Insert Report Title Here

Total Page:16

File Type:pdf, Size:1020Kb

Insert Report Title Here Vegetable biosecurity & quarantine gap analysis Prue McMichael Scholefield Robinson Horticultural Services Pty Ltd Project Number: VG07087 VG07087 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the vegetable industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the vegetable industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 1849 X Published and distributed by: Horticulture Australia Ltd Level 7 179 Elizabeth Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 E-Mail: [email protected] © Copyright 2008 FINAL REPORT Vegetable Biosecurity and Quarantine Gap Analysis VG07087 Prepared for : Horticulture Australia Ltd HAL Project No. VG07087 Prepared by : Prue McMichael Completion Date : September 2008 SCHOLEFIELD ROBINSON HORTICULTURAL SERVICES PTY LTD 118A Glen Osmond Road, Parkside SA 5063 Australia ACN 008 199 737 PO Box 650, Fullarton SA 5063 Ph: (08) 8373 2488 ABN 63 008 199 737 Fax: (08) 8373 2442 Email: [email protected] Web Site: www.srhs.com.au Offices in Adelaide and Mildura Scholefield Robinson Horticultural Services Pty Ltd HAL Project No. VG 07087 PROJECT LEADER Dr Prue McMichael Senior Consultant/Plant Pathologist Scholefield Robinson Horticultural Services Pty Ltd PO Box 650 Fullarton SA 5063 PURPOSE OF REPORT This Final Report has been prepared to document information acquired, analysed and considered during the review undertaken for HAL, into all aspects of the biosecurity of Australia’s vegetable industries that are members of AUSVEG. The Final Report includes identification of biosecurity gaps and recommendations for industry, research partners and government authorities who together drive and influence on-farm, regional and national biosecurity. ACKNOWLEDGMENTS This research has been supported by HAL and levy contributions from AUSVEG. Many HAL, PHA, industry and government members have provided significant time and input to the project and we acknowledge the importance of their insights and contributions. I am particularly grateful for the support and input of Kim James (HAL). I also acknowledge the contributions of my colleagues at Scholefield Robinson who collectively and significantly contributed significantly to this review. Specific thanks to Peter Scholefield, Lauren Thompson, Kate Delaporte, Anne-Marie Broughton and Sarah Kivi. DISCLAIMER Any recommendations contained in this publication do not necessarily represent current HAL Limited policy. No person should act on the basis of the contents of this publication, whether as to matters of fact or opinion or other content, without first obtaining specific, independent professional advice in respect of the matters set out in this publication. SEPTEMBER 2008 Report : HAL - Vegetable Biosecurity & Quarantine Gap Analysis (Project VG07087), September 2008 Page ii Scholefield Robinson Horticultural Services Pty Ltd TABLE OF CONTENTS Glossary........................................................................................................................................................5 Media Summary ........................................................................................................................................10 Technical Summary ..................................................................................................................................11 1 General Introduction....................................................................................................................12 2 Australia’s Vegetable Industry ...................................................................................................13 2.1 The Changing Environment in which our Vegetable Industries are Operating ............................................ 13 2.2 Relevant Vegetable Industry Statistics ......................................................................................................... 14 3 Biosecurity and Quarantine.........................................................................................................19 3.1 Background................................................................................................................................................... 19 3.2 Informed General Plant Biosecurity ............................................................................................................. 20 3.3 Informed Biosecurity and Market Access..................................................................................................... 20 3.4 Informed Biosecurity Regulations and Food Safety ..................................................................................... 21 3.5 Nature of Plant Biosecurity Threats.............................................................................................................. 22 3.6 Sources of Plant Biosecurity Threats............................................................................................................ 24 3.7 International Regulatory Responses to Phytosanitary Threats...................................................................... 26 4 The Import Process ......................................................................................................................27 4.1 Import Conditions Database – ICON............................................................................................................ 28 4.2 Import Permits (AQIS) ................................................................................................................................. 29 4.3 Biosecurity Gaps in the Import System ........................................................................................................ 29 5 The Export Process.......................................................................................................................33 5.1 Understanding our International Obligations in Exporting........................................................................... 33 5.2 Relevant ISPMs for Australian Vegetable Exporters.................................................................................... 33 5.3 The Export Process in Australia ................................................................................................................... 34 5.4 The Export Documentation System (EXDOC)............................................................................................. 34 5.5 Phytosanitary Certificates............................................................................................................................. 35 5.6 PHYTO Database ......................................................................................................................................... 35 5.7 Australian Plant Pest Database (APPD) ....................................................................................................... 35 5.8 Phytosanitary Biosecurity and Quarantine Gaps in the Export System ........................................................ 36 5.9 Regulatory Biosecurity Gaps and Impediments in the Export System ......................................................... 40 6 Microbiological Biosecurity Threats: Features & Importance by Commodity Types...........42 6.1 Seed .............................................................................................................................................................. 42 6.2 Fresh Produce ............................................................................................................................................... 46 7 Regulatory Biosecurity Gaps Relevant to Vegetable Crops and their Production Inputs...........53 7.1 Regulatory Measures .................................................................................................................................... 53 7.2 Input Security ............................................................................................................................................... 56 7.3 Public Confidence......................................................................................................................................... 60 8 General Systems in place for the Management of Vegetable Biosecurity.......................................60 8.1 Pre-Border Activities in Biosecurity Management....................................................................................... 63 8.2 Border Activities in Biosecurity Management.............................................................................................. 65 8.3 Post-Border Activities in Biosecurity Management ..................................................................................... 66 Report : HAL - Vegetable Biosecurity & Quarantine Gap Analysis (Project VG07087), September 2008 Page 1 Scholefield Robinson Horticultural Services Pty Ltd 9 Gaps in Current Biosecurity Systems.........................................................................................71 9.1 Surveillance .................................................................................................................................................
Recommended publications
  • Molecular Basis of Pheromonogenesis Regulation in Moths
    Chapter 8 Molecular Basis of Pheromonogenesis Regulation in Moths J. Joe Hull and Adrien Fónagy Abstract Sexual communication among the vast majority of moths typically involves the synthesis and release of species-specifc, multicomponent blends of sex pheromones (types of insect semiochemicals) by females. These compounds are then interpreted by conspecifc males as olfactory cues regarding female reproduc- tive readiness and assist in pinpointing the spatial location of emitting females. Studies by multiple groups using different model systems have shown that most sex pheromones are synthesized de novo from acetyl-CoA by functionally specialized cells that comprise the pheromone gland. Although signifcant progress was made in identifying pheromone components and elucidating their biosynthetic pathways, it wasn’t until the advent of modern molecular approaches and the increased avail- ability of genetic resources that a more complete understanding of the molecular basis underlying pheromonogenesis was developed. Pheromonogenesis is regulated by a neuropeptide termed Pheromone Biosynthesis Activating Neuropeptide (PBAN) that acts on a G protein-coupled receptor expressed at the surface of phero- mone gland cells. Activation of the PBAN receptor (PBANR) triggers a signal trans- duction cascade that utilizes an infux of extracellular Ca2+ to drive the concerted action of multiple enzymatic steps (i.e. chain-shortening, desaturation, and fatty acyl reduction) that generate the multicomponent pheromone blends specifc to each species. In this chapter, we provide a brief overview of moth sex pheromones before expanding on the molecular mechanisms regulating pheromonogenesis, and con- clude by highlighting recent developments in the literature that disrupt/exploit this critical pathway. J. J. Hull (*) USDA-ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA e-mail: [email protected] A.
    [Show full text]
  • Pest and Diseases in Mango (Mangifera Indica L.) J
    PEST AND DISEASES IN MANGO (MANGIFERA INDICA L.) J. González-Fernández, J.I. Hormaza IHSM la Mayora CSIC-UMA, 29750 Algarrobo, Malaga, Spain EXECUTIVE SUMMARY In this work, we review the most important pests and diseases that affect mango production worldwide as well as the main measures implemented to control them. Pests and diseases are the main factors that can impact sustainable mango fruit production in the tropics and subtropics worldwide. Commercial cultivation of mango, characterized by expansion to new areas, changing crop management, replacement of varieties and increased chemical interventions, has altered significantly the pest and disease community structure in this crop in the different mango producing regions. In addition, climate change is inducing the emergence of new pests and, whereas globalization and trade liberalization have created wide opportunities for mango commercialization growth, at the same time, this can result in faster dispersion of pests and diseases among different mango growing areas if proper sanitary measures are not implemented. This review covers different topics related to pests and diseases in mango. First, a thorough description of the main pests and diseases that affect mango is provided. Second, the different approaches used in different mango producing countries for chemical and biological control are described. Third, recommendations for appropriate mango management techiques that include integrated pest and disease management, reduction in the use of chemicals and the implementation of a good monitoring and surveillance system to help control the main pests and diseases, are also discussed. Finally, the current knowledge on agrohomeopathy and Korean Natural Farming is analyzed and recommendations on future lines of research to optimize mango pest and disease control are discussed.
    [Show full text]
  • Downloaded from BOLD Or Requested from Other Authors
    www.nature.com/scientificreports OPEN Towards a global DNA barcode reference library for quarantine identifcations of lepidopteran Received: 28 November 2018 Accepted: 5 April 2019 stemborers, with an emphasis on Published: xx xx xxxx sugarcane pests Timothy R. C. Lee 1, Stacey J. Anderson2, Lucy T. T. Tran-Nguyen3, Nader Sallam4, Bruno P. Le Ru5,6, Desmond Conlong7,8, Kevin Powell 9, Andrew Ward10 & Andrew Mitchell1 Lepidopteran stemborers are among the most damaging agricultural pests worldwide, able to reduce crop yields by up to 40%. Sugarcane is the world’s most prolifc crop, and several stemborer species from the families Noctuidae, Tortricidae, Crambidae and Pyralidae attack sugarcane. Australia is currently free of the most damaging stemborers, but biosecurity eforts are hampered by the difculty in morphologically distinguishing stemborer species. Here we assess the utility of DNA barcoding in identifying stemborer pest species. We review the current state of the COI barcode sequence library for sugarcane stemborers, assembling a dataset of 1297 sequences from 64 species. Sequences were from specimens collected and identifed in this study, downloaded from BOLD or requested from other authors. We performed species delimitation analyses to assess species diversity and the efectiveness of barcoding in this group. Seven species exhibited <0.03 K2P interspecifc diversity, indicating that diagnostic barcoding will work well in most of the studied taxa. We identifed 24 instances of identifcation errors in the online database, which has hampered unambiguous stemborer identifcation using barcodes. Instances of very high within-species diversity indicate that nuclear markers (e.g. 18S, 28S) and additional morphological data (genitalia dissection of all lineages) are needed to confrm species boundaries.
    [Show full text]
  • Citrus Industry Biosecurity Plan 2015
    Industry Biosecurity Plan for the Citrus Industry Version 3.0 July 2015 PLANT HEALTH AUSTRALIA | Citrus Industry Biosecurity Plan 2015 Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2004 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2004) Industry Biosecurity Plan for the Citrus Industry (Version 3.0 – July 2015). Plant Health Australia, Canberra, ACT. Disclaimer: The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific and independent professional advice.
    [Show full text]
  • Biosecurity Risk Assessment
    An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries RIRDC Publication No. 11/141 RIRDCInnovation for rural Australia An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries by Dr Robert C Keogh February 2012 RIRDC Publication No. 11/141 RIRDC Project No. PRJ-007347 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-320-8 ISSN 1440-6845 An Invasive Risk Assessment Framework for New Animal and Plant-based Production Industries Publication No. 11/141 Project No. PRJ-007347 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,765,697 B2 Wilson Et Al
    US00876 5697B2 (12) United States Patent (10) Patent No.: US 8,765,697 B2 Wilson et al. (45) Date of Patent: *Jul. 1, 2014 (54) PESTICIDE COMPOSITIONS EXHIBITING 6,001,981 A 12/1999 DeAmicis et al. ENHANCED ACTIVITY 6,090,399 A 7/2000 Ghosh et al. 6,143,526 A 11/2000 Baltz et al. 6,455,504 B1 9, 2002 Lewer et al. (75) Inventors: Stephen L. Wilson, Indianapolis, IN 6,585,990 B1 7/2003 Huang (US); Lei Liu, Carmel, IN (US); James 6,733,802 B1 5/2004 Moorty et al. D. Thomas, Fishers, IN (US); Raymond 6,919,464 B1 7/2005 Crouse et al. E. Boucher, Jr., Lebanon, IN (US); 6,927.210 B1* 8/2005 Thompson et al. ............. 514, 28 6,955,818 B1 10/2005 Hacket et al. James E. Dripps, Carmel, IN (US); 2003, OO82236 A1 5/2003 Mathiowitz et al. Margaret S. Kempe, Greenfield, IN 2003. O108585 A1 6/2003 Roe et al. (US) 2003. O138500 A1 7/2003 Parker et al. 2005, 0112235 A1 5/2005 Shefer et al. (73) Assignee: Dow AgroSciences, LLC., Indianapolis, 2005/0203034 A1 9, 2005 Ahn et al. 2007/0020304 A1 1/2007 Tamarkin et al. IN (US) 2007/0104.750 A1 5/2007 Wilson et al. 2007/0280981 A1 12/2007 Birthsel (*) Notice: Subject to any disclaimer, the term of this 2008.0031832 A1 2/2008 Wakefield et al. patent is extended or adjusted under 35 2008. O108800 A1 5/2008 Podhorez et al. U.S.C. 154(b) by 114 days.
    [Show full text]
  • BSES Limited
    BSES Limited REVIEW OF MOTH-BORER RESISTANCE SCREENING AND REPORT ON VISIT TO SASRI by Peter Samson SR09004 Contact: Peter Samson Principal Entomologist BSES Limited PMB 57 Mackay Mail Centre, Q 4741 Telephone: 07 4963 6815 Facsimile: 07 4954 5167 Email: [email protected] BSES is not a partner, joint venturer, employee or agent of SRDC and has no authority to legally bind SRDC, in any publication of substantive details or results of this Project. BSES Limited Publication Study Tour Report SR09004 November 2009 Copyright © 2009 by BSES Limited All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of BSES Limited. Warning: Our tests, inspections and recommendations should not be relied on without further, independent inquiries. They may not be accurate, complete or applicable for your particular needs for many reasons, including (for example) BSES Limited being unaware of other matters relevant to individual crops, the analysis of unrepresentative samples or the influence of environmental, managerial or other factors on production. Disclaimer: Except as required by law and only to the extent so required, none of BSES Limited, its directors, officers or agents makes any representation or warranty, express or implied, as to, or shall in any way be liable (including liability in negligence) directly or indirectly for any loss, damages, costs, expenses or reliance arising out of or in connection with, the accuracy, currency, completeness or balance of (or otherwise), or any errors in or omissions from, any test results, recommendations statements or other information provided to you.
    [Show full text]
  • INFESTATION of POMELO FRUIT BORER Citripestis Sagittiferella (Moore) (Lepidoptera: Pyralidae) in VIETNAM and the EFFECT of COMPACT FLUORESCENT LAMP AS a REPELLENT
    INFESTATION OF POMELO FRUIT BORER Citripestis sagittiferella (Moore) (Lepidoptera: Pyralidae) IN VIETNAM AND THE EFFECT OF COMPACT FLUORESCENT LAMP AS A REPELLENT Le Quoc Dien1, Nguyen Thi Kim Thoa1, Nguyen Van Hoa1 , Nguyen Minh Chau1 and Nguyen Thi Thu Cuc2 1 Southern Horticultural Research Institute, Long Dinh, Chau Thanh, Tien Giang, Vietnam, Email: Dien72@ hotmail.com. 2 College of Agriculture & Applied Biology, Can Tho University, Can Tho city, Vietnam 1. INTRODUCTION Pomelo culture has significantly played a key role in the Mekong Delta economy The Mekong Delta accounted for about 85% of the Viet Nam citrus production (MARD, 2010). 2011, pomelo fruit borer Citripestis sagittiferella (Moore) has started spreading and causing severe damage across all planted areas in Mekong delta as Ben Tre, Tien Giang, Soc Trang, Vinh Long, Bac Lieu, Can Thơ city and spacial và specially on Hau Giang (PPD, 2013). This specices also has started spreading Indonesia, Philippines, Thai Land and Malaysia. Control fruit borer ? Insect parasite, Rhoptromeris sp. (Hymenoptera: Eucoilidae) plays an important role in the control of Citripestis sagittiferrella on lemon at University Pertanian Malaysia orchard. At 24% larval parasitism was estimated from larvae collelcted in the field. Field studies to evaluate the effectiveness of malathion 50 EC emulsifiable concentrate sprayed to trees at 0.1% a.i. active ingredient show that the percentage of fruits attacked was nuch more higher in the sprayed block than that of the unsprayed block (Hussein and Rahman (1981). Insect visual systems to find out about the abililty to detect objects, colours, movement, prey or conspecifics using the properties of light provides an incredible spatial advantage as critical information is collected and responded to from an extended scene.
    [Show full text]
  • Field Guide to Pests, Beneficials, Diseases and Disorders of Mangoes
    E D I U G D L E I F Pests, Beneficials, Diseases and Disorders of Mangoes PDF View, search and navigate This PDF has been created specifically for on-screen display, e-mail, and internet use. SCREEN VIEW The page view of this electronic document has been automatically set to ‘Fit Screen Page’ and viewed as facing pages. To view as single pages go to: VIEW tab > Select PAGE LAYOUT > Choose Single page. Viewing options can be modified using the shortcut keys below. SHORTCUT KEYS ACTION Ctrl+0 (Zero) FIT PAGE Ctrl+M Zooms to selected sizes Ctrl+L FULL SCREEN MODE SEARCH OPTIONS Ctrl+F Search for keywords or terms Shortcuts provided may vary depending on software installed on your computer. NAVIGATION BOOKMARKS - The Bookmark panel located on the left hand side can be used to jump to topic destinations in the PDF (just click on bookmark listing). QUICK LINKS - Topics listed on the contents page have quick links and when clicked on will take you directly to the topic page. PRINT OPTIONS For optimal print it is recommended that this document is printed double sided on A4 paper (select portrait and flip on long edge settings), set your print page scaling to ‘Fit to Printer Margins'. Ctrl+P To Print Choose File > Print Setup (Windows) or File > Page Setup (Mac OS) choose A4 paper size, page orientation (portrait), and other general printing options including instructions mentioned above. Print options will vary on diffferent printers and drivers being used. FIELD GUIDE to Pests, Beneficials, Diseases and Disorders of Mangoes December 2010 Northern Territory Government Department of Resources GPO Box 3000, Darwin NT 0801, AUSTRALIA © Copyright, Northern Territory Government 2010 Disclaimer While all care has been taken to ensure that information contained in this booklet is true and correct at the time of publication, the Northern Territory of Australia gives no warranty or assurance, and makes no representation as to the accuracy of any information or advice contained in this publication, or that it is suitable for your intended use.
    [Show full text]
  • EU Project Number 613678
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................
    [Show full text]
  • Identification of Natural Enemy in Stem Borers Complex in Sugar Cane at Tendaho Sugar Factory, Ethiopia
    Int. J. Adv. Res. Biol. Sci. (2019). 6(1): 25-32 International Journal of Advanced Research in Biological Sciences ISSN: 2348-8069 www.ijarbs.com DOI: 10.22192/ijarbs Coden: IJARQG(USA) Volume 6, Issue 1 - 2019 Research Article DOI: http://dx.doi.org/10.22192/ijarbs.2019.06.01.003 Identification of Natural Enemy in Stem Borers Complex in Sugar cane at Tendaho Sugar Factory, Ethiopia. Kidane T/Michael1*, Bayeh Mulatu2 and Mulugeta Negeri3 1Ethiopian Sugar Corporation, Research and Development, P. O. Box 15, Wonji, Ethiopia 2Ethiopia Food and Agricultural Organization (FAO) Addis Ababa, Ethiopia 3Department of Plant science, Ambo University, Ambo P. O. Box 19, Ethiopia *Corresponding Author: [email protected] Abstract Field study was conducted in Tendaho sugarcane plantation to identify the natural enemy of stalk borers under field condition using four commercial sugarcane varieties during 2013/14 cropping season. From 98 surveyed fields, a total of two different cotesia species were identified. the two species of natural enemy of stalk borers: Cotesia flavies and Cotesia sesamiae were recorded at Tendaho. Among these species, Cotesia flavies were the most dominant species. Among the different factors considered variety and cuttings had a significant effect on parasitism of stalk borer. Parasitism of stalk borer increased in the season. Among the different cuttings, ratoon had a significant variation in stalk borer larvae parasitism. Moreover, among the varieties, NCO334 had showed significant variation in percent parasitism of stalk borer larvae as compared to the other varieties in the plantation. as well as, in terms of percent parasitism of stalk borer larvae in the varieties B52/298, NCO334 and N14 showed no significant variation.
    [Show full text]
  • Biocontrol of Insect Pests of Sugarcane (Saccharum Sp
    BIOCONTROL OF INSECT PESTS OF SUGARCANE ( SACCHARUM SP .) By *Zia-ul-Hussnain, Asia Naheed and Saadia Rizwana *Shakarganj Sugar Research Institute, Jhang, PAKISTAN ABSTRACT Sugarcane ( Saccharum sp.) crop is habitat of more than 1500 species of insects in the sugar world. Amongst these borers like Scirpophaga excerptalis , Chilo infuscatellus , Emmalocera depresella , Acigona steniellus and sucking insect pest Pyrilla perpusilla are major devastators to cause considerable loss in yield and quality of the crop. In our country primary and secondary insect pests species identified were 11, while parasites and predators species were 14 in cane fields. Studies revealed that with 75 % infestation of borers, sucrose recovery was 52 % lower. Field data on infestation of Pyrilla perpusilla showed that decline in cane yield was 18%. Biocontrol of insect pest of sugarcane crop through artificial rearing of Trichogramma chilonis was initiated from 1999 and for Chrysoperla carnea from 2002 at the institute . Results of the field studies revealed that under unreleased area of Trichogramma chilonis, the infestation of borers was 11.65% and in the released area it was 2.74 %. The acreage covered with the released of the parasites was more than 50 thousands from last five years in cane growing areas of Shakarganj Mills. It was observed that under controlled conditions Chrysoperla carnea larvae predated 80% eggs of Pyrilla perpusilla . Efficiency of biocontrol of the insect pest can be improved only with integrated management practices of the crop identified, these are resistant varieties, alternate planting dates, trash blanketing of ratoon crop, early harvesting, balanced fertigation, pest-free seed cane and field monitoring.
    [Show full text]