Microrna-203 Inhibits Invasion and Induces Apoptosis of Laryngeal Cancer Cells Via Targeting LASP1

Total Page:16

File Type:pdf, Size:1020Kb

Microrna-203 Inhibits Invasion and Induces Apoptosis of Laryngeal Cancer Cells Via Targeting LASP1 European Review for Medical and Pharmacological Sciences 2018; 22: 6350-6357 MicroRNA-203 inhibits invasion and induces apoptosis of laryngeal cancer cells via targeting LASP1 J. TAN, Y.-Y. JING, L. HAN, H.-W. ZHENG, J.-X. SHEN, L.-H. ZHANG, L.-S. YU Department of Otorhinolaryngology and Head and Neck Surgery, Peking University People’s Hospital, Beijing, China Abstract. – OBJECTIVE: To explore the role Introduction of microRNA-203 in laryngeal cancer and its un- derlying mechanism in regulating cell invasion Head and neck neoplasms rank sixth in the in- and apoptosis. cidence of all cancers that severely endanger hu- PATIENTS AND METHODS: MicroRNA-203 man health. As a kind of common head and neck expression in laryngeal cancer tissues and paracancerous tissues was detected by quanti- neoplasms, laryngeal cancer ranks second in the tative real time-polymerase chain reaction (qRT- incidence of respiratory tract tumors. Based on PCR). The regulatory effects of microRNA-203 the pathological types of laryngeal cancer, squa- on the invasion and apoptosis of laryngeal can- mous cell carcinomas are the most common ones cer cells were detected by transwell assay and in clinical patients1. Although the diagnosis and flow cytometry, respectively. Dual-Luciferase re- treatment for laryngeal cancer have been greatly porter gene assay was performed to access the advanced, the 5-year survival is still unsatisfacto- binding condition of microRNA-203 and LASP1. ry due to the frequent recurrence and lymph node Both mRNA and protein levels of LASP1 in la- 2 ryngeal cancer cells were detected after trans- metastasis . The potential pathogenic factors of fection with microRNA-203 mimic or microR- laryngeal cancer include smoking, alcohol, air NA-203 inhibitor by qRT-PCR and Western blot, pollution, occupational factors, etc.3. It is report- respectively. Rescue experiments were finally ed that some certain oncogenes (such as bcl-2, performed to detect whether microRNA-203 reg- c-myc, etc.) and tumor-suppressor genes (such as ulates laryngeal cancer development via target- p53, Rb, p16, p21, etc.) are involved in the occur- ing LASP1. 4 RESULTS: MicroRNA-203 was lowly expressed rence and development of laryngeal cancer . The in laryngeal cancer tissues and cell lines. Mi- specific mechanism of laryngeal cancer has not croRNA-203 knockdown in Hep-2 cells can pro- been fully elucidated and is required for further mote the invasion and inhibit the apoptosis of la- in-depth investigations5. ryngeal cancer cells. Subsequently, LASP1 was MicroRNA is a type of non-coding RNAs with predicted to be the target gene of microRNA-203, approximately 19-25 nt in length. It degrades which was further verified by the Dual-Lucifer- mRNA level or inhibits the translation of the ase reporter gene assay. LASP1 expression was negatively regulated by microRNA-203. Further- target gene by pairing with the 3’UTR of target 6 more, rescue experiments showed that the reg- gene . MicroRNA exerts diverse functions in ulatory effects of microRNA-203 on the invasion cell proliferation, differentiation, apoptosis and and apoptosis of laryngeal cancer cells were re- migration7,8. Recent studies have suggested that versed by LASP1. microRNAs could be served as oncogenes or CONCLUSIONS: We showed that lowly ex- tumor-suppressor genes, and are involved in on- pressed microRNA-203 could promote the inva- 9 sion and inhibit apoptosis of laryngeal cancer cogenesis, tumor cell invasion and angiogenesis . cells via inhibiting LASP1. Some certain microRNAs have been served as biomarkers and therapeutic targets of laryngeal cancer10,11. For example, microRNA-203 is lowly Key Words: expressed in laryngeal cancer tissues12. The spe- MicroRNA-203, Laryngeal carcinoma, Cell invasion, Apoptosis, LASP1. cific role of microRNA-203 in laryngeal cancer still needs to be comprehensively studied. 6350 Corresponding Author: Lisheng Yu, MD; e-mail: [email protected] MicroRNA-203 inhibits invasion and induces apoptosis of laryngeal cancer cells This study aims at exploring the regulatory ef- in the study were as follows: MicroRNA-203, fect of microRNA-203 on invasion and apoptosis F: 5’-GTGAAATGTTTAGGACCACTAGAA-3’, of laryngeal cancer cells, as well as its underlying R: 5’-GCTGTCAACGATACGCTACGT-3’; U6, mechanism. F: 5’-CGCTTCGGCAGCACATATAC-3’, R: 5’-TTCACGAATTTGCGTGTCAT-3’; GAPDH, F: 5’-GGAATCCACTGGCGTCTTCA-3’, R: Patients and Methods 5’-GGTTCACGCCCATCACAAAC-3’; LASP1, F: 5’-TGCGGCAAGATCGTGTATCC-3’, R: Sample Collection 5’-GCAGTAGGGCTTCTTCTCGTAG-3’. Laryngeal cancer tissues and paracancerous tissues were surgically resected from laryngeal Cell Apoptosis Detection cancer patients treated in our hospital. Tissues Hep-2 cells were washed with phosphate-buff- were immediately preserved in liquid nitrogen ered saline (PBS), digested with trypsin and for the following experiments. Enrolled patients centrifuged at 1000 rpm/min for 5 min. After were pathologically diagnosed as laryngeal can- washing with pre-cooled PBS twice, cells were cer and informed consent has been signed. This resuspended in PBS at a density of 1×105/mL. study was approved by the Ethics Committee of Subsequently, 1 μL of propidium iodide (PI) and Peking University People’s Hospital. 5 μl of Annexin V-fluorescein isothiocyanate (FITC) were added in 100 μL of cell suspension, Cell Culture followed by incubation at room temperature in M2E, TU212, Hep-2, and M4E cells were cul- the dark for 15 min. Finally, cell apoptosis was tured in Roswell Park Memorial Institute-1640 analyzed by flow cytometry (Partec AG, Ar- (RPMI-1640; Gibco, Grand Island, NY, USA, lesheim, Switzerland). USA) containing 10% fetal bovine serum (FBS), 100 U/mL penicillin and 100 μg/mL streptomy- Transwell Assay cin (Hyclone, South Logan, UT, USA). Cells were Transwell chamber was pre-coated with 1 mg/ incubated in a 5% CO2 incubator at 37°C. mL Matrigel at 37°C for 3-5 h. Cells were ad- justed at a density of 2×105/mL. 100 μL of cell Cell Transfection suspension and 600 μL of culture medium con- Cells in logarithmic growth phase were taining 10% FBS was added in the upper and seeded in the 6-well plates and transfected lower chamber, respectively. 24 h later, non-ad- with microRNA-203 mimics, microRNA-203 herent cells were cleaned. Cells were fixed with inhibitor, pcDNA-LASP1 or negative control formaldehyde for 30 min and stained with violet following the instructions of Lipofectamine crystal for 15-30 min. Finally, penetrating cells 2000 (Invitrogen, Carlsbad, CA, USA). Trans- were observed and captured under a microscope. fection plasmids were provided by GenePhar- ma (Shanghai, China). Culture medium was Western Blot replaced 4-6 h later. The RIPA (radioimmunoprecipitation assay) protein lysate (Beyotime, Shanghai, China) was RNA Extraction and Quantitative used to extract the total protein in each group Real Time-Polymerase Chain Reaction of cells and tissues. The BCA (bicinchoninic (qRT-PCR) acid) method was performed to quantify the Total RNA in tissues was extracted using protein concentration. Protein samples were elec- TRIzol method (Invitrogen, Carlsbad, CA, USA) trophoresed on polyacrylamide gels and then for reverse transcription according to the instruc- transferred to polyvinylidene difluoride (PVDF) tions of PrimeScript RT reagent Kit (TaKaRa, membranes (Merck Millipore, Billerica, MA, Otsu, Shiga, Japan). RNA concentration was de- USA). After blocking with 5% skimmed milk, tected using a spectrometer and those samples the membranes were incubated with primary an- with A260/A280 ratio of 1.8-2.0 were selected tibody (LASP1, Cell Signaling Technology, Dan- for the following qRT-PCR reaction. QRT-PCR vers, MA, USA) at 4°C overnight. The membrane was then performed based on the instructions of was incubated with the secondary antibody after SYBR Premix Ex Taq TM (TaKaRa, Otsu, Shiga, rinsing with Tris-buffered saline and Tween 20 Japan) at 94°C for 15 s, 55°C for 30 s, and 72°C (TBST). Chemiluminescence was used to expose for 30 s, for a total of 40 cycles. Primers used the protein bands on the membrane. 6351 J. Tan, Y.-Y. Jing, L. Han, H.-W. Zheng, J.-X. Shen, L.-H. Zhang, L.-S. Yu Dual-Luciferase Reporter Gene Assay Results Wild-type and mutant-type LASP1 were con- structed. Cells were co-transfected with microR- MicroRNA-203 Was Lowly Expressed NA-203 mimics or negative control and wild-type in Laryngeal Cancer or mutant-type LASP1, respectively. Luciferase We detected the expression level of microR- activity was detected according to the instruc- NA-203 in laryngeal cancer tissues and cor- tions of Dual-Luciferase detection kit (Promega, responding paracancerous tissues by qRT-PCR. Madison, WI, USA). The results showed that microRNA-203 was low- ly expressed in laryngeal cancer tissues com- pared with that of paracancerous tissues (Figure Statistical Analysis 1A). Similarly, microRNA-203 expression was Statistical Product and Service Solutions SPSS also downregulated in laryngeal cancer cell lines 20.0 statistical software (IBM, Armonk, NY, (LL212, M2E, Hep-2, and M4E) compared with USA) was used for data analysis. Measurement that of controls (Figure 2B). Hep-2 cells were se- data were expressed as mean ± standard deviation lected for subsequent experiments. To further de- (x– ± s) and compared using the t-test. p < 0.05 was velop the specific mechanism of microRNA-203 considered statistically significant. in regulating the laryngeal cancer development, Figure 1. MicroRNA-203 was lowly expressed in laryngeal cancer. A, MicroRNA-203 was lowly expressed in laryngeal cancer tissues compared with that of paracancerous tissues. B, MicroRNA-203 was downregulated in laryngeal cancer cell lines (LL212, M2E, Hep-2, and M4E) compared with that of controls. C, D, Transfection efficacies of microRNA-203 mimic and microRNA-203 inhibitor in Hep-2 cells were verified by qRT-PCR. 6352 MicroRNA-203 inhibits invasion and induces apoptosis of laryngeal cancer cells microRNA-203 mimic and microRNA-203 in- Hep-2 cells, manifesting as a lower amount of hibitor were constructed.
Recommended publications
  • (LASP1) in the Metastatic Dissemination of Medulloblastoma
    Published OnlineFirst October 5, 2010; DOI: 10.1158/0008-5472.CAN-10-0592 Published OnlineFirst on October 5, 2010 as 10.1158/0008-5472.CAN-10-0592 Therapeutics, Targets, and Chemical Biology Cancer Research Role of LIM and SH3 Protein 1 (LASP1) in the Metastatic Dissemination of Medulloblastoma Christopher Traenka1, Marc Remke2,5, Andrey Korshunov4,6, Sebastian Bender2,5, Thomas Hielscher3, Paul A. Northcott7, Hendrik Witt2,5, Marina Ryzhova8, Jörg Felsberg9, Axel Benner3, Stephanie Riester2, Wolfram Scheurlen10, Thomas G.P. Grunewald11, Andreas von Deimling6, Andreas E. Kulozik5, Guido Reifenberger9, Michael D. Taylor7, Peter Lichter2, Elke Butt1, and Stefan M. Pfister2,5 Abstract Medulloblastoma is the most common malignant pediatric brain tumor and is one of the leading causes of cancer-related mortality in children. Treatment failure mainly occurs in children harboring metastatic tumors, which typically carry an isochromosome 17 or gain of 17q, a common hallmark of intermediate and high-risk medulloblastoma. Through mRNA expression profiling, we identified LIM and SH3 protein 1 (LASP1) as one of the most upregulated genes on chromosome 17q in tumors with 17q gain. In an independent validation cohort of 101 medulloblastoma samples, the abundance of LASP1 mRNA was significantly associated with 17q gain, metastatic dissemination, and unfavorable outcome. LASP1 protein expression was analyzed by immuno- histochemistry in a large cohort of patients (n = 207), and high protein expression levels were found to be strongly correlated with 17q gain, metastatic dissemination, and inferior overall and progression-free survival. In vitro experiments in medulloblastoma cell lines showed a strong reduction of cell migration, increased adhesion, and decreased proliferation upon LASP1 knockdown by small interfering RNA–mediated silencing, further indicating a functional role for LASP1 in the progression and metastatic dissemination of medullo- blastoma.
    [Show full text]
  • A Dissertation Entitled Characterization of the CXCR4
    A Dissertation entitled Characterization of the CXCR4-LASP1-eIF4F Axis in Triple-Negative Breast Cancer by Cory M Howard Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences ___________________________________________ Dayanidhi Raman, B.V.Sc., Ph.D., Committee Chair ___________________________________________ Amit Tiwari, Ph.D., Committee Member ___________________________________________ Ritu Chakravarti, Ph.D., Committee Member ___________________________________________ Nagalakshmi Nadiminty, Ph.D., Committee Member ___________________________________________ Saori Furuta, Ph.D., Committee Member ___________________________________________ Shi-He Liu, M.D., Committee Member ___________________________________________ Amanda C. Bryant-Friedrich, Ph.D., Dean College of Graduate Studies The University of Toledo August 2020 © 2020 Cory M. Howard This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Characterization of the CXCR4-LASP1-eIF4F Axis in Triple-Negative Breast Cancer by Cory M. Howard Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences The University of Toledo August 2020 Triple-negative breast cancer (TNBC) remains clinically challenging as effective targeted therapies are still lacking. In addition, patient mortality mainly results from the metastasized
    [Show full text]
  • The Role of Non-Coding Rnas in Uveal Melanoma
    cancers Review The Role of Non-Coding RNAs in Uveal Melanoma Manuel Bande 1,2,*, Daniel Fernandez-Diaz 1,2, Beatriz Fernandez-Marta 1, Cristina Rodriguez-Vidal 3, Nerea Lago-Baameiro 4, Paula Silva-Rodríguez 2,5, Laura Paniagua 6, María José Blanco-Teijeiro 1,2, María Pardo 2,4 and Antonio Piñeiro 1,2 1 Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; [email protected] (D.F.-D.); [email protected] (B.F.-M.); [email protected] (M.J.B.-T.); [email protected] (A.P.) 2 Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; [email protected] (P.S.-R.); [email protected] (M.P.) 3 Department of Ophthalmology, University Hospital of Cruces, Cruces Plaza, S/N, 48903 Barakaldo, Vizcaya, Spain; [email protected] 4 Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; [email protected] 5 Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, 15706 Santiago de Compostela, Spain 6 Department of Ophthalmology, University Hospital of Coruña, Praza Parrote, S/N, 15006 La Coruña, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-981951756; Fax: +34-981956189 Received: 13 September 2020; Accepted: 9 October 2020; Published: 12 October 2020 Simple Summary: The development of uveal melanoma is a multifactorial and multi-step process, in which abnormal gene expression plays a key role.
    [Show full text]
  • Phosphorylation-Dependent Differences in CXCR4-LASP1
    cells Article Phosphorylation-Dependent Differences in CXCR4-LASP1-AKT1 Interaction between Breast Cancer and Chronic Myeloid Leukemia Elke Butt 1,*, Katrin Stempfle 1, Lorenz Lister 1, Felix Wolf 1,2, Marcella Kraft 1, Andreas B. Herrmann 1 , Cristina Perpina Viciano 2,3, Christian Weber 4,5,6 , Andreas Hochhaus 7, Thomas Ernst 7, Carsten Hoffmann 2,3, Alma Zernecke 1 and Jochen J. Frietsch 7 1 Institute of Experimental Biomedicine, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany; katrin.stempfl[email protected] (K.S.); [email protected] (L.L.); [email protected] (F.W.); [email protected] (M.K.); [email protected] (A.B.H.); [email protected] (A.Z.) 2 Institute of Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany; [email protected] (C.P.V.); Carsten.Hoff[email protected] (C.H.) 3 Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 5, 97080 Wuerzburg, Germany 4 Institute for Cardiovascular Prevention, LMU Munich, 80336 Munich, Germany; ipek.offi[email protected] 5 Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, 6229 ER Maastricht, The Netherlands 6 DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany 7 Klinik für Innere Medizin II, Abteilung für Hämatologie und internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany; [email protected] (A.H.); [email protected] (T.E.); [email protected] (J.J.F.) * Correspondence: [email protected] Received: 3 December 2019; Accepted: 11 February 2020; Published: 14 February 2020 Abstract: The serine/threonine protein kinase AKT1 is a downstream target of the chemokine receptor 4 (CXCR4), and both proteins play a central role in the modulation of diverse cellular processes, including proliferation and cell survival.
    [Show full text]
  • Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks
    Proteomic shifts in embryonic stem cells with gene dose modifications suggest the presence of balancer proteins in protein regulatory networks. Lei Mao, Claus Zabel, Marion Herrmann, Tobias Nolden, Florian Mertes, Laetitia Magnol, Caroline Chabert, Daniela Hartl, Yann Herault, Jean Maurice Delabar, et al. To cite this version: Lei Mao, Claus Zabel, Marion Herrmann, Tobias Nolden, Florian Mertes, et al.. Proteomic shifts in embryonic stem cells with gene dose modifications suggest the presence of balancer proteins in protein regulatory networks.. PLoS ONE, Public Library of Science, 2007, 2 (11), pp.e1218. 10.1371/jour- nal.pone.0001218. hal-00408296 HAL Id: hal-00408296 https://hal.archives-ouvertes.fr/hal-00408296 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks Lei Mao1,2*, Claus Zabel1, Marion Herrmann1, Tobias Nolden2, Florian Mertes2, Laetitia Magnol3, Caroline Chabert4, Daniela
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]
  • A Chromosome-Centric Human Proteome Project (C-HPP) To
    computational proteomics Laboratory for Computational Proteomics www.FenyoLab.org E-mail: [email protected] Facebook: NYUMC Computational Proteomics Laboratory Twitter: @CompProteomics Perspective pubs.acs.org/jpr A Chromosome-centric Human Proteome Project (C-HPP) to Characterize the Sets of Proteins Encoded in Chromosome 17 † ‡ § ∥ ‡ ⊥ Suli Liu, Hogune Im, Amos Bairoch, Massimo Cristofanilli, Rui Chen, Eric W. Deutsch, # ¶ △ ● § † Stephen Dalton, David Fenyo, Susan Fanayan,$ Chris Gates, , Pascale Gaudet, Marina Hincapie, ○ ■ △ ⬡ ‡ ⊥ ⬢ Samir Hanash, Hoguen Kim, Seul-Ki Jeong, Emma Lundberg, George Mias, Rajasree Menon, , ∥ □ △ # ⬡ ▲ † Zhaomei Mu, Edouard Nice, Young-Ki Paik, , Mathias Uhlen, Lance Wells, Shiaw-Lin Wu, † † † ‡ ⊥ ⬢ ⬡ Fangfei Yan, Fan Zhang, Yue Zhang, Michael Snyder, Gilbert S. Omenn, , Ronald C. Beavis, † # and William S. Hancock*, ,$, † Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States ‡ Stanford University, Palo Alto, California, United States § Swiss Institute of Bioinformatics (SIB) and University of Geneva, Geneva, Switzerland ∥ Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States ⊥ Institute for System Biology, Seattle, Washington, United States ¶ School of Medicine, New York University, New York, United States $Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia ○ MD Anderson Cancer Center, Houston, Texas, United States ■ Yonsei University College of Medicine, Yonsei University,
    [Show full text]
  • LASP1 Polyclonal Antibody
    LASP1 polyclonal antibody Catalog # : PAB6082 規格 : [ 100 ug ] List All Specification Application Image Product Goat polyclonal antibody raised against synthetic peptide of LASP1. Western Blot (Tissue lysate) Description: Immunogen: A synthetic peptide corresponding to human LASP1. Sequence: NPNCARCGKIVYP enlarge Host: Goat ELISA Theoretical MW 29.7 (kDa): Reactivity: Human Form: Liquid Purification: Antigen affinity purification Concentration: 0.5 mg/mL Quality Control Antibody Reactive Against Synthetic Peptide. Testing: Recommend ELISA (1:128000) Usage: Western Blot (0.1-0.3 ug/mL) The optimal working dilution should be determined by the end user. Storage Buffer: In Tris saline, pH 7.3 (0.5% BSA, 0.02% sodium azide) Storage Store at -20°C. Instruction: Aliquot to avoid repeated freezing and thawing. Note: This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only. Datasheet: Download Publication Reference 1. Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. Li K, Hornshaw MP, van Minnen J, Smalla KH, Gundelfinger ED, Smit AB.J Proteome Res. 2005 May-Jun;4(3):725-33. Applications Western Blot (Tissue lysate) Page 1 of 2 2017/2/16 LASP1 polyclonal antibody (Cat # PAB6082) staining (0.1 ug/mL) of human brain (cerebellum) extracts (RIPA buffer, 35 ug total protein per lane). Primary incubated for 1 hour. Detected by western blot using chemiluminescence. ELISA Gene Information Entrez GeneID: 3927 Protein NP_006139.1 Accession#: Gene Name: LASP1 Gene Alias: Lasp-1,MLN50 Gene LIM and SH3 protein 1 Description: Omim ID: 602920 Gene Ontology: Hyperlink Gene Summary: This gene encodes a member of a LIM protein subfamily characterized by a LIM motif and a domain of Src homology region 3.
    [Show full text]
  • Gene Section Mini Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Mini Review LASP1 (LIM and SH3 protein) Sabine Strehl Children's Cancer Research Institute, Kinderspitalgasse 6, A-1090 Vienna, Austria (SS) Published in Atlas Database: August 2005 Online updated version: http://AtlasGeneticsOncology.org/Genes/Lasp1ID203.html DOI: 10.4267/2042/38246 This article is an update of: Rio MC. LASP1 (LIM, actin binding and SH3 protein). Atlas Genet Cytogenet Oncol Haematol.2000;4(2):51. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2005 Atlas of Genetics and Cytogenetics in Oncology and Haematology Identity Function LASP1 plays an important role in the regulation of Other names: MLN50, EVI149 dynamic actin-based, cytoskeletal activities and cell HGNC (Hugo): LASP1 motility. Agonist-dependent changes in LASP1 Location: 17q12-21 phosphorylation may also serve to regulate actin- associated ion transport activities, not only in the Local order: from centromere to telomere are: TRAF4 parietal cell but also in certain other F-actin-rich (alias MLN62/CART1), MLLT6 (alias AF17), LASP1, secretory epithelial cell types. Together, (LIM-) STARD3 (alias MLN64), ERBB2 (alias c-erbB2), and nebulette, Lasp-1, and zyxin may play an important RARA. role in the organization of focal adhesions. DNA/RNA Homology Description LASP family of proteins: actin-binding repeats similar to those in LASP1 are also present in other nebulin- LASP1 encompasses 51.65 kb on the genomic level related proteins such as NEBL (nebulette, 107 kD and consists of 7 exons. actin-binding Z-disk protein) and NRAP (nebulin- Transcription related anchoring protein); NRAP also contains an N- 3845 bp mRNA, 783 bp coding sequence.
    [Show full text]
  • Long Non‑Coding RNA H19 Regulates LASP1 Expression in Osteosarcoma by Competitively Binding to Mir‑29A‑3P
    ONCOLOGY REPORTS 46: 207, 2021 Long non‑coding RNA H19 regulates LASP1 expression in osteosarcoma by competitively binding to miR‑29a‑3p HAO JIN1, HUAN WANG1, XIN JIN2 and WENBO WANG1 Departments of 1Orthopaedics and 2Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China Received March 1, 2021; Accepted June 17, 2021 DOI: 10.3892/or.2021.8158 Abstract. A prevalent type of bone tumor, osteosarcoma (OS) and surgery, however the clinical prognostic rate has not been is prone to pulmonary metastasis, which results in a high relapse significantly improved by these therapies. It was previously risk and poor prognosis for patients. The progression of OS is reported that the primary explanation for the poor clinical significantly associated with the expression of long non‑coding prognosis of this disease is that the current treatment methods (lnc)RNA H19. To the best of our knowledge, however, the do not effectively inhibit distant metastasis; furthermore, drug exact molecular mechanism of this lncRNA has not been fully resistance and recurrence are commonly observed in patients investigated. The present study verified the effect of H19 on with OS (2). In addition, the pathogenesis of OS remains the proliferation and invasion of osteosarcoma cells via in vivo unclear. The rapid development of advanced molecular and in vitro experiments, including Cell Counting Kit‑8, biology methods as immunotherapy and targeted therapy has western blot, reverse transcription‑quantitative PCR, wound enabled the application of new technologies to investigate the healing and Transwell assays. H19 was found to be overex‑ pathogenesis of OS and provide novel therapeutic strategies pressed in OS compared with corresponding normal adjacent for this disease (3).
    [Show full text]
  • An Update on the LIM and SH3 Domain Protein 1 (LASP1): a Versatile Structural, Signaling, and Biomarker Protein
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 1 An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein Martin F. Orth1, Alex Cazes1, Elke Butt1 and Thomas G. P. Grunewald2 1 Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany 2 Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Thalkirchner Strasse, Munich, Germany Correspondence to: Thomas Grunewald, email: [email protected] Keywords: LASP1, cancer, biomarker, microRNA, nucleo-cytoplasmic Received: December 16, 2014 Accepted: December 28, 2014 Published: December 31, 2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker.
    [Show full text]
  • LASP1-S100A11 Axis Promotes Colorectal Cancer Aggressiveness
    www.nature.com/scientificreports OPEN LASP1-S100A11 axis promotes colorectal cancer aggressiveness by modulating TGFβ/Smad signaling Received: 12 January 2016 Ya Niu1,2,*, Ziyun Shao1,2,*, Hui Wang3,*, Jiaqi Yang2, Feifei Zhang2, Yuhao Luo2, Lijun Xu2, Accepted: 26 April 2016 Yanqing Ding1,2 & Liang Zhao1,2 Published: 16 May 2016 LIM and SH3 protein 1(LASP1) can promote colorectal cancer (CRC) progression and metastasis, but the mechanism remains unclear. Here, we show that LASP1 interacts with S100 calcium binding protein A11(S100A11) and enhances its expression in CRC. LASP1-S100A11 axis is essential for TGFβ-mediated epithelial-mesenchymal transition (EMT) and cell aggressive phenotype. Clinically, S100A11 is overexpressed in CRC tissues and localized in both the cytoplasm and the nucleus of CRC cells. Overexpression of S100A11 in cytoplasmic and nuclear subcellular compartments is associated with tumor metastasis and poor prognosis of CRC patients. Introduction of cytoplasmic and nuclear S100A11 promotes aggressive phenotypes of CRC cells in vitro as well as growth and metastasis of CRC xenografts, whereas suppressing S100A11 abrogates these effects. Furthermore, we identify flotillin-1 (FLOT1) and histone H1 as downstream factors for cytoplasmic and nuclear pathway of S100A11, which are required for LASP1-S100A11 axis-mediated EMT and CRC progression. These findings indicate S100A11, combined with LASP1, plays a critical role in promoting CRC metastasis via its subcellular effectors, FLOT1 and histone H1. Colorectal cancer (CRC) is one of the most common malignancies worldwide and the leading cause of cancer deaths1. Clinically, metastasis is still the main cause of mortalities2,3, yet there is lack of effective strategies for its management.
    [Show full text]