Emery and Rimoin's Principles and Practice Of

Total Page:16

File Type:pdf, Size:1020Kb

Emery and Rimoin's Principles and Practice Of 9 Disorders of the Venous System Pascal Brouillard,1 Nisha Limaye,1 Laurence M. Boon,1,2 Miikka Vikkula1,3 1Human Molecular Genetics, de Duve Institute, Université catholique de Louvain, Brussels, Belgium, 2Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires St-Luc, Université catholique de Louvain, Brussels, Belgium, 3Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Université catholique de Louvain, Brussels, Belgium 9.1 INTRODUCTION hemangioma) and more slow-growing vascular malfor- mations. The latter are subcategorized according to the The vasculature is the first organ system to develop during type(s) of vessel(s) altered [5–7] into capillary, venous, embryogenesis, delivering nutrients, growth factors, and arteriovenous, lymphatic, and combined malformations. oxygen to tissues and removing wastes. It is made up of four major types of vessels: arteries, capillaries, veins, and lymphatic vessels, all of which have a single layer of endo- 9.2 THE VENOUS SYSTEM thelial cells (ECs) forming the innermost layer. In blood Veins collect CO2-rich blood from the capillary net- vessels, the endothelial tubes are supported by a layer of work and contain about 75%–80% of the total volume of vascular smooth muscle cells (vSMCs) and/or pericytes blood in the body. They have larger lumens than arteries, (together called mural cells) of variable thickness. A base- with thinner, less muscular walls. Venous flow is passive, ment membrane separates the endothelial and vSMC essentially mediated by physical movements of the body layers, with an extracellular matrix (ECM) of fibrous and and the aspirating effect exerted by the heart. The pres- elastic proteins and carbohydrate polymers forming the ence of valves ensures correct orientation of blood flow. outermost sheath. Lymphatic vessels lack the outer ECM Some veins, especially in the legs, are exposed to high sheath, and continuous vSMC and basement membrane pressure due to gravitational forces and subject to fre- layers are only present in certain large vessels. quent distortions (i.e., varicose veins). The mechanisms that give rise to the mature vascular During vascular development, a primary capillary network are complex. These developmental processes, plexus is formed early on by in situ differentiation of termed vasculogenesis, angiogenesis, and lymphangio- hemangioblasts, originating from the mesoderm, into genesis, involve a plethora of signaling molecules and their ECs that assemble to form endothelial tubes (vascu- receptors, acting at different time points: the angiopoietins logenesis). In response to the hemodynamic forces of (ANGPTs), ephrins, fibroblast growth factors, platelet-de- local blood flow, this plexus is progressively remodeled rived growth factors (PDGFs), transforming growth factors during angiogenesis to form the three types of blood (TGFs), bone morphogenetic proteins (BMPs), vascular vessels. At the cellular level, the “venous” phenotype of endothelial growth factors (VEGFs), and many others. the ECs is determined very early, even before the ves- Vascular anomalies are localized defects that occur sel is committed to being a vein [8]. In the trunk of the during vascular development [1–5]. They are subdi- embryo, the venous system is first present as symmet- vided into proliferative vascular tumors (mainly infantile rical bilateral vessels. The veins on the left then regress Emery and Rimoin’s Principles and Practice of Medical Genetics and Genomics. https://doi.org/10.1016/B978-0-12-812532-8.00009-4 Copyright © 2020 Elsevier Inc. All rights reserved. 251 252 SECTION 1 Cardiovascular Disorders progressively while those on the right evolve into the superior and inferior vena cava. Defective remodeling may lead to retention of embryonic veins, such as per- sistence of superior vena cava [9,10], the right umbilical GVM VMCM vein [11], or saphenous vein [12]. 9.3 DISORDERS OF THE VENOUS SYSTEM VM Venous malformations (VMs) are the most frequent mal- HCCVM MAFFUCCI SDR formations seen in interdisciplinary vascular anomaly centers. Several inherited or sporadically occurring sub- types exist. They are discussed here. Varicose veins and varicosities are discussed with the disorders affecting lym- phatic vessels (Chapter 8). Malformations with a capillary BRBN KTS or arteriovenous component are described in Chapter 10. Diagnostics and management of acute and chronic venous Figure 9.1 Venous anomalies: GVM on leg; cutaneous and diseases have been extensively reviewed elsewhere [13]. mucosal venous malformations (VMCMs) on lips; sporadic VM on foot; HCCVM on arm; multiple spindle cell hemangioendo- 9.3.1 Glomuvenous Malformation theliomas and enchondromas on hand of patient with Maffucci syndrome; intestinal and cutaneous VMs of patient with BRBN The most frequently inherited VM, glomuvenous malfor- syndrome; CLVM on legs of patient with KTS (left side more mation (GVM, OMIM 138000) accounts for roughly 5% of affected). BRBN, blue rubber bleb nevus; CLVM, capillaro–lym- VMs [14] and is often improperly called “glomangioma” or phatico–venous malformation; GVM, glomuvenous malfor- “(multiple) glomus tumor” although it is not a tumor and mation; HCCVM, hyperkeratotic cutaneous capillary–venous malformation; KTS, Klippel–Trenaunay syndrome; VM, venous never becomes malignant. GVM is characterized by the malformation. presence of a variable number of “glomus cells” around dis- tended venous channels [15,16]. Similar rounded cells are present in paraganglioma (OMIM 115310, 168000, 601650 familial history of the disease [20]. Yet, a series of clini- and 605373) and (subungual) solitary glomus tumor. All cal criteria and a few biomarkers have been defined[21] . are sometimes referred to as “glomus tumor.” However, GVM is usually raised, nodular, present at birth, and paraganglioma are tumors of the parasympathetic ganglia, slowly expands during childhood (Fig. 9.1). It is often most commonly located in the head and neck area, caused multifocal and hyperkeratotic. Its color varies from pink by mutations in subunits of the succinate dehydrogenase to purplish dark blue [20]. Sometimes, it is flat and pur- enzyme complex [17]. Solitary glomus tumors are usually ple in color, especially in the newborn. This plaque-like subungual painful lesions histologically characterized by GVM usually darkens with time [22]. GVMs are mainly the presence of glomus cells, but without important vascu- located on the extremities, involve skin and subcutis, and lar component [18]. are often painful on palpation. It cannot be completely GVM segregates as an autosomal dominant disease, emptied by compression. Contrary to VM, GVM is rarely with incomplete penetrance and variable expressiv- encountered in mucosae [20]. Patients with GVM have ity [19]. Frequently, a single individual in a family is normal mental and physical development, normal blood more severely affected and is brought to the medical cell counts, coagulation, liver and renal function, electro- attention, whereas most of the other affected individu- lytes, plasma proteins, and urinalysis. They do not have als have small lesions and never consider treatment. As intestinal hemorrhage either, what distinguishes them penetrance is below 100% and many individuals have from patients suffering from blue rubber bleb nevus tiny asymptomatic lesions, it is likely that the inherited (BRBN) syndrome (MIM 112200) [23]. D-dimer level is nature of patient’s lesions is overlooked. normal in GVM [24]. In two patients, thoracic plaque- Clinical distinction of GVM from VMs and muco- type GVM was associated with pleural effusion [25]. cutaneous venous malformations (VMCMs) can be The alterations in the mutated gene seem to cause specif- difficult in patients with few small lesions and without ically abnormal cutaneous vascular development. Currently, CHAPTER 9 Disorders of the Venous System 253 the best therapy is surgical resection of the entire GVM, control both TGF beta (TGFβ) and hepatocyte growth which is curative, and is facilitated by the noninfiltration of factor (HGF) pathways (Fig. 9.2), which are crucial for GVM in underlying tissues [20]. Alternatively, sclerother- vSMC differentiation [32,33]. In vitro, GLMN interacts apy can be used for a GVM that is soft on palpation. with FKBP12 and might impede its binding and inhibi- GVMs are caused by loss-of-function mutations in tion of TGFβ receptor signaling [34,35]. FKBP12 also a gene named glomulin (GLMN), the exact function of inhibits downstream signaling of mTOR [36,37]. Com- which is still unknown [26]. It encodes a protein of 594 plete loss of GLMN in GVMs could thus result in inhibi- amino acids. Forty distinct mutations have been reported tion of TGFβ and mTOR signaling. in 162 families [19,26,27]. Sixteen of these mutations were GLMN also interacts with the intracellular part of detected in several families, accounting for 85% of the ped- the HGF receptor c-Met. Upon HGF binding, GLMN igrees with a GLMN mutation. The most frequent mutation is tyrosine phosphorylated, released, and induces phos- is c.157_161del (aka 157delAAGAA), present in 72 kin- phorylation of p70S6-kinase [35], thereby controlling dreds (44.4%). Screening first for these shared mutations protein synthesis [36,37]. As HGF triggers downstream is therefore recommended to accelerate genetic diagnosis. signaling mediating vascular SMC migration [33], lack There is no correlation between the position of a muta- of GLMN in GVMs likely alters this signaling. tion in the GLMN gene
Recommended publications
  • Pathway-Based Genome-Wide Association Analysis of Coronary Heart Disease Identifies Biologically Important Gene Sets
    European Journal of Human Genetics (2012) 20, 1168–1173 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Pathway-based genome-wide association analysis of coronary heart disease identifies biologically important gene sets Lisa de las Fuentes1,4, Wei Yang2,4, Victor G Da´vila-Roma´n1 and C Charles Gu*,2,3 Genome-wide association (GWA) studies of complex diseases including coronary heart disease (CHD) challenge investigators attempting to identify relevant genetic variants among hundreds of thousands of markers being tested. A selection strategy based purely on statistical significance will result in many false negative findings after adjustment for multiple testing. Thus, an integrated analysis using information from the learned genetic pathways, molecular functions, and biological processes is desirable. In this study, we applied a customized method, variable set enrichment analysis (VSEA), to the Framingham Heart Study data (404 467 variants, n ¼ 6421) to evaluate enrichment of genetic association in 1395 gene sets for their contribution to CHD. We identified 25 gene sets with nominal Po0.01; at least four sets are previously known for their roles in CHD: vascular genesis (GO:0001570), fatty-acid biosynthetic process (GO:0006633), fatty-acid metabolic process (GO:0006631), and glycerolipid metabolic process (GO:0046486). Although the four gene sets include 170 genes, only three of the genes contain a variant ranked among the top 100 in single-variant association tests of the 404 467 variants tested. Significant enrichment for novel gene sets less known for their importance to CHD were also identified: Rac 1 cell-motility signaling pathway (h_rac1 Pathway, Po0.001) and sulfur amino-acid metabolic process (GO:0000096, Po0.001).
    [Show full text]
  • Mtor Mutations in Smith-Kingsmore Syndrome: Four Additional Patients and a Review
    Received: 4 July 2017 Revised: 31 August 2017 Accepted: 5 September 2017 DOI: 10.1111/cge.13135 ORIGINAL ARTICLE mTOR mutations in Smith-Kingsmore syndrome: Four additional patients and a review G. Gordo1,2,3 | J. Tenorio1,2 | P. Arias1,2 | F. Santos-Simarro1,4 | S. García-Miñaur1,4 | J.C. Moreno1,2 | J. Nevado1,5 | E. Vallespin1,5 | L. Rodriguez-Laguna1,3 | R. de Mena1,5 | I. Dapia1,2 | M. Palomares-Bralo1,5 | A. del Pozo1,6 | K. Ibañez1,6 | J.C. Silla1,6 | E. Barroso1,2 | V.L. Ruiz-Pérez1,7 | V. Martinez-Glez1,3,4 | P. Lapunzina1,2,4 1Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain 2Molecular Endocrinology Section, Overgrowth Syndromes Laboratory, Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM), Madrid, Spain 3Vascular Malformations Section, Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM), Madrid, Spain 4Clinical Genetics Section, Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM), Madrid, Spain 5Structural and Functional Genomics Section, Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM), Madrid, Spain 6Bioinformatics Section, Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario la Paz, Universidad Autónoma de Madrid (UAM), Madrid, Spain 7IIB, Instituto de Investigación “Alberto Sols”, Universidad Autónoma de Madrid (UAM), Madrid, Spain Correspondence Smith-Kingsmore syndrome (SKS) OMIM #616638, also known as MINDS syndrome (ORPHA Pablo Lapunzina, MD, PhD, Instituto de Genética Médica y Molecular (INGEMM), 457485), is a rare autosomal dominant disorder reported so far in 23 patients.
    [Show full text]
  • Supporting Information
    Supporting Information Pouryahya et al. SI Text Table S1 presents genes with the highest absolute value of Ricci curvature. We expect these genes to have significant contribution to the network’s robustness. Notably, the top two genes are TP53 (tumor protein 53) and YWHAG gene. TP53, also known as p53, it is a well known tumor suppressor gene known as the "guardian of the genome“ given the essential role it plays in genetic stability and prevention of cancer formation (1, 2). Mutations in this gene play a role in all stages of malignant transformation including tumor initiation, promotion, aggressiveness, and metastasis (3). Mutations of this gene are present in more than 50% of human cancers, making it the most common genetic event in human cancer (4, 5). Namely, p53 mutations play roles in leukemia, breast cancer, CNS cancers, and lung cancers, among many others (6–9). The YWHAG gene encodes the 14-3-3 protein gamma, a member of the 14-3-3 family proteins which are involved in many biological processes including signal transduction regulation, cell cycle pro- gression, apoptosis, cell adhesion and migration (10, 11). Notably, increased expression of 14-3-3 family proteins, including protein gamma, have been observed in a number of human cancers including lung and colorectal cancers, among others, suggesting a potential role as tumor oncogenes (12, 13). Furthermore, there is evidence that loss Fig. S1. The histogram of scalar Ricci curvature of 8240 genes. Most of the genes have negative scalar Ricci curvature (75%). TP53 and YWHAG have notably low of p53 function may result in upregulation of 14-3-3γ in lung cancer Ricci curvatures.
    [Show full text]
  • Integrated Molecular Characterisation of the MAPK Pathways in Human
    ARTICLE https://doi.org/10.1038/s42003-020-01552-6 OPEN Integrated molecular characterisation of the MAPK pathways in human cancers reveals pharmacologically vulnerable mutations and gene dependencies 1234567890():,; ✉ Musalula Sinkala 1 , Panji Nkhoma 2, Nicola Mulder 1 & Darren Patrick Martin1 The mitogen-activated protein kinase (MAPK) pathways are crucial regulators of the cellular processes that fuel the malignant transformation of normal cells. The molecular aberrations which lead to cancer involve mutations in, and transcription variations of, various MAPK pathway genes. Here, we examine the genome sequences of 40,848 patient-derived tumours representing 101 distinct human cancers to identify cancer-associated mutations in MAPK signalling pathway genes. We show that patients with tumours that have mutations within genes of the ERK-1/2 pathway, the p38 pathways, or multiple MAPK pathway modules, tend to have worse disease outcomes than patients with tumours that have no mutations within the MAPK pathways genes. Furthermore, by integrating information extracted from various large-scale molecular datasets, we expose the relationship between the fitness of cancer cells after CRISPR mediated gene knockout of MAPK pathway genes, and their dose-responses to MAPK pathway inhibitors. Besides providing new insights into MAPK pathways, we unearth vulnerabilities in specific pathway genes that are reflected in the re sponses of cancer cells to MAPK targeting drugs: a revelation with great potential for guiding the development of innovative therapies.
    [Show full text]
  • Genetic and Chemical Modifiers of EGFR Dependence in Non- Small Cell Lung Cancer
    Genetic and Chemical Modifiers of EGFR Dependence in Non- Small Cell Lung Cancer The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sharifnia, Tanaz. 2014. Genetic and Chemical Modifiers of EGFR Dependence in Non-Small Cell Lung Cancer. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11745725 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Genetic and Chemical Modifiers of EGFR Dependence in Non-Small Cell Lung Cancer A dissertation presented by Tanaz Sharifnia to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biological and Biomedical Sciences Harvard University Cambridge, Massachusetts December 2013 © 2013 Tanaz Sharifnia All rights reserved. Dissertation Advisor: Professor Matthew Meyerson Tanaz Sharifnia Genetic and Chemical Modifiers of EGFR Dependence in Non-Small Cell Lung Cancer ABSTRACT The term ‘oncogene addiction’ has been used to describe the phenomenon whereby tumor cells exhibit singular reliance on an oncogene or oncogenic pathway for their survival, despite the accumulation of multiple genetic lesions. In non-small cell lung cancer (NSCLC), this principle is perhaps best exemplified with the finding that epidermal growth factor receptor (EGFR) mutations predict response to EGFR-targeted therapies and thus represent a dependency in the subset of tumors harboring these alterations.
    [Show full text]
  • Genetic Syndromes with Vascular Malformations – Update on Molecular Background and Diagnostics
    State of the art paper Genetics Genetic syndromes with vascular malformations – update on molecular background and diagnostics Adam Ustaszewski1,2, Joanna Janowska-Głowacka2, Katarzyna Wołyńska2, Anna Pietrzak3, Magdalena Badura-Stronka2 1Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland Corresponding author: 2Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Adam Ustaszewski Poland Institute of Human Genetics 3Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland Polish Academy of Sciences 32 Strzeszynska St Submitted: 19 April 2018; Accepted: 9 September 2018 60-479 Poznan, Poland Online publication: 25 February 2020 Phone: +48 61 65 79 223 E-mail: adam.ustaszewski@ Arch Med Sci 2021; 17 (4): 965–991 igcz.poznan.pl DOI: https://doi.org/10.5114/aoms.2020.93260 Copyright © 2020 Termedia & Banach Abstract Vascular malformations are present in a great variety of congenital syn- dromes, either as the predominant or additional feature. They pose a major challenge to the clinician: due to significant phenotype overlap, a precise diagnosis is often difficult to obtain, some of the malformations carry a risk of life threatening complications and, for many entities, treatment is not well established. To facilitate their recognition and aid in differentiation, we present a selection of notable congenital disorders of vascular system development, distinguishing between the heritable germinal and sporadic somatic mutations as their causes. Clinical features, genetic background and comprehensible description of molecular mechanisms is provided for each entity. Key words: arteriovenous malformation, vascular malformation, capillary malformation, venous malformation, arterial malformation, lymphatic malformation. Introduction Congenital vascular malformations (VMs) are disorders of vascular architecture development.
    [Show full text]
  • The Effect of Phototherapy on Cancer Predisposition Genes of Diabetic and Normal Human Skin Fibroblasts
    Hindawi BioMed Research International Volume 2017, Article ID 7604861, 9 pages https://doi.org/10.1155/2017/7604861 Research Article The Effect of Phototherapy on Cancer Predisposition Genes of Diabetic and Normal Human Skin Fibroblasts Pongsathorn Chotikasemsri,1 Boonsin Tangtrakulwanich,2 and Surasak Sangkhathat3 1 Biomedical Engineering Institute, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 2Department of Orthopedic Surgery and Physical Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand 3Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand Correspondence should be addressed to Pongsathorn Chotikasemsri; [email protected] Received 3 October 2016; Accepted 19 February 2017; Published 12 March 2017 Academic Editor: Tokuya Omi Copyright © 2017 Pongsathorn Chotikasemsri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The purpose of this study was to investigate whether LED light at different wavelengths affects the expression profile of 143cancer predisposition genes in both diabetic and normal human fibroblasts. In this study, both diabetic and normal fibroblast cell lines were 2 cultured and irradiated with red (635 nm), green (520 nm), and blue (465 nm) LED light for 10 minutes at 0.67 J/cm each. After that, mRNA from all cell lines was extracted for microarray analysis. We found that green light activates EPHB2, KIT, ANTXR2, ESCO2, MSR1, EXT1, TSC1, KIT, NF1, BUB1B, FANCD2, EPCAM, FANCD2, NF, DIS3L2, and RET in normal fibroblast cells, while blue and red light can upregulate RUNX1, PDGFRA, EHBP1, GPC3, AXIN2, KDR, GLMN, MSMB, EPHB2, MSR1, KIT, FANCD2, BMPR1A, BUB1B, PDE11A, and RET.
    [Show full text]
  • Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*□S
    crossmark Research Author’s Choice © 2016 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*□S Rolf Turk‡§¶ʈ**, Jordy J. Hsiao¶, Melinda M. Smits¶, Brandon H. Ng¶, Tyler C. Pospisil‡§¶ʈ**, Kayla S. Jones‡§¶ʈ**, Kevin P. Campbell‡§¶ʈ**, and Michael E. Wright¶‡‡ Mutations in genes encoding components of the sar- The muscular dystrophies are hereditary diseases charac- colemmal dystrophin-glycoprotein complex (DGC) are re- terized primarily by the progressive degeneration and weak- sponsible for a large number of muscular dystrophies. As ness of skeletal muscle. Most are caused by deficiencies in such, molecular dissection of the DGC is expected to both proteins associated with the cell membrane (i.e. the sarco- reveal pathological mechanisms, and provides a biologi- lemma in skeletal muscle), and typical features include insta- cal framework for validating new DGC components. Es- bility of the sarcolemma and consequent death of the myofi- tablishment of the molecular composition of plasma- ber (1). membrane protein complexes has been hampered by a One class of muscular dystrophies is caused by mutations lack of suitable biochemical approaches. Here we present in genes that encode components of the sarcolemmal dys- an analytical workflow based upon the principles of pro- tein correlation profiling that has enabled us to model the trophin-glycoprotein complex (DGC). In differentiated skeletal molecular composition of the DGC in mouse skeletal mus- muscle, this structure links the extracellular matrix to the cle. We also report our analysis of protein complexes in intracellular cytoskeleton.
    [Show full text]
  • HSP90-Incorporating Chaperome Networks As Biosensor for Disease-Related Pathways in Patient- Specific Midbrain Dopamine Neurons
    ARTICLE DOI: 10.1038/s41467-018-06486-6 OPEN HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient- specific midbrain dopamine neurons Sarah Kishinevsky1,2,3,4, Tai Wang3, Anna Rodina3, Sun Young Chung1,2, Chao Xu3, John Philip5, Tony Taldone3, Suhasini Joshi3, Mary L. Alpaugh3,14, Alexander Bolaender3, Simon Gutbier6, Davinder Sandhu7, Faranak Fattahi1,2, Bastian Zimmer1,2, Smit K. Shah3, Elizabeth Chang5, Carmen Inda3,15, John Koren 3rd3,16, Nathalie G. Saurat1,2, Marcel Leist 6, Steven S. Gross7, Venkatraman E. Seshan8, Christine Klein9, Mark J. Tomishima1,2,10, Hediye Erdjument-Bromage11,12, Thomas A. Neubert 11,12, Ronald C. Henrickson5, 1234567890():,; Gabriela Chiosis3,13 & Lorenz Studer1,2 Environmental and genetic risk factors contribute to Parkinson’s Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho- STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases.
    [Show full text]
  • Combinatorial Immune and Stress Response, Cytoskeleton and Signal
    Journal of Hazardous Materials 378 (2019) 120778 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Combinatorial immune and stress response, cytoskeleton and signal transduction effects of graphene and triphenyl phosphate (TPP) in mussel T Mytilus galloprovincialis ⁎ ⁎ Xiangjing Menga,c, Fei Lia, , Xiaoqing Wanga,c, Jialin Liua, Chenglong Jia,b, Huifeng Wua,b, a CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China b Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China c University of Chinese Academy of Sciences, Beijing 100049, PR China GRAPHICAL ABSTRACT ARTICLE INFO ABSTRACT Keywords: Owing to its unique surface properties, graphene can absorb environmental pollutants, thereby affecting their Joint effects environmental behavior. Triphenyl phosphate (TPP) is a highly produced flame retardant. However, the toxi- Graphene cities of graphene and its combinations with contaminants remain largely unexplored. In this work, we in- Triphenyl phosphate (TPP) vestigated the toxicological effects of graphene and TPP to mussel Mytilus galloprovincialis. Results indicated that Toxicity graphene could damage the digestive gland tissues, but no significant changes were found in
    [Show full text]
  • PRODUCTS and SERVICES Target List
    PRODUCTS AND SERVICES Target list Kinase Products P.1-11 Kinase Products Biochemical Assays P.12 "QuickScout Screening Assist™ Kits" Kinase Protein Assay Kits P.13 "QuickScout Custom Profiling & Panel Profiling Series" Targets P.14 "QuickScout Custom Profiling Series" Preincubation Targets Cell-Based Assays P.15 NanoBRET™ TE Intracellular Kinase Cell-Based Assay Service Targets P.16 Tyrosine Kinase Ba/F3 Cell-Based Assay Service Targets P.17 Kinase HEK293 Cell-Based Assay Service ~ClariCELL™ ~ Targets P.18 Detection of Protein-Protein Interactions ~ProbeX™~ Stable Cell Lines Crystallization Services P.19 FastLane™ Structures ~Premium~ P.20-21 FastLane™ Structures ~Standard~ Kinase Products For details of products, please see "PRODUCTS AND SERVICES" on page 1~3. Tyrosine Kinases Note: Please contact us for availability or further information. Information may be changed without notice. Expression Protein Kinase Tag Carna Product Name Catalog No. Construct Sequence Accession Number Tag Location System HIS ABL(ABL1) 08-001 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) BTN BTN-ABL(ABL1) 08-401-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ABL(ABL1) [E255K] HIS ABL(ABL1)[E255K] 08-094 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) HIS ABL(ABL1)[T315I] 08-093 Full-length 2-1130 NP_005148.2 N-terminal His Insect (sf21) ABL(ABL1) [T315I] BTN BTN-ABL(ABL1)[T315I] 08-493-20N Full-length 2-1130 NP_005148.2 N-terminal DYKDDDDK Insect (sf21) ACK(TNK2) GST ACK(TNK2) 08-196 Catalytic domain
    [Show full text]
  • Construction and Analysis of Protein-Protein Interaction Network of Non-Alcoholic Fatty Liver Disease
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.406215; this version posted December 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Construction and Analysis of Protein-Protein Interaction Network of Non-Alcoholic Fatty Liver Disease Athina I. Amanatidou and George V. Dedoussis Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, El. Venizelou 70, 17671, Athens, Greece Correspondence to: G. V. Dedoussis, A. I. Amanatidou, Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, El. Venizelou 70, 17671, Athens, Greece E-mail addresses: [email protected] (G.V. Dedoussis), [email protected] (A. I. Amanatidou) Telephone: +302109549179 (G.V. Dedoussis), +306949293472 (A. I. Amanatidou) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.406215; this version posted December 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Non-alcoholic fatty liver disease (NAFLD) is a disease with multidimensional complexities. Many attempts have been made over the years to treat this disease but its incidence is rising. For this reason, the need to identify and study new candidate proteins that may be associated with NAFLD is of utmost importance. Systems-based approaches such as the analysis of protein-protein interaction (PPI) network could lead to the discovery of new proteins associated with a disease that can then be translated into clinical practice.
    [Show full text]