
  • The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors
    biomolecules Review A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors Umut Toprak 1,* , Cansu Do˘gan 1 and Dwayne Hegedus 2,3 1 Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara 06110, Turkey; [email protected] 2 Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada; [email protected] 3 Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada * Correspondence: [email protected] Abstract: Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their Citation: Toprak, U.; Do˘gan,C.; potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, Hegedus, D. A Comparative they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, Perspective on Functionally-Related, and expression patterns, which explains their functional distinction.
    [Show full text]
  • Different Proctolin Neurons Elicit Distinct Motor Patterns from a Multifunctional Neuronal Network Dawn M
    Claremont Colleges Scholarship @ Claremont WM Keck Science Faculty Papers W.M. Keck Science Department 7-1-1999 Different Proctolin Neurons Elicit Distinct Motor Patterns From a Multifunctional Neuronal Network Dawn M. Blitz Miami University Andrew E. Christie Melissa J. Coleman Claremont McKenna College; Pitzer College; Scripps College Brian J. Norris Eve Marder Brandeis University See next page for additional authors Recommended Citation Blitz, Dawn M., Andrew E. Christie, Melissa J. Coleman, Brian J. Norris, Eve Marder, and Michael P. Nusbaum. "Different Proctolin Neurons Elicit Distinct Motor Patterns from a Multifunctional Neuronal Network." The ourJ nal of Neuroscience 19.13 (1999): 5449-5463. This Article is brought to you for free and open access by the W.M. Keck Science Department at Scholarship @ Claremont. It has been accepted for inclusion in WM Keck Science Faculty Papers by an authorized administrator of Scholarship @ Claremont. For more information, please contact [email protected]. Authors Dawn M. Blitz, Andrew E. Christie, Melissa J. Coleman, Brian J. Norris, Eve Marder, and Michael P. Nusbaum This article is available at Scholarship @ Claremont: http://scholarship.claremont.edu/wmkeckscience/40 The Journal of Neuroscience, July 1, 1999, 19(13):5449–5463 Different Proctolin Neurons Elicit Distinct Motor Patterns from a Multifunctional Neuronal Network Dawn M. Blitz,1 Andrew E. Christie,1,2 Melissa J. Coleman,1 Brian J. Norris,1 Eve Marder,2 and Michael P. Nusbaum1 1Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, and 2Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454 Distinct motor patterns are selected from a multifunctional tory commissural neuron 1 (MCN1) and the newly identified neuronal network by activation of different modulatory projec- modulatory commissural neuron 7 (MCN7).
    [Show full text]
  • Neuropeptidome Regulation After Baculovirus Infection. a Focus On
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.223016; this version posted July 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Neuropeptidome regulation after baculovirus infection. A focus on proctolin and its relevance in locomotion and digestion ANGEL LLOPIS-GIMÉNEZ1; STEFANO PARENTI1, YUE HAN3, VERA I.D. ROS2 AND SALVADOR HERRERO1* 1Department of Genetics and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI- BIOTECMED), Universitat de València 46100–Burjassot (Valencia), Spain. 2Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands. 3Department of Pathology, University of Cambridge, Cambridge, United Kingdom *Correspondence to: Salvador Herrero Universitat de València. Department of Genetics Dr Moliner 50, 46100 Burjassot, Spain [email protected] ORCID: AL https://orcid.org/0000-0003-0282-7215 VR https://orcid.org/0000-0002-4831-7299 SH https://orcid.org/0000-0001-5690-2108 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.28.223016; this version posted July 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract - Baculoviruses constitute a large group of invertebrate DNA viruses, predominantly infecting larvae of the insect order Lepidoptera. During a baculovirus infection, the virus spreads throughout the insect body producing a systemic infection in multiple larval tissues.
    [Show full text]
  • Identification of the Neuropeptide Transmitter Proctolin in Drosophila Larvae: Characterization of Muscle Fiber-Specific Neuromuscular Endings
    The Journal of Neuroscience, January 1988, 8(l): 242-255 Identification of the Neuropeptide Transmitter Proctolin in Drosophila Larvae: Characterization of Muscle Fiber-Specific Neuromuscular Endings MaryDilys S. Anderson, Marnie E. Halpern, and Haig Keshishian Biology Department, Yale University, New Haven, Connecticut 06511 The cellular localization of the peptide neurotransmitter Jan, 1976a, b, 1982; Wu and Haugland, 1985). At present how- proctolin was determined for larvae of the fruitfly Drosophila ever, little is known about the CNS locations of larval Dro- melanogaster. Proctolin was recovered from the CNS, hind- sophila motoneurons, and with the exception of glutamate (Jan gut, and segmental bodywall using reverse-phase HPLC, and and Jan, 1976a, b), little is known about the transmitters they characterized by bioassay, immunoassay, and enzymatic use. analysis. A small, stereotyped population of proctolin-im- Insect neurons use a wide variety of neurotransmitters, es- munoreactive neurons was found in the larval CNS. Several pecially neuropeptides (O’Shea and Schaffer, 1985). A diverse of the identified neurons may be efferents. In the periphery, array of neuropeptides is also found in ganglia of other inver- proctolin-immunoreactive neuromuscular endings were tebrates (Mahon and Scheller, 1983) and in the CNS of verte- identified on both visceral and skeletal muscle fibers. On brates (Snyder, 1980; Krieger, 1983). In insect ganglia a subset the hindgut, the neuropeptide is associated with endings on of the motoneurons specializeto expressneuropeptides as trans- intrinsic circular muscle fibers. We propose that the hindgut mitters (Bishop and O’Shea, 1982; Adams and O’Shea, 1983; muscle fibers are innervated by central neurons homologous Keshishian and O’Shea, 1985a; Myers and Evans, 1985).
    [Show full text]