(LASP1) in the Metastatic Dissemination of Medulloblastoma

Total Page:16

File Type:pdf, Size:1020Kb

(LASP1) in the Metastatic Dissemination of Medulloblastoma Published OnlineFirst October 5, 2010; DOI: 10.1158/0008-5472.CAN-10-0592 Therapeutics, Targets, and Chemical Biology Cancer Research Role of LIM and SH3 Protein 1 (LASP1) in the Metastatic Dissemination of Medulloblastoma Christopher Traenka1, Marc Remke2,5, Andrey Korshunov4,6, Sebastian Bender2,5, Thomas Hielscher3, Paul A. Northcott7, Hendrik Witt2,5, Marina Ryzhova8, Jörg Felsberg9, Axel Benner3, Stephanie Riester2, Wolfram Scheurlen10, Thomas G.P. Grunewald11, Andreas von Deimling6, Andreas E. Kulozik5, Guido Reifenberger9, Michael D. Taylor7, Peter Lichter2, Elke Butt1, and Stefan M. Pfister2,5 Abstract Medulloblastoma is the most common malignant pediatric brain tumor and is one of the leading causes of cancer-related mortality in children. Treatment failure mainly occurs in children harboring metastatic tumors, which typically carry an isochromosome 17 or gain of 17q, a common hallmark of intermediate and high-risk medulloblastoma. Through mRNA expression profiling, we identified LIM and SH3 protein 1 (LASP1) as one of the most upregulated genes on chromosome 17q in tumors with 17q gain. In an independent validation cohort of 101 medulloblastoma samples, the abundance of LASP1 mRNA was significantly associated with 17q gain, metastatic dissemination, and unfavorable outcome. LASP1 protein expression was analyzed by immuno- histochemistry in a large cohort of patients (n = 207), and high protein expression levels were found to be strongly correlated with 17q gain, metastatic dissemination, and inferior overall and progression-free survival. In vitro experiments in medulloblastoma cell lines showed a strong reduction of cell migration, increased adhesion, and decreased proliferation upon LASP1 knockdown by small interfering RNA–mediated silencing, further indicating a functional role for LASP1 in the progression and metastatic dissemination of medullo- blastoma. Cancer Res; 70(20); 8003–14. ©2010 AACR. Introduction fluid cytology, is a powerful prognostic marker in medullo- blastoma (2, 3). Brain tumors and leukemias comprise the most common Molecular signaling pathways involved in the patho- cause of cancer-related mortality in children with medullo- genesis of standard-risk medulloblastoma such as the blastoma being the most common malignant brain tumor WNT and sonic hedgehog (SHH) signaling cascades are in this age group (1). The presence of leptomeningeal dissem- well-established (4–6), whereas the molecular biology ination at diagnosis detected either macroscopically by underlying intermediate and high-risk medulloblastoma craniospinal imaging or microscopically by cerebrospinal remains elusive. Aberrant activation of WNT signaling, typically caused by activating CTNNB1 mutations (and rarely APC or AXIN), followed by nuclear accumulation of CTNNB1 Authors' Affiliations: 1Institute of Clinical Biochemistry and Pathobiochemistry, protein as first described by Ellison and colleagues (7), is University of Wuerzburg, Wuerzburg, Germany; Divisions of 2Molecular now commonly accepted as the hallmark genetic event for Genetics and 3Biostatistics, 4Clinical Cooperation Unit Neuropathology, – German Cancer Research Center (DKFZ); Departments of 5Pediatric standard (or low) risk medulloblastoma (8 10). The WNT Oncology, Hematology & Immunology and 6Neuropathology, University subgroup of tumors may be cytogenetically identified by of Heidelberg, Heidelberg, Germany; 7Division of Neurosurgery, and Program the presence of monosomy 6, which is exclusively found in in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; 8NN Burdenko Neurosurgical Institute, Moscow, Russia; tumors of this subset (4, 6, 8, 11). A second distinct sub- 9Department of Neuropathology, Heinrich-Heine-University, Dusseldorf, group of standard-risk patients identified by transcriptome Germany; 10Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, – Nuremberg, Germany; and 11Department of Pediatrics and Childrens' studies (4 6) is molecularly characterized by aberrant SHH Cancer Research Center, Klinikum rechts der Isar, Technische Universität activation, and is typically driven by underlying mutations München, Munich, Germany in key regulators of the pathway such as PTCH1 or SUFU Note: Supplementary data for this article are available at Cancer Research (12–14). Collectively, these two subgroups account for ap- Online (http://cancerres.aacrjournals.org/). proximately 35% to 40% of medulloblastomas. Significantly, C. Traenka and M. Remke contributed equally to this work. these subgroups typically lack chromosome 17 aberrations Corresponding Authors: Elke Butt, Grombuehlstr. 12, D-97080 Wuerzburg, (4, 5), which however is the most frequent cytogenetic event Germany. Phone: 49-9313-293630; Fax: 49-9318-8883174; E-mail: butt@ – klin-biochem.uni-wuerzburg.de or Stefan M. Pfister, Im Neuenheimer Feld in medulloblastoma (11, 15 17). 280, D-69120 Heidelberg, Germany. Phone: 49-6221-424593; Fax: 49- DNA copy number aberrations of chromosome 17, includ- 6221-424639; E-mail: [email protected]. ing deletion of 17p and gain of 17q, are typically found in the doi: 10.1158/0008-5472.CAN-10-0592 presence of isochromosome 17q (i17q), the hallmark cyto- ©2010 American Association for Cancer Research. genetic abnormality of high-risk medulloblastoma (4, 5, 11). www.aacrjournals.org 8003 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2010 American Association for Cancer Research. Published OnlineFirst October 5, 2010; DOI: 10.1158/0008-5472.CAN-10-0592 Traenka et al. However, the driver gene(s) targeted by this cytogenetic Transcriptome analysis and microarray data analysis aberration remain unidentified. Expression profiling and microarray image analysis were We previously showed in a large cohort of patients carried out as outlined in Supplementary Materials and (n = 340) that isolated gain of chromosome 17q (without con- Methods. comitant loss of 17p as observed in i17q cases) is associated with a poor prognosis, whereas isolated 17p deletion is not cDNA synthesis and quantitative real-time PCR (11). We therefore decided to pursue the biological role of Oligo-d(t) primed cDNA synthesis of 1 μg total RNA was 17q gain in medulloblastoma. When investigating 28 pairs performed by using Superscript II Reverse Transcriptase of primary and recurrent tumors, we found that 5 out of 13 (Invitrogen) as described in the protocols of the manufacturer. tumors (38%), the primaries of which were characterized by a Each cDNA sample was analyzed in triplicate by quantitative balanced chromosome 17, showed acquired gain of 17q in real-time PCR on an ABI PRISM 7700 PCR System (Applied the relapsed tumors (18). These findings suggest that gain Biosystems) using ABsolute SYBR Green ROX Mix (ABgene) of chromosome 17q is a critically important aberration for according to the instructions of the manufacturer. Gene ex- medulloblastoma progression including metastatic dissemi- pression was normalized to three endogenous housekeeping nation in a large subset of these relapsed tumors. genes (SDHA, HPRT1,andLMNB1), which were constantly Prior attempts to identify medulloblastoma oncogenes in expressed in several expression experiments comparing sub- 17q have suggested ERBB2 (19), BIRC5 (20), and PPM1D (16). sets of primary medulloblastoma samples, medulloblastoma As none of these genes were highly ranked in our screening cell lines, and control tissues. Amplification of genomic DNA approach comparing medulloblastomas with 17q gain was excluded by intron-spanning primers and adequate test against 17q balanced tumors, we hypothesized that additional PCRs. Relative gene expression levels were calculated as candidate oncogenes in 17q should be considered. described by Pfaffl (27) with the adaptation of three used In the present study, we identified LASP1 as one of the most housekeeping genes. Primer sequences are available in differentially expressed and functionally relevant genes on 17q Supplementary Table S1. when comparing tumors with and without 17q copy number gains. The LIM and SH3 domain protein LASP1 (previously Fluorescence in situ hybridization named MLN50) was initially identified from a cDNA library Interphase fluorescence in situ hybridization analysis for of breast cancer metastases (21). LASP1 mRNA is detected chromosome 17 was performed on a medulloblastoma tissue ubiquitously at low basal levels in all normal human tissues microarray containing 207 tumor samples and 10 samples of (22), but the protein is highly overexpressed in more than nontumoral cerebellar tissues as controls (11). A commercial 55% of metastatic human breast cancer (23) and ovarian can- probe set delineating the loci of interest was used: 17p13.3/ cer (24). In a recent case control study, LASP1 expression in LIS1 (spectrum orange) and 17q21/RARA (spectrum green; mammary carcinomas correlated significantly with tumor size Vysis). Evaluation criteria and cutoffs were applied as and nodal positivity (25). The genomic locus of LASP1 at 17q12 described (11). is targeted by copy number gain or amplification in 20% to 30% of human breast cancers (26). Silencing of LASP1 by Immunohistochemistry RNA interference in various cell lines resulted in a strong A primary antibody to LASP1 (28) was applied at a concen- inhibition of cell migration and proliferation, with cell cycle tration of 10 μg/mL. Evaluation of immunostaining was per- arrest in G2-M phase (23, 24). These observations imply a dual formed in a semiquantitative manner and cases with clear function
Recommended publications
  • (LASP1) in the Metastatic Dissemination of Medulloblastoma
    Published OnlineFirst October 5, 2010; DOI: 10.1158/0008-5472.CAN-10-0592 Published OnlineFirst on October 5, 2010 as 10.1158/0008-5472.CAN-10-0592 Therapeutics, Targets, and Chemical Biology Cancer Research Role of LIM and SH3 Protein 1 (LASP1) in the Metastatic Dissemination of Medulloblastoma Christopher Traenka1, Marc Remke2,5, Andrey Korshunov4,6, Sebastian Bender2,5, Thomas Hielscher3, Paul A. Northcott7, Hendrik Witt2,5, Marina Ryzhova8, Jörg Felsberg9, Axel Benner3, Stephanie Riester2, Wolfram Scheurlen10, Thomas G.P. Grunewald11, Andreas von Deimling6, Andreas E. Kulozik5, Guido Reifenberger9, Michael D. Taylor7, Peter Lichter2, Elke Butt1, and Stefan M. Pfister2,5 Abstract Medulloblastoma is the most common malignant pediatric brain tumor and is one of the leading causes of cancer-related mortality in children. Treatment failure mainly occurs in children harboring metastatic tumors, which typically carry an isochromosome 17 or gain of 17q, a common hallmark of intermediate and high-risk medulloblastoma. Through mRNA expression profiling, we identified LIM and SH3 protein 1 (LASP1) as one of the most upregulated genes on chromosome 17q in tumors with 17q gain. In an independent validation cohort of 101 medulloblastoma samples, the abundance of LASP1 mRNA was significantly associated with 17q gain, metastatic dissemination, and unfavorable outcome. LASP1 protein expression was analyzed by immuno- histochemistry in a large cohort of patients (n = 207), and high protein expression levels were found to be strongly correlated with 17q gain, metastatic dissemination, and inferior overall and progression-free survival. In vitro experiments in medulloblastoma cell lines showed a strong reduction of cell migration, increased adhesion, and decreased proliferation upon LASP1 knockdown by small interfering RNA–mediated silencing, further indicating a functional role for LASP1 in the progression and metastatic dissemination of medullo- blastoma.
    [Show full text]
  • A Dissertation Entitled Characterization of the CXCR4
    A Dissertation entitled Characterization of the CXCR4-LASP1-eIF4F Axis in Triple-Negative Breast Cancer by Cory M Howard Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences ___________________________________________ Dayanidhi Raman, B.V.Sc., Ph.D., Committee Chair ___________________________________________ Amit Tiwari, Ph.D., Committee Member ___________________________________________ Ritu Chakravarti, Ph.D., Committee Member ___________________________________________ Nagalakshmi Nadiminty, Ph.D., Committee Member ___________________________________________ Saori Furuta, Ph.D., Committee Member ___________________________________________ Shi-He Liu, M.D., Committee Member ___________________________________________ Amanda C. Bryant-Friedrich, Ph.D., Dean College of Graduate Studies The University of Toledo August 2020 © 2020 Cory M. Howard This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Characterization of the CXCR4-LASP1-eIF4F Axis in Triple-Negative Breast Cancer by Cory M. Howard Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Doctor of Philosophy Degree in Biomedical Sciences The University of Toledo August 2020 Triple-negative breast cancer (TNBC) remains clinically challenging as effective targeted therapies are still lacking. In addition, patient mortality mainly results from the metastasized
    [Show full text]
  • The Role of Non-Coding Rnas in Uveal Melanoma
    cancers Review The Role of Non-Coding RNAs in Uveal Melanoma Manuel Bande 1,2,*, Daniel Fernandez-Diaz 1,2, Beatriz Fernandez-Marta 1, Cristina Rodriguez-Vidal 3, Nerea Lago-Baameiro 4, Paula Silva-Rodríguez 2,5, Laura Paniagua 6, María José Blanco-Teijeiro 1,2, María Pardo 2,4 and Antonio Piñeiro 1,2 1 Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, 15706 Santiago de Compostela, Spain; [email protected] (D.F.-D.); [email protected] (B.F.-M.); [email protected] (M.J.B.-T.); [email protected] (A.P.) 2 Tumores Intraoculares en el Adulto, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; [email protected] (P.S.-R.); [email protected] (M.P.) 3 Department of Ophthalmology, University Hospital of Cruces, Cruces Plaza, S/N, 48903 Barakaldo, Vizcaya, Spain; [email protected] 4 Grupo Obesidómica, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; [email protected] 5 Fundación Pública Galega de Medicina Xenómica, Clinical University Hospital, SERGAS, 15706 Santiago de Compostela, Spain 6 Department of Ophthalmology, University Hospital of Coruña, Praza Parrote, S/N, 15006 La Coruña, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-981951756; Fax: +34-981956189 Received: 13 September 2020; Accepted: 9 October 2020; Published: 12 October 2020 Simple Summary: The development of uveal melanoma is a multifactorial and multi-step process, in which abnormal gene expression plays a key role.
    [Show full text]
  • Phosphorylation-Dependent Differences in CXCR4-LASP1
    cells Article Phosphorylation-Dependent Differences in CXCR4-LASP1-AKT1 Interaction between Breast Cancer and Chronic Myeloid Leukemia Elke Butt 1,*, Katrin Stempfle 1, Lorenz Lister 1, Felix Wolf 1,2, Marcella Kraft 1, Andreas B. Herrmann 1 , Cristina Perpina Viciano 2,3, Christian Weber 4,5,6 , Andreas Hochhaus 7, Thomas Ernst 7, Carsten Hoffmann 2,3, Alma Zernecke 1 and Jochen J. Frietsch 7 1 Institute of Experimental Biomedicine, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany; katrin.stempfl[email protected] (K.S.); [email protected] (L.L.); [email protected] (F.W.); [email protected] (M.K.); [email protected] (A.B.H.); [email protected] (A.Z.) 2 Institute of Molecular Cell Biology, CMB-Center for Molecular Biomedicine, University Hospital Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany; [email protected] (C.P.V.); Carsten.Hoff[email protected] (C.H.) 3 Rudolf Virchow Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 5, 97080 Wuerzburg, Germany 4 Institute for Cardiovascular Prevention, LMU Munich, 80336 Munich, Germany; ipek.offi[email protected] 5 Cardiovascular Research Institute Maastricht, Department of Biochemistry, Maastricht University, 6229 ER Maastricht, The Netherlands 6 DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80802 Munich, Germany 7 Klinik für Innere Medizin II, Abteilung für Hämatologie und internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany; [email protected] (A.H.); [email protected] (T.E.); [email protected] (J.J.F.) * Correspondence: [email protected] Received: 3 December 2019; Accepted: 11 February 2020; Published: 14 February 2020 Abstract: The serine/threonine protein kinase AKT1 is a downstream target of the chemokine receptor 4 (CXCR4), and both proteins play a central role in the modulation of diverse cellular processes, including proliferation and cell survival.
    [Show full text]
  • Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks
    Proteomic shifts in embryonic stem cells with gene dose modifications suggest the presence of balancer proteins in protein regulatory networks. Lei Mao, Claus Zabel, Marion Herrmann, Tobias Nolden, Florian Mertes, Laetitia Magnol, Caroline Chabert, Daniela Hartl, Yann Herault, Jean Maurice Delabar, et al. To cite this version: Lei Mao, Claus Zabel, Marion Herrmann, Tobias Nolden, Florian Mertes, et al.. Proteomic shifts in embryonic stem cells with gene dose modifications suggest the presence of balancer proteins in protein regulatory networks.. PLoS ONE, Public Library of Science, 2007, 2 (11), pp.e1218. 10.1371/jour- nal.pone.0001218. hal-00408296 HAL Id: hal-00408296 https://hal.archives-ouvertes.fr/hal-00408296 Submitted on 31 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks Lei Mao1,2*, Claus Zabel1, Marion Herrmann1, Tobias Nolden2, Florian Mertes2, Laetitia Magnol3, Caroline Chabert4, Daniela
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]
  • Microrna-203 Inhibits Invasion and Induces Apoptosis of Laryngeal Cancer Cells Via Targeting LASP1
    European Review for Medical and Pharmacological Sciences 2018; 22: 6350-6357 MicroRNA-203 inhibits invasion and induces apoptosis of laryngeal cancer cells via targeting LASP1 J. TAN, Y.-Y. JING, L. HAN, H.-W. ZHENG, J.-X. SHEN, L.-H. ZHANG, L.-S. YU Department of Otorhinolaryngology and Head and Neck Surgery, Peking University People’s Hospital, Beijing, China Abstract. – OBJECTIVE: To explore the role Introduction of microRNA-203 in laryngeal cancer and its un- derlying mechanism in regulating cell invasion Head and neck neoplasms rank sixth in the in- and apoptosis. cidence of all cancers that severely endanger hu- PATIENTS AND METHODS: MicroRNA-203 man health. As a kind of common head and neck expression in laryngeal cancer tissues and paracancerous tissues was detected by quanti- neoplasms, laryngeal cancer ranks second in the tative real time-polymerase chain reaction (qRT- incidence of respiratory tract tumors. Based on PCR). The regulatory effects of microRNA-203 the pathological types of laryngeal cancer, squa- on the invasion and apoptosis of laryngeal can- mous cell carcinomas are the most common ones cer cells were detected by transwell assay and in clinical patients1. Although the diagnosis and flow cytometry, respectively. Dual-Luciferase re- treatment for laryngeal cancer have been greatly porter gene assay was performed to access the advanced, the 5-year survival is still unsatisfacto- binding condition of microRNA-203 and LASP1. ry due to the frequent recurrence and lymph node Both mRNA and protein levels of LASP1 in la- 2 ryngeal cancer cells were detected after trans- metastasis . The potential pathogenic factors of fection with microRNA-203 mimic or microR- laryngeal cancer include smoking, alcohol, air NA-203 inhibitor by qRT-PCR and Western blot, pollution, occupational factors, etc.3.
    [Show full text]
  • A Chromosome-Centric Human Proteome Project (C-HPP) To
    computational proteomics Laboratory for Computational Proteomics www.FenyoLab.org E-mail: [email protected] Facebook: NYUMC Computational Proteomics Laboratory Twitter: @CompProteomics Perspective pubs.acs.org/jpr A Chromosome-centric Human Proteome Project (C-HPP) to Characterize the Sets of Proteins Encoded in Chromosome 17 † ‡ § ∥ ‡ ⊥ Suli Liu, Hogune Im, Amos Bairoch, Massimo Cristofanilli, Rui Chen, Eric W. Deutsch, # ¶ △ ● § † Stephen Dalton, David Fenyo, Susan Fanayan,$ Chris Gates, , Pascale Gaudet, Marina Hincapie, ○ ■ △ ⬡ ‡ ⊥ ⬢ Samir Hanash, Hoguen Kim, Seul-Ki Jeong, Emma Lundberg, George Mias, Rajasree Menon, , ∥ □ △ # ⬡ ▲ † Zhaomei Mu, Edouard Nice, Young-Ki Paik, , Mathias Uhlen, Lance Wells, Shiaw-Lin Wu, † † † ‡ ⊥ ⬢ ⬡ Fangfei Yan, Fan Zhang, Yue Zhang, Michael Snyder, Gilbert S. Omenn, , Ronald C. Beavis, † # and William S. Hancock*, ,$, † Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States ‡ Stanford University, Palo Alto, California, United States § Swiss Institute of Bioinformatics (SIB) and University of Geneva, Geneva, Switzerland ∥ Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States ⊥ Institute for System Biology, Seattle, Washington, United States ¶ School of Medicine, New York University, New York, United States $Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia ○ MD Anderson Cancer Center, Houston, Texas, United States ■ Yonsei University College of Medicine, Yonsei University,
    [Show full text]
  • LASP1 Polyclonal Antibody
    LASP1 polyclonal antibody Catalog # : PAB6082 規格 : [ 100 ug ] List All Specification Application Image Product Goat polyclonal antibody raised against synthetic peptide of LASP1. Western Blot (Tissue lysate) Description: Immunogen: A synthetic peptide corresponding to human LASP1. Sequence: NPNCARCGKIVYP enlarge Host: Goat ELISA Theoretical MW 29.7 (kDa): Reactivity: Human Form: Liquid Purification: Antigen affinity purification Concentration: 0.5 mg/mL Quality Control Antibody Reactive Against Synthetic Peptide. Testing: Recommend ELISA (1:128000) Usage: Western Blot (0.1-0.3 ug/mL) The optimal working dilution should be determined by the end user. Storage Buffer: In Tris saline, pH 7.3 (0.5% BSA, 0.02% sodium azide) Storage Store at -20°C. Instruction: Aliquot to avoid repeated freezing and thawing. Note: This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which should be handled by trained staff only. Datasheet: Download Publication Reference 1. Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. Li K, Hornshaw MP, van Minnen J, Smalla KH, Gundelfinger ED, Smit AB.J Proteome Res. 2005 May-Jun;4(3):725-33. Applications Western Blot (Tissue lysate) Page 1 of 2 2017/2/16 LASP1 polyclonal antibody (Cat # PAB6082) staining (0.1 ug/mL) of human brain (cerebellum) extracts (RIPA buffer, 35 ug total protein per lane). Primary incubated for 1 hour. Detected by western blot using chemiluminescence. ELISA Gene Information Entrez GeneID: 3927 Protein NP_006139.1 Accession#: Gene Name: LASP1 Gene Alias: Lasp-1,MLN50 Gene LIM and SH3 protein 1 Description: Omim ID: 602920 Gene Ontology: Hyperlink Gene Summary: This gene encodes a member of a LIM protein subfamily characterized by a LIM motif and a domain of Src homology region 3.
    [Show full text]
  • Gene Section Mini Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Mini Review LASP1 (LIM and SH3 protein) Sabine Strehl Children's Cancer Research Institute, Kinderspitalgasse 6, A-1090 Vienna, Austria (SS) Published in Atlas Database: August 2005 Online updated version: http://AtlasGeneticsOncology.org/Genes/Lasp1ID203.html DOI: 10.4267/2042/38246 This article is an update of: Rio MC. LASP1 (LIM, actin binding and SH3 protein). Atlas Genet Cytogenet Oncol Haematol.2000;4(2):51. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2005 Atlas of Genetics and Cytogenetics in Oncology and Haematology Identity Function LASP1 plays an important role in the regulation of Other names: MLN50, EVI149 dynamic actin-based, cytoskeletal activities and cell HGNC (Hugo): LASP1 motility. Agonist-dependent changes in LASP1 Location: 17q12-21 phosphorylation may also serve to regulate actin- associated ion transport activities, not only in the Local order: from centromere to telomere are: TRAF4 parietal cell but also in certain other F-actin-rich (alias MLN62/CART1), MLLT6 (alias AF17), LASP1, secretory epithelial cell types. Together, (LIM-) STARD3 (alias MLN64), ERBB2 (alias c-erbB2), and nebulette, Lasp-1, and zyxin may play an important RARA. role in the organization of focal adhesions. DNA/RNA Homology Description LASP family of proteins: actin-binding repeats similar to those in LASP1 are also present in other nebulin- LASP1 encompasses 51.65 kb on the genomic level related proteins such as NEBL (nebulette, 107 kD and consists of 7 exons. actin-binding Z-disk protein) and NRAP (nebulin- Transcription related anchoring protein); NRAP also contains an N- 3845 bp mRNA, 783 bp coding sequence.
    [Show full text]
  • Long Non‑Coding RNA H19 Regulates LASP1 Expression in Osteosarcoma by Competitively Binding to Mir‑29A‑3P
    ONCOLOGY REPORTS 46: 207, 2021 Long non‑coding RNA H19 regulates LASP1 expression in osteosarcoma by competitively binding to miR‑29a‑3p HAO JIN1, HUAN WANG1, XIN JIN2 and WENBO WANG1 Departments of 1Orthopaedics and 2Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China Received March 1, 2021; Accepted June 17, 2021 DOI: 10.3892/or.2021.8158 Abstract. A prevalent type of bone tumor, osteosarcoma (OS) and surgery, however the clinical prognostic rate has not been is prone to pulmonary metastasis, which results in a high relapse significantly improved by these therapies. It was previously risk and poor prognosis for patients. The progression of OS is reported that the primary explanation for the poor clinical significantly associated with the expression of long non‑coding prognosis of this disease is that the current treatment methods (lnc)RNA H19. To the best of our knowledge, however, the do not effectively inhibit distant metastasis; furthermore, drug exact molecular mechanism of this lncRNA has not been fully resistance and recurrence are commonly observed in patients investigated. The present study verified the effect of H19 on with OS (2). In addition, the pathogenesis of OS remains the proliferation and invasion of osteosarcoma cells via in vivo unclear. The rapid development of advanced molecular and in vitro experiments, including Cell Counting Kit‑8, biology methods as immunotherapy and targeted therapy has western blot, reverse transcription‑quantitative PCR, wound enabled the application of new technologies to investigate the healing and Transwell assays. H19 was found to be overex‑ pathogenesis of OS and provide novel therapeutic strategies pressed in OS compared with corresponding normal adjacent for this disease (3).
    [Show full text]
  • An Update on the LIM and SH3 Domain Protein 1 (LASP1): a Versatile Structural, Signaling, and Biomarker Protein
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No. 1 An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein Martin F. Orth1, Alex Cazes1, Elke Butt1 and Thomas G. P. Grunewald2 1 Institute for Clinical Biochemistry and Pathobiochemistry, University Clinic of Würzburg, Grombühlstrasse, Würzburg, Germany 2 Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Thalkirchner Strasse, Munich, Germany Correspondence to: Thomas Grunewald, email: [email protected] Keywords: LASP1, cancer, biomarker, microRNA, nucleo-cytoplasmic Received: December 16, 2014 Accepted: December 28, 2014 Published: December 31, 2014 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker.
    [Show full text]