Amphibious Fishes: Terrestrial Locomotion, Performance, Orientation, and Behaviors from an Applied Perspective by Noah R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies. -
Gait Analysis in Uner Tan Syndrome Cases with Key Symptoms of Quadrupedal Locomotion, Mental Impairment, and Dysarthric Or No Speech
Article ID: WMC005017 ISSN 2046-1690 Gait Analysis in Uner Tan Syndrome Cases with Key Symptoms of Quadrupedal Locomotion, Mental Impairment, and Dysarthric or No Speech Peer review status: No Corresponding Author: Submitting Author: Prof. Uner Tan, Senior Researcher, Cukurova University Medical School , Cukurova University, Medical School, Adana, 01330 - Turkey Article ID: WMC005017 Article Type: Research articles Submitted on: 09-Nov-2015, 01:39:27 PM GMT Published on: 10-Nov-2015, 08:43:08 AM GMT Article URL: http://www.webmedcentral.com/article_view/5017 Subject Categories: NEUROSCIENCES Keywords: Uner Tan syndrome, quadrupedal locomotion, ataxia, gait, lateral sequence, diagonal sequence, evolution, primates How to cite the article: Tan U. Gait Analysis in Uner Tan Syndrome Cases with Key Symptoms of Quadrupedal Locomotion, Mental Impairment, and Dysarthric or No Speech. WebmedCentral NEUROSCIENCES 2015;6(11):WMC005017 Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source(s) of Funding: None Competing Interests: None Additional Files: Illustration 1 ILLUSTRATION 2 ILLUSTRATION 3 ILLUSTRATION 4 ILLUSTRATION 5 ILLUSTRATION 6 WebmedCentral > Research articles Page 1 of 14 WMC005017 Downloaded from http://www.webmedcentral.com on 10-Nov-2015, 08:43:10 AM Gait Analysis in Uner Tan Syndrome Cases with Key Symptoms of Quadrupedal Locomotion, Mental Impairment, and Dysarthric or No Speech Author(s): Tan U Abstract sequence, on the lateral and on the diagonals.” This child typically exhibited straight legs during quadrupedal standing. Introduction: Uner Tan syndrome (UTS) consists of A man with healthy legs walking on all fours was quadrupedal locomotion (QL), impaired intelligence discovered by Childs [3] in Turkey, 1917. -
Clarias Gariepinus) Production in Africa
Sudan University of Science and Technology College of animal production Science and Technology Department Of fisheries and wild life science Spawning and Rearing Performance of African Catfish (Clariasgarpinauis )larvae to Fingerlings Stage: by using anural Hormone (CPG) and synisitic Hormones (Ova prim and HCG ) فقس ورعايت سوك القرهىط اﻻفريقي هي طىر اليرقاث إلى طىر اﻻصبعياث بإستخذام الهرهىى الطبيعي )الغذة الٌخاهيت للكارب ( والهرهىًاث الصٌاعيت ) اوفا برين و الغذد التٌاسليت الوشيويت البشريت( A Thesis Submitted in Partial Fulfillment of the Requirement of the B.Sc. Degree in Fisheries and Wildlife Science (Honor) By: Israa Mohammed Abdallah HawazenAbdalrahman Ibrahim Omnia Ibrahim Musa Supervisor: Dr. Asaad H. Widaa October 2016 1 اﻵيــــــــــــــــــــــــــــــــــة ﭧ ﭨ ﭷ ﭸ ﭹ ﭺ ﭻ ﭽ ﯱ ﯲ ﯳ ﯴ ﯵ ﯶ ﯷ ﯸ ﯹ ﯺ ﯻ ﯼ ﯽ ﯾ ﯿ ﰀ ﰁ ﰂ ﰃ ﭼ صدق اهلل العظيم الكهف: ٩٠١ I DEDICATION TO MY LOVELY FAMILY TO ALL TO MY FRIENDS WITH ALL OUR DOAA II Acknowledgement All gratitude is goes to Allah who guided us to bring forth to light this project. We feel indebted to our supervisor Dr.Asaad H. Widaa for his skilful guidance and invaluable suggestion at various stages of this work, we simply cannot find the right words to express our gratitude to him, patience, advice and unlimited support were our light to find out our way throughout the project period. Special thanks are also due to Dr. Mohammed Abdelrahman ,JafeerAllsir ,our uncle Mustafa , Ass. Prof. OmimaNasir ,for their unwavering support and encouragement .Our sincere thanks also extends to all members of our department and faculty. -
Flying Fish! by Guy Belleranti
Name: __________________________________ It's Not a Bird... Not a Plane... It's a Flying Fish! by Guy Belleranti Did you know there is group of fish known as flying fish? Flying fish are found in all the major oceans. There are over 40 known species. They are most common in warmer tropical and sub-tropical areas. Of course, a flying fish doesn't actually fly like a birds does. But it can jump out of the water and glide through the air. How does it do this? First, the flying fish swims near the water's surface. Holding its side (pectoral) fins close to its body, the fish's tail (called the caudal fin) propels the Night fishermen use lights to help them catch torpedo-shaped fish at speeds of 35 to 40 miles flying fish. The fishermen know that flying fish are per hour. The tail is forked, with the lower lobe attracted to the lights so this is a great way to lure longer than the upper lobe. This lower lobe acts the fish to their boats and canoes. like an outboard motor. Angling upward, the fish bursts above the water's surface and into the air. Near Catalina Island, off the coast of California, Then the fish spreads its extra large pectoral fins night tour boats also use lights. But this time the and glides for hundreds of feet. What a great lights are used to attract flying fish for tourists to way to escape predators like mackerel, marlin, see not for fishermen to catch. One type of flying tuna and swordfish! fish that might be seen on these tours is the California flying fish. -
Quantification of Neonicotinoid Pesticides in Six Cultivable Fish Species from the River Owena in Nigeria and a Template For
water Article Quantification of Neonicotinoid Pesticides in Six Cultivable Fish Species from the River Owena in Nigeria and a Template for Food Safety Assessment Ayodeji O. Adegun 1, Thompson A. Akinnifesi 1, Isaac A. Ololade 1 , Rosa Busquets 2 , Peter S. Hooda 3 , Philip C.W. Cheung 4, Adeniyi K. Aseperi 2 and James Barker 2,* 1 Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko P.M.B. 001, Ondo State, Nigeria; [email protected] (A.O.A.); [email protected] (T.A.A.); [email protected] (I.A.O.) 2 School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames KT1 2EE, UK; [email protected] (R.B.); [email protected] (A.K.A.) 3 School of Engineering and the Environment, Kingston University, Kingston-on-Thames KT1 2EE, UK; [email protected] 4 Department of Chemical Engineering, Imperial College, London SW7 2AZ, UK; [email protected] * Correspondence: [email protected] Received: 17 June 2020; Accepted: 24 August 2020; Published: 28 August 2020 Abstract: The Owena River Basin in Nigeria is an area of agricultural importance for the production of cocoa. To optimise crop yield, the cocoa trees require spraying with neonicotinoid insecticides (Imidacloprid, Thiacloprid Acetamiprid and Thiamethoxam). It is proposed that rainwater runoff from the treated area may pollute the Owena River and that these pesticides may thereby enter the human food chain via six species of fish (Clarias gariepinus, Clarias anguillaris, Sarotherodon galilaeus, Parachanna obscura, Oreochromis niloticus and Gymnarchus niloticus) which are cultured in the river mostly for local consumption. -
Dean Oz/Μ: ;Z: Date
The evolutionary history of reproductive strategies in sculpins of the subfamily oligocottinae Item Type Thesis Authors Buser, Thaddaeus J. Download date 26/09/2021 18:39:58 Link to Item http://hdl.handle.net/11122/4549 THE EVOLUTIONARY HISTORY OF REPRODUCTIVE STRATEGIES IN SCULPINS OF THE SUBFAMILY OLIGOCOTTINAE By Thaddaeus J. Buser RECOMMENDED: Dr. Anne Beaudreau Dr. J. Andres Lopez Advisory Committee Chair Dr. Shannon Atkinson Fisheries Division Graduate Program Chair APPROVED: Dr. Michael Castellini ·. John Eichel erger Dean oZ/µ:_;z: Date THE EVOLUTIONARY HISTORY OF REPRODUCTIVE STRATEGIES IN SCULPINS OF THE SUBFAMILY OLIGOCOTTINAE A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of Title Page MASTER OF SCIENCE By Thaddaeus J. Buser, B.Sc. Fairbanks, Alaska May 2014 v Abstract The sculpin subfamily Oligocottinae is a group of 17 nearshore species and is noteworthy for the fact that it contains both intertidal and subtidal species, copulating and non- copulating species, and many species with very broad geographic ranges. These factors, as well as the consistency with which the constituent genera have been grouped together historically, make the Oligocottinae an ideal group for the study of the evolution of a reproductive mode known as internal gamete association (IGA), which is unique to sculpins. I conducted a phylogenetic study of the oligocottine sculpins based on an extensive molecular dataset consisting of DNA sequences from eight genomic regions. From the variability present in those sequences, I inferred phylogenetic relationships using parsimony, maximum likelihood, and Bayesian inference. Results of these phylogenetic analyses show that some historical taxonomy and classifications require revision to align taxonomy with evolutionary relatedness. -
Amphibious Fish Jump Better on Land After Acclimation to a Terrestrial Environment Emily M
© 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 3204-3207 doi:10.1242/jeb.140970 SHORT COMMUNICATION Amphibious fish jump better on land after acclimation to a terrestrial environment Emily M. Brunt1, Andy J. Turko1, Graham R. Scott2 and Patricia A. Wright1,* ABSTRACT We tested the hypothesis that plastic changes in the skeletal Air and water differ dramatically in density and viscosity, posing muscle of adult amphibious fishes during terrestrial acclimation different biomechanical challenges for animal locomotion. We asked improve locomotory performance. This hypothesis predicts that fish – how terrestrial acclimation influences locomotion in amphibious fish, acclimated to a terrestrial environment and that experience – specifically testing the hypothesis that terrestrial tail flip performance increased effective gravity should have improved movement is improved by plastic changes in the skeletal muscle. Mangrove capacity and associated plastic changes to the skeletal muscle rivulus Kryptolebias marmoratus, which remain largely inactive out of compared with individuals maintained solely in water, where they water, were exposed to water or air for 14 days and a subgroup of are buoyant and effectively weightless. We studied K. marmoratus, air-exposed fish was also recovered in water. Tail flip jumping an amphibious fish that moves on land by tail flip jumping (Taylor, performance on land improved dramatically in air-acclimated fish, 2012; Pronko et al., 2013), tolerates emersion for up to 66 days in they had lower lactate levels compared with control fish, and these the laboratory and has been found packed into rotting logs in the dry effects were mostly reversible. Muscle plasticity significantly season (Taylor, 2012). -
A Dissertation Entitled Evolution, Systematics
A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could -
Multilocus Molecular Phylogeny of the Suckermouth Armored Catfishes
Molecular Phylogenetics and Evolution xxx (2014) xxx–xxx Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae ⇑ Nathan K. Lujan a,b, , Jonathan W. Armbruster c, Nathan R. Lovejoy d, Hernán López-Fernández a,b a Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada b Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada c Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA d Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada article info abstract Article history: The Neotropical catfish family Loricariidae is the fifth most species-rich vertebrate family on Earth, with Received 4 July 2014 over 800 valid species. The Hypostominae is its most species-rich, geographically widespread, and eco- Revised 15 August 2014 morphologically diverse subfamily. Here, we provide a comprehensive molecular phylogenetic reap- Accepted 20 August 2014 praisal of genus-level relationships in the Hypostominae based on our sequencing and analysis of two Available online xxxx mitochondrial and three nuclear loci (4293 bp total). Our most striking large-scale systematic discovery was that the tribe Hypostomini, which has traditionally been recognized as sister to tribe Ancistrini based Keywords: on morphological data, was nested within Ancistrini. This required recognition of seven additional tribe- Neotropics level clades: the Chaetostoma Clade, the Pseudancistrus Clade, the Lithoxus Clade, the ‘Pseudancistrus’ Guiana Shield Andes Mountains Clade, the Acanthicus Clade, the Hemiancistrus Clade, and the Peckoltia Clade. -
Louisiana's Animal Species of Greatest Conservation Need (SGCN)
Louisiana's Animal Species of Greatest Conservation Need (SGCN) ‐ Rare, Threatened, and Endangered Animals ‐ 2020 MOLLUSKS Common Name Scientific Name G‐Rank S‐Rank Federal Status State Status Mucket Actinonaias ligamentina G5 S1 Rayed Creekshell Anodontoides radiatus G3 S2 Western Fanshell Cyprogenia aberti G2G3Q SH Butterfly Ellipsaria lineolata G4G5 S1 Elephant‐ear Elliptio crassidens G5 S3 Spike Elliptio dilatata G5 S2S3 Texas Pigtoe Fusconaia askewi G2G3 S3 Ebonyshell Fusconaia ebena G4G5 S3 Round Pearlshell Glebula rotundata G4G5 S4 Pink Mucket Lampsilis abrupta G2 S1 Endangered Endangered Plain Pocketbook Lampsilis cardium G5 S1 Southern Pocketbook Lampsilis ornata G5 S3 Sandbank Pocketbook Lampsilis satura G2 S2 Fatmucket Lampsilis siliquoidea G5 S2 White Heelsplitter Lasmigona complanata G5 S1 Black Sandshell Ligumia recta G4G5 S1 Louisiana Pearlshell Margaritifera hembeli G1 S1 Threatened Threatened Southern Hickorynut Obovaria jacksoniana G2 S1S2 Hickorynut Obovaria olivaria G4 S1 Alabama Hickorynut Obovaria unicolor G3 S1 Mississippi Pigtoe Pleurobema beadleianum G3 S2 Louisiana Pigtoe Pleurobema riddellii G1G2 S1S2 Pyramid Pigtoe Pleurobema rubrum G2G3 S2 Texas Heelsplitter Potamilus amphichaenus G1G2 SH Fat Pocketbook Potamilus capax G2 S1 Endangered Endangered Inflated Heelsplitter Potamilus inflatus G1G2Q S1 Threatened Threatened Ouachita Kidneyshell Ptychobranchus occidentalis G3G4 S1 Rabbitsfoot Quadrula cylindrica G3G4 S1 Threatened Threatened Monkeyface Quadrula metanevra G4 S1 Southern Creekmussel Strophitus subvexus -
Human Hands-And-Knees Crawling Movement Analysis Based on Time-Varying Synergy and Synchronous Synergy Theories
Mathematical Biosciences and Engineering, 16(4): 2492–2513. DOI: 10.3934/mbe.2019125 Received: 24 December 2018 Accepted: 06 March 2019 Published: 22 March 2019 http://www.aimspress.com/journal/MBE Research article Human hands-and-knees crawling movement analysis based on time-varying synergy and synchronous synergy theories Teng Li , Xiang Chen *, Shuai Cao , Xu Zhang and Xun Chen Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230026, Anhui, P.R. China * Correspondence: Email: [email protected]. Abstract: This paper aims to investigate human hands-and-knees crawling movement from the aspect of synchronous (SYN) and time-varying (TV) muscle synergy analysis. Nine healthy children and 11 children with cerebral palsy were recruited. During hands-and-knees crawling, surface electromyography (sEMG) signals from 12 main muscles of upper limbs and trunk were recorded, and muscle synergies were extracted based on TV synergy and SYN synergy theories. From the perspectives of repeatability, symmetry and similarity, the abilities of these two types of synergies to characterize crawling movement and to distinguish normal and abnormal crawling were explored. We found that: First, SYN synergy is better than TV synergy in depicting the body symmetry during crawling movement. However, TV synergy is more suitable than SYN synergy for distinguishing normal and abnormal crawling from the perspective of symmetry. Second, the abilities of SYN synergy and TV synergy in depicting the crawling repeatability are not comparable, and both have the potential to depict the crawling abnormality from the perspective of repeatability. Third, from the angle of inter-subject similarity, SYN synergy has the potential to describe the abnormal crawling pattern. -
Peces De La Quebrada El Venado En El Valle Del Cauca, Colombia Autores: Carlos E
rgaaditorial Programa La Universidad del Valle - Sede Pacífico, consciente de que la producción, análisis, publicación y diseminación del conocimiento es una de las herramientas necesarias para la protección, aprovechamiento y uso sostenible del recurso ictiológico, la fauna y flora asociada a este recurso y los ecosistemas involucrados dentro del contexto de la conservación biológica y natural, entrega a la comunidad en general esta guía de peces de la quebrada El Venado, luego de un trabajo de investigación científica financiado por la Universidad del Valle, como un instrumento útil para reconocer algunas de las especies de peces continentales, tanto de origen marino como de agua dulce, presentes en este afluente. La obra muestra la estructura de la quebrada, algunos datos conocidos de varios peces locales y sus correspondientes imágenes en estado vivo, con toda su coloración real. Se espera que la publicación se convierta en un texto de consulta de pescadores, turistas de la naturaleza, funcionarios públicos y gubernamentales, docentes y estudiantes de los peces, profesionales y aficionados del medio ambiente, y público interesado en esta temática. El enfoque divulgativo de esta publicación busca generar e incrementar en el lector el interés y la necesidad de actuar en beneficio de nuestros recursos y ecosistemas naturales. La Universidad del Valle - Sede Pacífico, consciente de que la producción, análisis, publicación y diseminación del conocimiento es una de las herramientas necesarias para la protección, aprovechamiento y uso sostenible del recurso ictiológico, la fauna y flora asociada a este recurso y los ecosistemas involucrados dentro del contexto de la conservación biológica y natural, entrega a la comunidad en general esta guía de peces de la quebrada El Venado, luego de un trabajo de investigación científica financiado por la Universidad del Valle, como un instrumento útil para reconocer algunas de las especies de peces continentales, tanto de origen marino como de agua dulce, presentes en este afluente.