Transactions of the American Fisheries Society Fish

Total Page:16

File Type:pdf, Size:1020Kb

Transactions of the American Fisheries Society Fish This article was downloaded by: [Department Of Fisheries] On: 25 November 2013, At: 22:50 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Transactions of the American Fisheries Society Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/utaf20 Fish Assemblages in the Oligohaline Stretch of a Southwest Florida River during Periods of Extreme Freshwater Inflow Variation Philip W. Stevens a , Marin F. D. Greenwood b c & David A. Blewett a a Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Charlotte Harbor Field Laboratory , 585 Prineville Street , Port Charlotte , Florida , 33954 , USA b Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute , 100 8th Avenue Southeast , St. Petersburg , Florida , 33701 , USA c ICF International , 630 K Street, Sacramento , California , 95814 , USA Published online: 20 Nov 2013. To cite this article: Philip W. Stevens , Marin F. D. Greenwood & David A. Blewett (2013) Fish Assemblages in the Oligohaline Stretch of a Southwest Florida River during Periods of Extreme Freshwater Inflow Variation, Transactions of the American Fisheries Society, 142:6, 1644-1658, DOI: 10.1080/00028487.2013.824920 To link to this article: http://dx.doi.org/10.1080/00028487.2013.824920 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions Transactions of the American Fisheries Society 142:1644–1658, 2013 C American Fisheries Society 2013 ISSN: 0002-8487 print / 1548-8659 online DOI: 10.1080/00028487.2013.824920 ARTICLE Fish Assemblages in the Oligohaline Stretch of a Southwest Florida River during Periods of Extreme Freshwater Inflow Variation Philip W. Stevens* Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Charlotte Harbor Field Laboratory, 585 Prineville Street, Port Charlotte, Florida 33954, USA Marin F. D. Greenwood1 Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 100 8th Avenue Southeast, St. Petersburg, Florida 33701, USA David A. Blewett Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Charlotte Harbor Field Laboratory, 585 Prineville Street, Port Charlotte, Florida 33954, USA Abstract Maintenance or restoration of the oligohaline stretch (i.e., salinity 0.5–5 psu) of coastal rivers is becoming an increasingly important goal of water managers striving to balance human consumption of water with the ecological integrity of estuaries. The objectives of this study were to compare fish assemblage structure and species abundance of the oligohaline stretch to those of the lower river mouth during periods of varying freshwater inflow (wet and dry periods) in one of southwest Florida’s largest rivers, the Peace River. The abundance of several estuarine residents and estuarine transients captured in 21.3-m seines—Sand Seatrout Cynoscion arenarius, Tidewater Mojarra Eucinostomus harengulus, Red Drum Sciaenops ocellatus, and Spot Leiostomus xanthurus—were similar between river sections, which is consistent with the premise that the oligohaline stretch is an extension of the juvenile habitat known to be important for fish in lower rivers. Estuarine residents known to have affinities for marsh habitat—Eastern Mosquitofish Gambusia holbrooki, Rainwater Killifish Lucania parva, and Sailfin Molly Poecilia latipinna—were at least an order of magnitude more abundant in the oligohaline stretch, probably the result of greater production at low salinity, greater marsh area, or less competition. During a dry period, the oligohaline fish assemblage became more similar to the assemblage of the lower river mouth. Reductions in the abundance of species characteristic of the oligohaline stretch were offset by increases in the abundance of Bay Anchovy Anchoa mitchilli. This study provides Downloaded by [Department Of Fisheries] at 22:50 25 November 2013 information to managers that can be used in the restoration of oligohaline waters by identifying characteristic fishes in the oligohaline stretch of a large river, providing insight into how this river section functions as fish habitat, and determining the changes in fish assemblages that occur during low freshwater inflow conditions. The oligohaline zone of an estuary is the region where increase exponentially in this salinity range, resulting in unique freshwater first meets and starts to mix with the saline water physical, chemical, and biological processes (Deaton and of the ocean; it is defined as water having a salinity of 0.5–5.0 Greenberg 1986). For example, freshwater diatoms that have psu (Anonymous 1958). Ion ratios of the water (e.g., Ca:Na) depleted silica in the water, a limiting nutrient for diatom *Corresponding author: [email protected] 1Present address: ICF International, 630 K Street, Sacramento, California 95814, USA. Received November 15, 2012; accepted July 9, 2013 1644 FISH ASSEMBLAGES OF AN OLIGOHALINE RIVER STRETCH 1645 growth, are lysed as they enter higher-salinity water down- and scientists (Ogden et al. 2005). Restoring the oligohaline stream, a process that accelerates remineralization of silica zone and the fish assemblages that inhabit the areas between in the estuary (Anderson 1986). Watershed-derived inorganic freshwater and coastal mangroves of the Florida Everglades is nitrogen is rapidly processed where a river first meets the a primary goal of the Comprehensive Everglades Restoration estuary, which affects denitrification rates and the availability Plan (Davis et al. 2005). In river systems, the position of low- of nitrogen to estuarine organisms downstream (Holmes salinity water is used as a gauge for meeting the state of Florida’s et al. 2000; Hughes et al. 2000; Merrill and Cornwell 2002). mandates for minimum flows and water levels in several south- Vegetation communities in the lower-salinity reaches of an west Florida river systems, such as the Caloosahatchee, Hills- estuarine river are distinct from those of other sections (Latham borough, Myakka, and Peace rivers (SFWMD 2010a, 2010b). et al. 1994; Visser et al. 1998). Fish diversity is generally low The premise is that maintenance or restoration of the oligoha- at salinities approaching zero, but diversity increases markedly line zone will ensure that ecologically meaningful isohalines as freshwater, estuarine, and marine species overlap (Whitfield are produced downstream, promoting the general health of es- et al. 2012). Similarly, fish assemblage structure changes tuarine habitats such as oyster reefs and seagrass beds. Even rapidly between salinities of 0.1 and 1 psu, in contrast to the though the position of the oligohaline zone is increasingly used gradual change along the remainder of the estuarine salinity as a management target, recent river-specific studies that char- gradient (Greenwood 2007). This rapid change is probably a acterize oligohaline fish assemblages are few (but see Catalano result of changes in river morphology and vegetation (Stevens et al. 2006; Greenwood et al. 2007; Rehage and Loftus 2007; et al. 2010) and of significant changes in ionic ratios, to which Stevens et al. 2010). The purpose of this study was to evaluate many fishes are not well adapted (Deaton and Greenberg 1986). differences between fish assemblages of the oligohaline stretch The oligohaline zone is an extension of habitat for various (the section of river where low salinity water most often occurs) estuarine fish guilds (estuarine-use functional guilds are similar and the lower river mouth during periods of varying freshwa- to those described in Elliott et al. 2007). Several estuarine ter inflow (wet and dry periods) in one of southwest Florida’s residents (those species that can complete their life cycle within largest rivers, the Peace River. By comparing fish assemblages in the estuary) and estuarine transients (those species that spawn these two river sections, hypotheses regarding the structure and offshore and enter estuaries in large numbers, particularly function of oligohaline fish assemblages can be tested. Specifi- as juveniles), such as juvenile Spot Leiostomus xanthurus, cally, based on the literature presented above, we
Recommended publications
  • USF Board of Trustees ( March 7, 2013)
    Agenda item: (to be completed by Board staff) USF Board of Trustees ( March 7, 2013) Issue: Proposed Ph.D. in Integrative Biology ________________________________________________________________ Proposed action: New Degree Program Approval ________________________________________________________________ Background information: This application for a new Ph.D is driven by a recent reorganization of the Department of Biology. The reorganization began in 2006 and was completed in 2009. The reorganization of the Department of Biology, in part, reflected the enormity of the biological sciences, and in part, different research perspectives and directions taken by the faculty in each of the respective areas of biology. Part of the reorganization was to replace the original Ph.D. in Biology with two new doctoral degrees that better serve the needs of the State and our current graduate students by enabling greater focus of the research performed to earn the Ph.D. The well-established and highly productive faculty attracts students to the Tampa Campus from all over the United States as well as from foreign countries. The resources to support the two Ph.D. programs have already been established in the Department of Biology and are sufficient to support the two new degree programs. The reorganization created two new departments; the Department of Cell Biology, Microbiology, and Molecular Biology (CMMB) and the Department of Integrative Biology (IB). This proposal addresses the creation of a new Ph.D., in Integrative Biology offered by the Department of Integrative Biology (CIP Code 26.1399). The name of the Department, Integrative Biology, reflects the belief that the study of biological processes and systems can best be accomplished by the incorporation of numerous integrated approaches Strategic Goal(s) Item Supports: The proposed program directly supports the following: Goal 1 and Goal 2 Workgroup Review: ACE March 7, 2013 Supporting Documentation: See Complete Proposal below Prepared by: Dr.
    [Show full text]
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3
    ACTA ICHTHYOLOGICA ET PISCATORIA (2018) 48 (4): 341–362 DOI: 10.3750/AIEP/02451 AN UPDATED CHECKLIST AND CHARACTERISATION OF THE ICHTHYOFAUNA (ELASMOBRANCHII AND ACTINOPTERYGII) OF THE LAGUNA DE TAMIAHUA, VERACRUZ, MEXICO Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3 1 Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 2 Instituto Nacional de Pesca y Acuacultura, SAGARPA, Ciudad de México 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México Raz-Guzmán A., Huidobro L., Padilla V. 2018. An updated checklist and characterisation of the ichthyofauna (Elasmobranchii and Actinopterygii) of the Laguna de Tamiahua, Veracruz, Mexico. Acta Ichthyol. Piscat. 48 (4): 341–362. Background. Laguna de Tamiahua is ecologically and economically important as a nursery area that favours the recruitment of species that sustain traditional fisheries. It has been studied previously, though not throughout its whole area, and considering the variety of habitats that sustain these fisheries, as well as an increase in population growth that impacts the system. The objectives of this study were to present an updated list of fish species, data on special status, new records, commercial importance, dominance, density, ecotic position, and the spatial and temporal distribution of species in the lagoon, together with a comparison of Tamiahua with 14 other Gulf of Mexico lagoons. Materials and methods. Fish were collected in August and December 1996 with a Renfro beam net and an otter trawl from different habitats throughout the lagoon. The species were identified, classified in relation to special status, new records, commercial importance, density, dominance, ecotic position, and spatial distribution patterns.
    [Show full text]
  • Amphibious Fishes: Terrestrial Locomotion, Performance, Orientation, and Behaviors from an Applied Perspective by Noah R
    AMPHIBIOUS FISHES: TERRESTRIAL LOCOMOTION, PERFORMANCE, ORIENTATION, AND BEHAVIORS FROM AN APPLIED PERSPECTIVE BY NOAH R. BRESSMAN A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVESITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Biology May 2020 Winston-Salem, North Carolina Approved By: Miriam A. Ashley-Ross, Ph.D., Advisor Alice C. Gibb, Ph.D., Chair T. Michael Anderson, Ph.D. Bill Conner, Ph.D. Glen Mars, Ph.D. ACKNOWLEDGEMENTS I would like to thank my adviser Dr. Miriam Ashley-Ross for mentoring me and providing all of her support throughout my doctoral program. I would also like to thank the rest of my committee – Drs. T. Michael Anderson, Glen Marrs, Alice Gibb, and Bill Conner – for teaching me new skills and supporting me along the way. My dissertation research would not have been possible without the help of my collaborators, Drs. Jeff Hill, Joe Love, and Ben Perlman. Additionally, I am very appreciative of the many undergraduate and high school students who helped me collect and analyze data – Mark Simms, Tyler King, Caroline Horne, John Crumpler, John S. Gallen, Emily Lovern, Samir Lalani, Rob Sheppard, Cal Morrison, Imoh Udoh, Harrison McCamy, Laura Miron, and Amaya Pitts. I would like to thank my fellow graduate student labmates – Francesca Giammona, Dan O’Donnell, MC Regan, and Christine Vega – for their support and helping me flesh out ideas. I am appreciative of Dr. Ryan Earley, Dr. Bruce Turner, Allison Durland Donahou, Mary Groves, Tim Groves, Maryland Department of Natural Resources, UF Tropical Aquaculture Lab for providing fish, animal care, and lab space throughout my doctoral research.
    [Show full text]
  • A Dissertation Entitled Evolution, Systematics
    A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could
    [Show full text]
  • PARASITIC HELMINTHS INFECTING Eucinostomus Melanopterus AND
    Facultad de Ciencias ACTA BIOLÓGICA COLOMBIANA Departamento de Biología http://www.revistas.unal.edu.co/index.php/actabiol Sede Bogotá NOTA BREVE / SHORT NOTE INMUNOLOGÍA PARASITIC HELMINTHS INFECTING Eucinostomus melanopterus AND Eugerres plumieri (PERCIFORMES: GERREIDAE), FROM BOCA DEL RIO, VERACRUZ, MÉXICO Helmintos parásitos de Eucinostomus melanopterus y Eugerres plumieri (Perciformes: Gerreidae), de Boca del Río, Veracruz, México Jesús MONTOYA-MENDOZA1 *, Gilberto MUÑOZ-NIETO1 , Sergio CHÁZARO-OLVERA2 , Edgar F MENDOZA-FRANCO3 , Fabiola LANGO-REYNOSO1 , María del Refugio CASTAÑEDA-CHÁVEZ1 1Laboratorio de Investigación Acuícola Aplicada, Tecnológico Nacional de México, Instituto Tecnológico de Boca del Río. Carretera Veracruz-Córdoba km 12, C.P. 94298, Boca del Río, Veracruz. México. 2Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Los Reyes Iztacala, Estado de México, México. 3Instituto de Ecología, Pesquerías y Oceanografía del Golfo de México (EPOMEX), Universidad Autónoma de Campeche, Campeche, México *For correspondence: [email protected] Received: 09th March 2019, Returned for revision: 03rd May 2019, Accepted: 23rd May 2019. Associate Editor: Diego Santiago-Alarcón. Citation/Citar este artículo como: Montoya-Mendoza J, Muñoz-Nieto G, Cházaro-Olvera S, Mendoza-Franco EF, Lango-Reynoso F, Castañeda- Chávez MR. Parasitic helminths infecting Eucinostomus melanopterus and Eugerres plumieri (Perciformes: Gerreidae), from Boca del Rio, Veracruz, México. Acta biol. Colomb. 2020;25(1):165-168. DOI: http://dx.doi.org/10.15446/abc.v25n1.78363 RESUMEN Se efectuó un examen helmintológico a 14 especímenes de Eucinostomus melanopterus (mojarra bandera) y 19 Eugerres plumieri (mojarra rayada), de los cuales se recolectaron un total de 461 helmintos. Se identificaron 12 taxones (cinco a nivel de especie, cinco a género y dos a familia) como sigue: cuatro monogéneos, cinco digéneos (cuatro adultos, una metacercaria), un céstodo (plerocercoide) y dos nemátodos (larvas).
    [Show full text]
  • Louisiana's Animal Species of Greatest Conservation Need (SGCN)
    Louisiana's Animal Species of Greatest Conservation Need (SGCN) ‐ Rare, Threatened, and Endangered Animals ‐ 2020 MOLLUSKS Common Name Scientific Name G‐Rank S‐Rank Federal Status State Status Mucket Actinonaias ligamentina G5 S1 Rayed Creekshell Anodontoides radiatus G3 S2 Western Fanshell Cyprogenia aberti G2G3Q SH Butterfly Ellipsaria lineolata G4G5 S1 Elephant‐ear Elliptio crassidens G5 S3 Spike Elliptio dilatata G5 S2S3 Texas Pigtoe Fusconaia askewi G2G3 S3 Ebonyshell Fusconaia ebena G4G5 S3 Round Pearlshell Glebula rotundata G4G5 S4 Pink Mucket Lampsilis abrupta G2 S1 Endangered Endangered Plain Pocketbook Lampsilis cardium G5 S1 Southern Pocketbook Lampsilis ornata G5 S3 Sandbank Pocketbook Lampsilis satura G2 S2 Fatmucket Lampsilis siliquoidea G5 S2 White Heelsplitter Lasmigona complanata G5 S1 Black Sandshell Ligumia recta G4G5 S1 Louisiana Pearlshell Margaritifera hembeli G1 S1 Threatened Threatened Southern Hickorynut Obovaria jacksoniana G2 S1S2 Hickorynut Obovaria olivaria G4 S1 Alabama Hickorynut Obovaria unicolor G3 S1 Mississippi Pigtoe Pleurobema beadleianum G3 S2 Louisiana Pigtoe Pleurobema riddellii G1G2 S1S2 Pyramid Pigtoe Pleurobema rubrum G2G3 S2 Texas Heelsplitter Potamilus amphichaenus G1G2 SH Fat Pocketbook Potamilus capax G2 S1 Endangered Endangered Inflated Heelsplitter Potamilus inflatus G1G2Q S1 Threatened Threatened Ouachita Kidneyshell Ptychobranchus occidentalis G3G4 S1 Rabbitsfoot Quadrula cylindrica G3G4 S1 Threatened Threatened Monkeyface Quadrula metanevra G4 S1 Southern Creekmussel Strophitus subvexus
    [Show full text]
  • Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2016 Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes Christi Linardich Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Environmental Health and Protection Commons, and the Marine Biology Commons Recommended Citation Linardich, Christi. "Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes" (2016). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/hydh-jp82 https://digitalcommons.odu.edu/biology_etds/13 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES by Christi Linardich B.A. December 2006, Florida Gulf Coast University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY August 2016 Approved by: Kent E. Carpenter (Advisor) Beth Polidoro (Member) Holly Gaff (Member) ABSTRACT HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES Christi Linardich Old Dominion University, 2016 Advisor: Dr. Kent E. Carpenter Understanding the status of species is important for allocation of resources to redress biodiversity loss.
    [Show full text]
  • A Reappraisal of Stegastes Species Occurring in the South Atlantic Using
    de Souza et al. Helgol Mar Res (2016) 70:20 DOI 10.1186/s10152-016-0471-x Helgoland Marine Research ORIGINAL ARTICLE Open Access A reappraisal of Stegastes species occurring in the South Atlantic using morphological and molecular data Allyson Santos de Souza1*, Ricardo de Souza Rosa2, Rodrigo Xavier Soares1, Paulo Augusto de Lima‑Filho3, Claudio de Oliveira4, Oscar Akio Shibatta5 and Wagner Franco Molina1 Abstract The taxonomic status of Pomacentridae species can be difficult to determine, due to the high diversity, and in some cases, poorly understood characters, such as color patterns. Although Stegastes rocasensis, endemic to the Rocas atoll and Fernando de Noronha archipelago, and S. sanctipauli, endemic to the São Pedro and São Paulo archipelago, differ in color pattern, they exhibit similar morphological characters and largely overlapping counts of fin rays and lateral-line scales. Another nominal insular species, S. trindadensis, has recently been synonymized with S. fuscus but retained as a valid subspecies by some authors. Counts and morphometric analyses and mitochondrial DNA (COI, 16SrRNA, CytB) and nuclear DNA (rag1 and rhodopsin) comparisons of three insular species (S. rocasensis, S. sanctipauli and S. trindadensis) and three other South Atlantic species (S. fuscus, S. variabilis and S. pictus) were carried out in the present study. Analyses of the principal components obtained by traditional multivariate morphometry indicate that the species in general have similar body morphology. Molecular analyses revealed conspicuous similarity between S. rocasensis and S. sanctipauli and between S. trindadensis and S. fuscus and a clear divergence between S. variabilis from Northeast Brazil and S. variabilis from the Caribbean region.
    [Show full text]
  • FRILLFIN GOBY, Bathygobius Fuscus in KEELUNG, TAIWAN
    Journal of Marine Science and Technology, Vol. 21, Suppl., pp. 213-215 (2013) 213 DOI: 10.6119/JMST-013-1219-15 REPRODUCTIVE BIOLOGY OF INTERTIDAL FRILLFIN GOBY, Bathygobius fuscus IN KEELUNG, TAIWAN Yu-Hai Kong and I-Shiung Chen Key words: Gonadosomatic index, Bathygobius, Keelung, Taiwan. tertidal gobiid fish, Bathygobius fuscus by our recently monthly collected samples from intertidal regions from northern Taiwan since November, 2010. The round-year reproduction ABSTRACT exchange of this goby for realizing those reproductive pa- The reproductive biology of intertidal, black brown frillfin rameters will be presented and formally documented in this goby, Bathygobius fuscus (Rüppell) have been surveyed from paper. the coastal region of Keelung, Taiwan. The species always belongs to the dominant species found in the fish community II. MATERIALS AND METHODS of the tidal pools for different seasons. The overall fecundity of adult female is from 2335 to 13332 eggs with the average of All Bathygobius fuscus were collected monthly by hand-net 5605 eggs with average eggs-size is 0.34 ± 0.06 mm. The from the intertidal pools of northern Taiwan during 2010 to female minimum measure body-size would be 40.4 mm SL. 2011 during the low tide period. The sampling site is located The higher reproductive season can be well observed from in the coastal region of Chiao-Jin, Keelung, Taiwan which is female GSI (Gonadosomatic Index) during May to September. beach site of new construction building of National Museum During that time, there may represent more abundant food of Marine Science and Technology. Three key parameters for sources to host its offspring as well as more suitable climate.
    [Show full text]
  • DINÂMICA EVOLUTIVA DO Dnar EM CROMOSSOMOS DE PEIXES DA FAMÍLIA ELEOTRIDAE E REVISÃO CITOGENÉTICA DA ORDEM GOBIIFORMES(OSTEICHTHYES, TELEOSTEI)
    DINÂMICA EVOLUTIVA DO DNAr EM CROMOSSOMOS DE PEIXES DA FAMÍLIA ELEOTRIDAE E REVISÃO CITOGENÉTICA DA ORDEM GOBIIFORMES(OSTEICHTHYES, TELEOSTEI) SIMIÃO ALEFE SOARES DA SILVA ________________________________________________ Dissertação de Mestrado Natal/RN, Fevereiro de 2019 UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMÁTICA E EVOLUÇÃO DINÂMICA EVOLUTIVA DO DNAr EM CROMOSSOMOS DE PEIXES DA FAMÍLIA ELEOTRIDAE E REVISÃO CITOGENÉTICA DA ORDEM GOBIIFORMES (OSTEICHTHYES, TELEOSTEI) Simião Alefe Soares da Silva Dissertação apresentada ao Programa de Pós-Graduação em Sistemática e Evolução da Universidade Federal do Rio Grande do Norte, como parte dos requisitos para obtenção do título de Mestre em Sistemática e Evolução. Orientador: Dr. Wagner Franco Molina Co-Orientador: Dr. Paulo Augusto de Lima Filho Natal/RN 2019 Universidade Federal do Rio Grande do Norte - UFRN Sistema de Bibliotecas - SISBI Catalogação de Publicação na Fonte. UFRN - Biblioteca Central Zila Mamede Silva, Simião Alefe Soares da. Dinâmica evolutiva do DNAr em cromossomos de peixes da família Eleotridae e revisão citogenética da ordem gobiiformes (Osteichthyes, Teleostei) / Simião Alefe Soares da Silva. - 2019. 69 f.: il. Dissertação (mestrado) - Universidade Federal do Rio Grande do Norte, Centro de Biociências, Programa de Pós-Graduação em 1. Evolução cromossômica - Dissertação. 2. Diversificação cariotípica - Dissertação. 3. Rearranjos cromossômicos - Dissertação. 4. DNAr - Dissertação. 5. Microssatélites - Dissertação. I. Lima Filho, Paulo Augusto de. II. Molina, Wagner Franco. III. Título. RN/UF/BCZM CDU 575:597.2/.5 SIMIÃO ALEFE SOARES DA SILVA DINÂMICA EVOLUTIVA DO DNAr EM CROMOSSOMOS DE PEIXES DA FAMÍLIA ELEOTRIDAE E REVISÃO CITOGENÉTICA DA ORDEM GOBIIFORMES (OSTEICHTHYES, TELEOSTEI) Dissertação apresentada ao Programa de Pós-Graduação em Sistemática e Evolução da Universidade Federal do Rio Grande do Norte, como requisitos para obtenção do título de Mestre em Sistemática e Evolução com ênfase em Padrões e Processos Evolutivos.
    [Show full text]
  • Suborder GOBIOIDEI ELEOTRIDAE Sleepers by E.O
    click for previous page 1778 Bony Fishes Suborder GOBIOIDEI ELEOTRIDAE Sleepers by E.O. Murdy, National Science Foundation, Virginia, USA and D.F. Hoese, Australian Museum, Sydney, Australia iagnostic characters: Small to medium-sized (most do not exceed 20 cm, although Gobiomorus from Dthis area may reach 60 cm). Typically, body stout; head short and broad; snout blunt; gill membranes broadly joined to isthmus. Teeth usually small, conical and in several rows in jaws. Six branchiostegal rays. Two separate dorsal fins, first dorsal fin with 6 or 7 weak spines, second dorsal fin with 1 weak spine followed by 6 to 12 soft rays; second dorsal fin and anal fin relatively short-based; origin of anal fin just posterior to vertical with origin of second dorsal fin; terminal ray of second dorsal and anal fins divided to its base (but counted as a single element);anal fin with 1 weak spine followed by 6 to 12 soft rays;caudal fin broad and rounded, compris- ing 15 or 17 segmented rays; pectoral fin broad with 14 to 25 soft rays; pelvic fin long with 1 spine and 5 soft rays.Pelvic fins separate and not connected by a membrane.Scales large and either cycloid or ctenoid.No lateral line on body. Head typically scaled, scales being either cycloid or ctenoid with a series of sensory ca- nals and pores as well as cutaneous papillae. Colour: not brightly coloured, most are light or dark brown or olive with some metallic glints. Habitat, biology, and fisheries: Typically occur in fresh or brackish waters, although some species are truly marine.
    [Show full text]