A Dissertation Entitled Characterization of the CXCR4

Total Page:16

File Type:pdf, Size:1020Kb

A Dissertation Entitled Characterization of the CXCR4 A Dissertation entitled Characterization of the CXCR4-LASP1-eIF4F Axis in Triple-Negative Breast Cancer by Cory M Howard Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences ___________________________________________ Dayanidhi Raman, B.V.Sc., Ph.D., Committee Chair ___________________________________________ Amit Tiwari, Ph.D., Committee Member ___________________________________________ Ritu Chakravarti, Ph.D., Committee Member ___________________________________________ Nagalakshmi Nadiminty, Ph.D., Committee Member ___________________________________________ Saori Furuta, Ph.D., Committee Member ___________________________________________ Shi-He Liu, M.D., Committee Member ___________________________________________ Amanda C. Bryant-Friedrich, Ph.D., Dean College of Graduate Studies The University of Toledo August 2020 © 2020 Cory M. Howard This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Characterization of the CXCR4-LASP1-eIF4F Axis in Triple-Negative Breast Cancer by Cory M. Howard Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences The University of Toledo August 2020 Triple-negative breast cancer (TNBC) remains clinically challenging as effective targeted therapies are still lacking. In addition, patient mortality mainly results from the metastasized lesions. Therefore, there is an unmet need to develop novel therapies against metastatic TNBC (mTNBC). CXCR4 has been identified to be one of the major chemokine receptors involved in breast cancer metastasis. Previously, our lab had identified LIM and SH3 Protein 1 (LASP1) to be a key mediator in CXCR4-driven invasion. To further investigate the role of LASP1 in this process, a proteomic screen was employed and identified a novel protein-protein interaction between LASP1 and components of eukaryotic initiation 4F complex (eIF4F). We hypothesized that activation of the CXCR4-LASP1-eIF4F axis may contribute to the preferential translation of oncogenic mRNAs leading to an altered pro-oncogenic proteome that facilitates breast cancer progression and metastasis. To test this hypothesis, we first confirmed that the gene expression of CXCR4, LASP1, and eIF4A are upregulated in invasive breast cancer. Moreover, we demonstrate that LASP1 specifically associated with eIF4A, a mRNA helicase, in a CXCL12-dependent manner via a proximity ligation assay. We validated this finding through many approaches including co-immunoprecipitation and GST- iii pulldown assays. Furthermore, we showed an association with eIF4B, an ancillary protein that enhances the helicase activity of eIF4A. Activation of CXCR4 signaling by its ligand, CXCL12, increased the translation of oncoproteins downstream of eIF4A. Interestingly, genetic silencing of LASP1 interrupted the ability of eIF4A to translate oncogenic mRNAs into oncoproteins implicating a role for LASP1 in mediating the signaling from CXCR4. This impaired ability of eIF4A was confirmed by a previously established luciferase reporter assay which harbors a 5'-leader dependent on the helicase activity of eIF4A. Finally, depletion of LASP1 sensitizes 231S cells to the pharmacological inhibition of eIF4A by Rocaglamide A as evident through reduced expression of BIRC5, ROCK1, Cyclin D1, and Mdm2 which are downstream effectors of eIF4A and serves as an endogenous measure of the level of its activity. Importantly, the viability of 231 cells is compromised with the concomitant depletion of LASP1 and the pharmacological inhibition of eIF4A. Overall, our work identified that the CXCR4- LASP1 axis is a novel mediator in oncogenic protein translation through activation of the helicase activity of eIF4A. Next, we attempted to identify novel small molecule inhibitors against the helicase activity of eIF4A which is part of the CXCR4-LASP1-eIF4F axis. To accomplish this goal, a (CGG)4-tdTomato-luciferase reporter system was established to determine the helicase activity of eIF4A in three distinct TNBC cell lines. The Prestwick Chemical Library, consisting of mostly FDA-approved and off-patent drugs, was then screened. This led to identification of cardiac glycosides as potential inhibitors of eIF4A- mediated translation. We hypothesize that cardiac glycosides inhibit the expression of eIF4A through decreases in c-Myc. The combination of rocaglamide A and a standard iv cardiac glycoside such as digoxin exhibited synergistic anti-cancer activity against TNBC cells in vitro. Thus, digoxin and other related cardiac glycosides could be potentially harnessed to target the helicase activity of eIF4A in order to disrupt the CXCR4-LASP1- eIF4F axis in mTNBC. v Table of Contents Abstract .............................................................................................................................. iii Table of Contents ............................................................................................................... vi List of Tables ................................................................................................................. xiii List of Figures .................................................................................................................. xiv 1 Breast Cancer Research and Treatment ...................................................................1 1.1 Epidemiology ...................................................................................................1 1.2 Subclassification of Breast Cancer and its Clinical Importance ......................3 1.3 Triple-Negative Breast Cancer and Treatment ...............................................4 1.4 Subtypes of Triple-Negative Breast Cancer ....................................................6 1.5 The Phosphatidylinositol 3-kinase (PI3K) Pathway and Breast Cancer ..........8 1.6 Future Perspectives on the Research and Treatment of Triple-Negative Breast Cancer .................................................................................................10 2 CXCR4 and Cancer................................................................................................12 2.1 Chemokine Receptors in Cancer Biology ......................................................12 2.1.1 Chemokine Receptors: An Overview .............................................12 2.1.2 Chemokine Receptors and Cancer Biology ....................................14 2.2 CXCL12–CXCR4 and Breast Cancer ............................................................15 2.2.1 Cellular Signaling ...........................................................................16 2.2.2 Tumor Microenvironment ...............................................................17 vi 2.2.3 Cancer Stemness .............................................................................20 2.2.4 Atypical Chemokine Receptor 3 (CXCR7) ....................................21 3 LIM and SH3 Protein 1 ..........................................................................................23 3.1 Introduction ....................................................................................................23 3.1.1 LASP1 Phosphorylation..................................................................25 3.1.2 Physiological Functions ..................................................................26 3.2 LASP1 and Cancer .........................................................................................27 3.2.1 LASP1 and the Metastatic Cascade ................................................28 3.2.2 Uncovering a Unique Role for LASP1 in Chemotaxis ...................29 3.2.3 LASP1 and the PI3K-Akt-mTOR Pathway ....................................29 3.2.4 LASP1 and Epigenetics ..................................................................30 3.2.5 Regulation of LASP1 Expression Levels .......................................31 4 A Key Role for the eIF4F Complex in Cancer ......................................................35 4.1 Introduction ....................................................................................................35 4.1.1 mRNA Structure and Function .......................................................37 4.2 The 5’Leader Sequence..................................................................................37 4.2.1 5′ Terminal Oligopyrimidine (5’TOP) Motifs ................................37 4.2.2 (NGG)4 Motifs: G-quadruplexes vs. Classical Secondary Structures ........................................................................................38 4.2.2.1 G-quadruplexes ................................................................39 4.2.2.2 Translation Initiator of Short 5’UTR (TISU)...................40 4.2.3 Translation Initiator of Short 5’UTR (TISU) ..................................42 4.3 eIF4F and Cancer ...........................................................................................42 vii 4.3.1 eIF4E ...............................................................................................42 4.3.2 eIF4A ..............................................................................................45 4.3.3 eIF4G ..............................................................................................49 4.3.4 eIF4B...............................................................................................51 4.3.5 eIF4H ..............................................................................................53
Recommended publications
  • Eif2b Is a Decameric Guanine Nucleotide Exchange Factor with a G2e2 Tetrameric Core
    ARTICLE Received 19 Feb 2014 | Accepted 15 Apr 2014 | Published 23 May 2014 DOI: 10.1038/ncomms4902 OPEN eIF2B is a decameric guanine nucleotide exchange factor with a g2e2 tetrameric core Yuliya Gordiyenko1,2,*, Carla Schmidt1,*, Martin D. Jennings3, Dijana Matak-Vinkovic4, Graham D. Pavitt3 & Carol V. Robinson1 eIF2B facilitates and controls protein synthesis in eukaryotes by mediating guanine nucleotide exchange on its partner eIF2. We combined mass spectrometry (MS) with chemical cross- linking, surface accessibility measurements and homology modelling to define subunit stoichiometry and interactions within eIF2B and eIF2. Although it is generally accepted that eIF2B is a pentamer of five non-identical subunits (a–e), here we show that eIF2B is a decamer. MS and cross-linking of eIF2B complexes allows us to propose a model for the subunit arrangements within eIF2B where the subunit assembly occurs through catalytic g- and e-subunits, with regulatory subunits arranged in asymmetric trimers associated with the core. Cross-links between eIF2 and eIF2B allow modelling of interactions that contribute to nucleotide exchange and its control by eIF2 phosphorylation. Finally, we identify that GTP binds to eIF2Bg, prompting us to propose a multi-step mechanism for nucleotide exchange. 1 Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK. 2 MRC Laboratory of Molecular Biology, University of Cambridge, Francis Crick Avenue, Cambridge CB2 0QH, UK. 3 Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK. 4 Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
    [Show full text]
  • Cofactor Dependent Conformational Switching of Gtpases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 1704 Biophysical Journal Volume 95 August 2008 1704–1715 Cofactor Dependent Conformational Switching of GTPases Vasili Hauryliuk,*y Sebastian Hansson,z and Ma˚ns Ehrenberg* *Department of Cell and Molecular Biology, Molecular Biology Program, Uppsala University, Uppsala, Sweden; yEngelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; and zLaboratoire d’Enzymologie et Biochimie Structurales, CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France ABSTRACT This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP g S.
    [Show full text]
  • (LASP1) in the Metastatic Dissemination of Medulloblastoma
    Published OnlineFirst October 5, 2010; DOI: 10.1158/0008-5472.CAN-10-0592 Published OnlineFirst on October 5, 2010 as 10.1158/0008-5472.CAN-10-0592 Therapeutics, Targets, and Chemical Biology Cancer Research Role of LIM and SH3 Protein 1 (LASP1) in the Metastatic Dissemination of Medulloblastoma Christopher Traenka1, Marc Remke2,5, Andrey Korshunov4,6, Sebastian Bender2,5, Thomas Hielscher3, Paul A. Northcott7, Hendrik Witt2,5, Marina Ryzhova8, Jörg Felsberg9, Axel Benner3, Stephanie Riester2, Wolfram Scheurlen10, Thomas G.P. Grunewald11, Andreas von Deimling6, Andreas E. Kulozik5, Guido Reifenberger9, Michael D. Taylor7, Peter Lichter2, Elke Butt1, and Stefan M. Pfister2,5 Abstract Medulloblastoma is the most common malignant pediatric brain tumor and is one of the leading causes of cancer-related mortality in children. Treatment failure mainly occurs in children harboring metastatic tumors, which typically carry an isochromosome 17 or gain of 17q, a common hallmark of intermediate and high-risk medulloblastoma. Through mRNA expression profiling, we identified LIM and SH3 protein 1 (LASP1) as one of the most upregulated genes on chromosome 17q in tumors with 17q gain. In an independent validation cohort of 101 medulloblastoma samples, the abundance of LASP1 mRNA was significantly associated with 17q gain, metastatic dissemination, and unfavorable outcome. LASP1 protein expression was analyzed by immuno- histochemistry in a large cohort of patients (n = 207), and high protein expression levels were found to be strongly correlated with 17q gain, metastatic dissemination, and inferior overall and progression-free survival. In vitro experiments in medulloblastoma cell lines showed a strong reduction of cell migration, increased adhesion, and decreased proliferation upon LASP1 knockdown by small interfering RNA–mediated silencing, further indicating a functional role for LASP1 in the progression and metastatic dissemination of medullo- blastoma.
    [Show full text]
  • The Role of Non-Coding Rnas in Uveal Melanoma
    cancers Review The Role of Non-Coding RNAs in Uveal Melanoma Manuel Bande 1,2,*, Daniel Fernandez-Diaz 1,2, Beatriz Fernandez-Marta 1, Cristina Rodriguez-Vidal 3, Nerea Lago-Baameiro 4, Paula Silva-Rodríguez 2,5, Laura Paniagua 6, María José Blanco-Teijeiro 1,2, María Pardo 2,4 and Antonio Piñeiro 1,2 1 Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; [email protected] (D.F.-D.); [email protected] (B.F.-M.); [email protected] (M.J.B.-T.); [email protected] (A.P.) 2 Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; [email protected] (P.S.-R.); [email protected] (M.P.) 3 Department of Ophthalmology, University Hospital of Cruces, Cruces Plaza, S/N, 48903 Barakaldo, Vizcaya, Spain; [email protected] 4 Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; [email protected] 5 Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, 15706 Santiago de Compostela, Spain 6 Department of Ophthalmology, University Hospital of Coruña, Praza Parrote, S/N, 15006 La Coruña, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-981951756; Fax: +34-981956189 Received: 13 September 2020; Accepted: 9 October 2020; Published: 12 October 2020 Simple Summary: The development of uveal melanoma is a multifactorial and multi-step process, in which abnormal gene expression plays a key role.
    [Show full text]
  • Phosphorylation-Dependent Differences in CXCR4-LASP1
    cells Article Phosphorylation-Dependent Differences in CXCR4-LASP1-AKT1 Interaction between Breast Cancer and Chronic Myeloid Leukemia Elke Butt 1,*, Katrin Stempfle 1, Lorenz Lister 1, Felix Wolf 1,2, Marcella Kraft 1, Andreas B. Herrmann 1 , Cristina Perpina Viciano 2,3, Christian Weber 4,5,6 , Andreas Hochhaus 7, Thomas Ernst 7, Carsten Hoffmann 2,3, Alma Zernecke 1 and Jochen J. Frietsch 7 1 Institute of Experimental Biomedicine, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany; katrin.stempfl[email protected] (K.S.); [email protected] (L.L.); [email protected] (F.W.); [email protected] (M.K.); [email protected] (A.B.H.); [email protected] (A.Z.) 2 Institute of Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany; [email protected] (C.P.V.); Carsten.Hoff[email protected] (C.H.) 3 Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 5, 97080 Wuerzburg, Germany 4 Institute for Cardiovascular Prevention, LMU Munich, 80336 Munich, Germany; ipek.offi[email protected] 5 Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, 6229 ER Maastricht, The Netherlands 6 DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany 7 Klinik für Innere Medizin II, Abteilung für Hämatologie und internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany; [email protected] (A.H.); [email protected] (T.E.); [email protected] (J.J.F.) * Correspondence: [email protected] Received: 3 December 2019; Accepted: 11 February 2020; Published: 14 February 2020 Abstract: The serine/threonine protein kinase AKT1 is a downstream target of the chemokine receptor 4 (CXCR4), and both proteins play a central role in the modulation of diverse cellular processes, including proliferation and cell survival.
    [Show full text]
  • Nck Adapter Proteins: Functional Versatility in T Cells Marcus Lettau, Jennifer Pieper and Ottmar Janssen
    Cell Communication and Signaling BioMed Central Review Open Access Nck adapter proteins: functional versatility in T cells Marcus Lettau, Jennifer Pieper and Ottmar Janssen Address: 1University Hospital Schleswig-Holstein Campus Kiel, Institute of Immunology, Molecular Immunology, Arnold-Heller-Str 3, Bldg 17, D-24105 Kiel, Germany E-mail: Marcus Lettau* - [email protected]; Jennifer Pieper - [email protected]; Ottmar Janssen - [email protected] *Corresponding author Published: 02 February 2009 Received: 2 December 2008 Cell Communication and Signaling 2009, 7:1 doi: 10.1186/1478-811X-7-1 Accepted: 2 February 2009 This article is available from: http://www.biosignaling.com/content/7/1/1 © 2009 Lettau et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and differ in only few amino acids that are mostly located in the linker regions between the interaction modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell polarisation and migration and plays a crucial role in the signal transduction of a variety of receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2 domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while SH3domaininteractionsleadtotheformationoflargerproteincomplexes.InTlymphocytes,Nck plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton and the formation of the immunological synapse.
    [Show full text]
  • Buy Viagra Brand
    A Canonical Cancer-Network Map Eugene F. Douglass Jr., Ph.D. ;<=:>&'? Cell-Surface Interactions @@@JJ; Growth Receptor Signalling Cell-ECM Growth/Motility Proliferation Cell-Cell Contact Inhibition Metabolism MMP COLONIC CRYPT IGF/IGFR-1 EGFR / ErbB WNT ! WNT ! WNT WNT Integrin WNT RAS must be held near PI3K to activate it 5 CAD-domains Signalosome R-spdn p.195 GTP RAS PTEN NF1 SOS PLC PIP3 E-cadherin SHC PIP RASGAP GRB2 2 ZNRF3 p120 p120 " p120 p120 p120 p120 FZD Akt PDK1 PH JM Src-dep Y845 STAT3 GDP GTP Y974 F-actin PI3K PTB SHC/SHP2 GRB2 LRP Assembly vincilin talin PI3K Integrin-Linked Kinase(ILK) Y981 RAS RAS LGR RNF43 NCK2 ! ! ! ARP2/3 FAK Y988 FAK 2 min PINCH SOCS3 C hevell Akt KD s e paxilin SOS i d PDK1 Src IRS1 ! ! ! d paxilin Src (PKB) internlz AP2 RSU1 Y1015 ½ HIC5 ! t PI3K Y460 SOCS1/6 Y992 PLC" Parvin Src TESK1 PI3K Y546 SHIP2 GTP p130Cas CRK CSG ubiq axin PAK1 Y1091 Y1045 CBL S46-7 RAF-1 KSR DOCK180 SOS PI3K Y608 S1057 = GSK3 PI3K Y628 Y1127 Y1068 GRB2 14-3-3 14-3-3 PI3K Y658 GRB2 Y1086 B-RAF C-RAF GSK RHEB PI3K Y690 RASGAP 9 Wtx mTOR1 Y1163 Y1101 Gab1 Apc PI3K Y727 Y1167 PI3K Y759 RASGAP Y1168 MAPK Rac GTP Y1148 SHC GRB2 p120 p120 Y815 SHIP2 RhoGEF RalGEF p70-S6K Y1215 ! ! Y1175 SOS GTP Y891 phos SHP1 Cdc42 Y903 SHIP2 Y1253 SHP2 GRB2 ! ! PTP1 MKK1/2 PI3K Y935 Wtx GTP CT ! Rho PI3K Y983 SHIP2 Y1282 GRB2 SHP2 Y1006 Y1283 RalBP1 RalA/B GTP MP1 axin PI3K Y1352 PI3K Erk1/2 GSK3 Sprouty Apc MKP1 GTP GRB2 SHP2 Y1173 Rac 1.
    [Show full text]
  • Transcriptome Analysis of Newt Lens Regeneration Reveals Distinct Gradients in Gene Expression Patterns
    Transcriptome Analysis of Newt Lens Regeneration Reveals Distinct Gradients in Gene Expression Patterns Konstantinos Sousounis1., Mario Looso2., Nobuyasu Maki1¤, Clifford J. Ivester1, Thomas Braun3*, Panagiotis A. Tsonis1* 1 Department of Biology and Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America, 2 Department of Bioinformatics, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany, 3 Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany Abstract Regeneration of the lens in newts is quite a unique process. The lens is removed in its entirety and regeneration ensues from the pigment epithelial cells of the dorsal iris via transdifferentiation. The same type of cells from the ventral iris are not capable of regenerating a lens. It is, thus, expected that differences between dorsal and ventral iris during the process of regeneration might provide important clues pertaining to the mechanism of regeneration. In this paper, we employed next generation RNA-seq to determine gene expression patterns during lens regeneration in Notophthalmus viridescens. The expression of more than 38,000 transcripts was compared between dorsal and ventral iris. Although very few genes were found to be dorsal- or ventral-specific, certain groups of genes were up-regulated specifically in the dorsal iris. These genes are involved in cell cycle, gene regulation, cytoskeleton and immune response. In addition, the expression of six highly regulated genes, TBX5, FGF10, UNC5B, VAX2, NR2F5, and NTN1, was verified using qRT-PCR. These graded gene expression patterns provide insight into the mechanism of lens regeneration, the markers that are specific to dorsal or ventral iris, and layout a map for future studies in the field.
    [Show full text]
  • Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks
    Proteomic shifts in embryonic stem cells with gene dose modifications suggest the presence of balancer proteins in protein regulatory networks. Lei Mao, Claus Zabel, Marion Herrmann, Tobias Nolden, Florian Mertes, Laetitia Magnol, Caroline Chabert, Daniela Hartl, Yann Herault, Jean Maurice Delabar, et al. To cite this version: Lei Mao, Claus Zabel, Marion Herrmann, Tobias Nolden, Florian Mertes, et al.. Proteomic shifts in embryonic stem cells with gene dose modifications suggest the presence of balancer proteins in protein regulatory networks.. PLoS ONE, Public Library of Science, 2007, 2 (11), pp.e1218. 10.1371/jour- nal.pone.0001218. hal-00408296 HAL Id: hal-00408296 https://hal.archives-ouvertes.fr/hal-00408296 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks Lei Mao1,2*, Claus Zabel1, Marion Herrmann1, Tobias Nolden2, Florian Mertes2, Laetitia Magnol3, Caroline Chabert4, Daniela
    [Show full text]
  • Regulation of the Stability of the Protein Kinase DYRK1A: Establishing Connections with the Wnt Signaling Pathway
    Regulation of the stability of the protein kinase DYRK1A: establishing connections with the Wnt signaling pathway Krisztina Arató TESI DOCTORAL UPF / 2010 Barcelona, November 2010 Regulation of the stability of the protein kinase DYRK1A: establishing connections with the Wnt signaling pathway Krisztina Arató Memòria presentada per optar al grau de Doctora per la Universitat Pompeu Fabra. Aquesta tesi ha estat realitzada sota la direcció de la Dra. Susana de la Luna al Centre de Regulació Genòmica (CRG, Barcelona), dins del Programa de Genes i Malaltia. Krisztina Arató Susana de la Luna A Pere, por haberme traído a Barcelona… Cover design by Luisa Lente (www.yoyo.es). Index Page Abstract/Resumen.................................................................................. 1 Introduction............................................................................................. 5 The protein kinase DYRK1A................................................................ 7 The DYRK family of protein ....................................................... 7 Structure and mechanism of activation of DYRK1A kinase........ 8 Regulation of DYRK1A expression ............................................ 10 Regulation of DYRK1A subcellular localization.......................... 11 Regulation of DYRK1A activity................................................... 13 DYRK1A as a regulator of signaling pathways........................... 14 The Notch signaling pathway........................................... 16 Receptor tyrosine kinase signaling.................................
    [Show full text]
  • The Energy Status of Astrocytes Is the Achilles' Heel of Eif2b
    cells Article The Energy Status of Astrocytes Is the Achilles’ Heel of eIF2B-Leukodystrophy Melisa Herrero 1, Maron Daw 1, Andrea Atzmon 1 and Orna Elroy-Stein 1,2,* 1 Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; [email protected] (M.H.); [email protected] (M.D.); [email protected] (A.A.) 2 Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel * Correspondence: [email protected] Abstract: Translation initiation factor 2B (eIF2B) is a master regulator of global protein synthesis in all cell types. The mild genetic Eif2b5(R132H) mutation causes a slight reduction in eIF2B enzymatic activity which leads to abnormal composition of mitochondrial electron transfer chain complexes and impaired oxidative phosphorylation. Previous work using primary fibroblasts isolated from Eif2b5(R132H/R132H) mice revealed that owing to increased mitochondrial biogenesis they exhibit normal cellular ATP level. In contrast to fibroblasts, here we show that primary astrocytes isolated from Eif2b5(R132H/R132H) mice are unable to compensate for their metabolic impairment and exhibit chronic state of low ATP level regardless of extensive adaptation efforts. Mutant astrocytes are hypersensitive to oxidative stress and to further energy stress. Moreover, they show migration deficit upon exposure to glucose starvation. The mutation in Eif2b5 prompts reactive oxygen species (ROS)-mediated inferior ability to stimulate the AMP-activated protein kinase (AMPK) axis, due to a requirement to increase the mammalian target of rapamycin complex-1 (mTORC1) Citation: Herrero, M.; Daw, M.; signalling in order to enable oxidative glycolysis and generation of specific subclass of ROS-regulating Atzmon, A.; Elroy-Stein, O.
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]