Nobelium: Tracer Chemistry of the Divalent and Tri-Valent Ions

Total Page:16

File Type:pdf, Size:1020Kb

Nobelium: Tracer Chemistry of the Divalent and Tri-Valent Ions Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title NOBELIUM: TRACER CHEMISTRY OF THE DIVALENT AND TRI-VALENT IONS Permalink https://escholarship.org/uc/item/9bv6z274 Authors Maly, Jaromir Sikkeland, Torbjorn Silva, Robert et al. Publication Date 2008-04-18 eScholarship.org Powered by the California Digital Library University of California TWO-WEEK LOAN COPY t lr,' ." ' "" i".&,$l~~ -""a"&*,, ! This is a Library Circulating Copy > I which may be borrowed for two weeks. , i-. o~~:*~~ For ar personal retention copy, call Tech. Info. Diuisisn, Ext. 5545 Subaitted to Science Lawrence Radiation Laboratory Berkeley, California AEC Contract No. w-7405-eng-48 NOBELIUPIZ: TRACER CHETrIISTRY OF TH3 DIVmuT MID TRIVALENT IONS Jaronir Maly, Torbjorn Sikkeland, Robert Silva, and Albert Ghiorso February 1968 - - Submitted to SCIENCE NOBELIUM: TRACER CHZMISTRY OF THE DIVALEXVT AND llRIVALEEIT IONS (1) Jaromir Maly (2), Torbjorn Sikkeland, Robert Silva and Albert Ghiorso Author - note: The authors are with the Nuclear Chemistry Division, Lawrence Radiation Laboratory, University oi Califor~ia,Berkeley, Calif'arnia. -2 - uc1zr,-1~9g5 Abstract- In the absence of oxidizing or mducing agents the chr3nas3graphic and ~op~ecipitationbehavior of element 102 is similar to that of the alkill.ine earth elements. After oxidation with ceric ions, the behavior is that expected of a trivalent actinide. Our conclusion is that nobelium is the first actinid.? for which the +2 oxidation state is the? most stable species in aqueous 531iiii31. Results of the first attempts (3) and other m3re recent eff3rts (11.) t=, study the chemistry of element 1.02 sugges.Led the chemical behavior af n~beliurn to be that of a +3 actinide elenlent. On the other hand, new results indicated an increasing tendency toward formation of t2 states with increasing Z by the +2 heavy actinides (5) and this was confirmed by the discovery of the Md ion (6,7). These results suggested that nobeXium might exhibit a fairly stable divalent state in addition to the expected thvalent state. The recent discovery of 255~o,with an 'alpha half-life and decay energy of approximately 3 minutes and 8.1 MeV (8,9,10), has made.it pxis2ble to carry out tracer chemistry on element 102 (11). The short half-life and law yield of 255~oatoms per experiinent compelled us to modify and develop fast chemical procedures so that the total time necessary for separation, chemical study and preparation of a source suitable for alpha energy analysis would be less than 10 minutes. These procedures included chromatographic methods for the stGdy of - sin&-atom behavior and me-step coprecipitation reactions. As only a few 25'~o decays were observed per experiment, it was necessary to repeat each set af exgerlments 10-20 tlrnes in order to obtain statistically significant results. Experimental Procedures and Results a, Production and Identif icatim Th; 255~owas produced by i rradiating a 0.8 mg/cz -thick plutonium 16 target s'lpporte? by a 1-mil thick Be foil with 0 ions from the Berkeley SILK. 244 The isotopic composition 33 the target in atom percent was Pu - 71k.21, 2112~~ 2sopu - 25.32, 241~u - 0.094, - 0.312, 239~u- 0.064 and.238~11- 0.002. 2 The bean: currsnt was 2-1: parnps over an area of 9.2 cm . The n~beliwatam recoiling from the target were stopped in IIc gas ulld trbansfcrwd to u p1at;inum catcher foil by gas jet as described elsewhere ( 9912). '!he maximum yield was abtained at an oxygen-ion energy of approxinmtely 97 MeV as expected for the 244 15 PU( 0,5n)~~~~oreaction. The average number of muntable atoms at 50;b * geometry on the catcher foil at the beginning of the chemical operations was determined, from 36 measurements, to be 6.020.5 a ct~/~am~of beam. The 255~owas identified by its alpha decay energy. The alpha spectrum is known to be coxplex and there' is'good indication of more than one alpha group spread over energies of 7.7 to 8.25 MeV. A composite decay curve of this energy range was constructed from 36 measurements and gave a half -life of 3.620.5 minutes. Subportions of the rmin alpha spectrum gave half -liv?s in general agreement with the corrposite val~~eso all alphas from yer( to 8.25 MeV in energy vere assued to come from 255~o. b. Electrodeposition The first evidence of unexpected behavior for No was fo~mdduring cathadic electmdeposi tion experimnts using standard procedures (13). In these experiments the No atoms were washed from the catcher foil wrth a saturated NH4C1 plating solution containing tracer quantities of the radio- active elenrnts to be compared with the No. During plating the pH is very hi2h near the- cath~deand tracers are known to be deposited in approximately inverse proporcl3n to the solubility of their hydroxides, In Table 1 is shgwn the pcrce~ltof tracers and nobelium that vere ylated (14). Also shmn is the nu~5erof 255~oelpha decays observzd per number of decays -.xge;trd. The latter was compi~tec!Por each experimnt Pr~mthe average nlmber af co~intabl-t. ak2.11 1.3 the famer rather than the latter elemnts. c . 'Chloride-- Volatility In these experlnients the volatility of nobelium chloride was cmpered to the valatility of tracer quaxtities of Pa, Am, Th, Pb ocd Iia by heating 0 thc platinum catcher foil to - 1039 C with a. Bunsen fl-art. alter conwrsioti ts the chlorides by evaporation to dryness with HC1. ?'he results in able 1 indicate that na'oelium does not exhibit an unusually volatile chloride as does d, Catioc Exchange Column o Our atteinpt.~to elute No from 2 heatec? (83 c), &vex 50x12 ion exchztigs resir, col~unnui tk: amrzmium alpha-hydr~xyisobutyratein the predicted preeinsteiniux elution position (15) we E unsuccessful. The procedure was to first elu& the tracer +3 actinide ions with Z higher than A-n with 8 drops of dilute eluting solution (0.3?4,- pH 4.0) and then to elute Am and se-feral lawer Z elements (~b,Sr, Ra, Ac and ~e)with 8 drops of concentrated eluting solution (1.9~) pH 4.8). The results given in Table 2 .cleaily show that No was not eluted bef me Am. An elution position for No relative to tracer quantities of Y, Sr, 3a 3 and R& B~Sjbtained for a heated (80 c), 0.2 cm diameter by 2 cm long ca+nn using the cancentrated eluting solution. The ca~positeresult for lj experixn5~ is presented in Fig. 1. The res~ltsshaw that under these c~nditiocsn~h?I.iu;:i docs n3t exhibit tine slightest resc:fiblence to the +3 actinides, f~rin slr:!',lar. tracer experir,!ents, Es, Cm, Am and P.c were el~tzdir! tile Y p~sitianxhich is Pb end Ce. The elution.of No near the SI* p~sitionstrengthened Qur growing suspicion that No was ex1ilbiti.ng a +2 valence. Unsuccessful attempts were made to oxidize the suspected ~6~'to i\lot3 I. and elute it from the ion exchange column in the predicted +3 position, but when rapid oxidizing agents such as Ce+4 were present in sufficientlyl'dilute so cmcentrationdas not to effect the column operation, they were inmediately red~cedby the hot butyrate solution'. e. Fluoride Behavior For the study of the c~precipitatbnbehavior of No fluoride, we used the residue adsorption technique (16,17). A drop of O.lM- HC1 containing the tracers ts which No was to be compared plus - 5pg each of the various charge- state carriers Ba, La and Zr was used to dissolve the No atom fr~mthe catcher foil. Two drops of 40$ HI? were added t~ convert to the fluorides and taken to dryness. The plate was then washed with H 0 several tinis and both 2 residue plate and Ii 0 washes were alpha energy analyzed. The results are 2 given in Table 2 and suggest that the solubility of No fluoride is more like BaFZ than LaF 3 Assuming that the nobelium was exhibiting a +2 valence under the above canditions, - attempts were made to oxidize the to which should form a less soluble fluoride. The procedure was the same as described above except the oxidant, ceric nitrate, was substituted for the Zr. As seen in Table 2, after oxidation uith Get" the distribution was in f amr of the Lol. phase. 3 The behavior of No fluoride after oxidation appears to be better ex2laine-i 57 the formtion 32 pIoF rather than i:3Fq. Under these dilute 3 N:,F~+mj-ght be expected to be as soluble as CcP 4 and ZrE' 4' Reccnt wrk has shown that 90~can be separated from 90~rat room tenperatue by.elution from a SrSO4 column using 0.5N-24 H SO (18). In general it appears that the mare soluble sulfates are eluted before the less soluble ones. We used a similar col~unnfor the study of the behavior of nobelium sulfate. In each experiment the No; tracer activities to which Ko was to be compared, and - 5111; each of Zr and La were converted to the sulfate farm on the platinum catcher foil by evaporation to dryness with 1N- H2S04. The mess af Zr and La added was the saw as the mass of Ce+4 md used in later oxidatian experiments in order to duplicate the nlass effects on the col~m. Th? Na and other elemnts were washed from the foil with H SO and 6~-24 transferred to the 0.2 cm dia.
Recommended publications
  • NOBELIUM Element Symbol: No Atomic Number: 102
    NOBELIUM Element Symbol: No Atomic Number: 102 An initiative of IYC 2011 brought to you by the RACI KERRY LAMB www.raci.org.au NOBELIUM Element symbol: No Atomic number: 102 The credit for discovering Nobelium was disputed with 3 different research teams claiming the discovery. While the first claim dates back to 1957, it was not until 1992 that the International Union of Pure and Applied Chemistry credited the discovery to a research team from Dubna in Russia for work they did in 1966. The element was named Nobelium in 1957 by the first of its claimed discoverers (the Nobel Institute in Sweden). It was named after Alfred Nobel, a Swedish chemist who invented dynamite, held more than 350 patents and bequeathed his fortune to the establishment of the Nobel Prizes. Nobelium is a synthetic element and does not occur in nature and has no known uses other than in scientific research as only tiny amounts of the element have ever been produced. Nobelium is radioactive and most likely metallic. The appearance and properties of Nobelium are unknown as insufficient amounts of the element have been produced. Nobelium is made by the bombardment of curium (Cm) with carbon nuclei. Its most stable isotope, 259No, has a half-life of 58 minutes and decays to Fermium (255Fm) through alpha decay or to Mendelevium (259Md) through electron capture. Provided by the element sponsor Freehills Patent and Trade Mark Attorneys ARTISTS DESCRIPTION I wanted to depict Alfred Nobel, the namesake of Nobelium, as a resolute young man, wearing the Laurel wreath which is the symbol of victory.
    [Show full text]
  • Quest for Superheavy Nuclei Began in the 1940S with the Syn­ Time It Takes for Half of the Sample to Decay
    FEATURES Quest for superheavy nuclei 2 P.H. Heenen l and W Nazarewicz -4 IService de Physique Nucleaire Theorique, U.L.B.-C.P.229, B-1050 Brussels, Belgium 2Department ofPhysics, University ofTennessee, Knoxville, Tennessee 37996 3Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 4Institute ofTheoretical Physics, University ofWarsaw, ul. Ho\.za 69, PL-OO-681 Warsaw, Poland he discovery of new superheavy nuclei has brought much The superheavy elements mark the limit of nuclear mass and T excitement to the atomic and nuclear physics communities. charge; they inhabit the upper right corner of the nuclear land­ Hopes of finding regions of long-lived superheavy nuclei, pre­ scape, but the borderlines of their territory are unknown. The dicted in the early 1960s, have reemerged. Why is this search so stability ofthe superheavy elements has been a longstanding fun­ important and what newknowledge can it bring? damental question in nuclear science. How can they survive the Not every combination ofneutrons and protons makes a sta­ huge electrostatic repulsion? What are their properties? How ble nucleus. Our Earth is home to 81 stable elements, including large is the region of superheavy elements? We do not know yet slightly fewer than 300 stable nuclei. Other nuclei found in all the answers to these questions. This short article presents the nature, although bound to the emission ofprotons and neutrons, current status ofresearch in this field. are radioactive. That is, they eventually capture or emit electrons and positrons, alpha particles, or undergo spontaneous fission. Historical Background Each unstable isotope is characterized by its half-life (T1/2) - the The quest for superheavy nuclei began in the 1940s with the syn­ time it takes for half of the sample to decay.
    [Show full text]
  • Periodic Table 1 Periodic Table
    Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table.
    [Show full text]
  • The Quest to Explore the Heaviest Elements Raises Questions About How Far Researchers Can Extend Mendeleev’S Creation
    ON THE EDGE OF THE PERIODIC TABLE The quest to explore the heaviest elements raises questions about how far researchers can extend Mendeleev’s creation. BY PHILIP BALL 552 | NATURE | VOL 565 | 31 JANUARY 2019 ©2019 Spri nger Nature Li mited. All ri ghts reserved. ©2019 Spri nger Nature Li mited. All ri ghts reserved. FEATURE NEWS f you wanted to create the world’s next undiscovered element, num- Berkeley or at the Joint Institute for Nuclear Research (JINR) in Dubna, ber 119 in the periodic table, here’s a possible recipe. Take a few Russia — the group that Oganessian leads — it took place in an atmos- milligrams of berkelium, a rare radioactive metal that can be made phere of cold-war competition. In the 1980s, Germany joined the race; I only in specialized nuclear reactors. Bombard the sample with a beam an institute in Darmstadt now named the Helmholtz Center for Heavy of titanium ions, accelerated to around one-tenth the speed of light. Ion Research (GSI) made all the elements between 107 and 112. Keep this up for about a year, and be patient. Very patient. For every The competitive edge of earlier years has waned, says Christoph 10 quintillion (1018) titanium ions that slam into the berkelium target Düllmann, who heads the GSI’s superheavy-elements department: — roughly a year’s worth of beam time — the experiment will probably now, researchers frequently talk to each other and carry out some produce only one atom of element 119. experiments collaboratively. The credit for creating later elements On that rare occasion, a titanium and a berkelium nucleus will collide up to 118 has gone variously, and sometimes jointly, to teams from and merge, the speed of their impact overcoming their electrical repul- sion to create something never before seen on Earth, maybe even in the Universe.
    [Show full text]
  • Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2015 Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants John Dustin Despotopulos University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Chemistry Commons Repository Citation Despotopulos, John Dustin, "Studies of Flerovium and Element 115 Homologs with Macrocyclic Extractants" (2015). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2345. http://dx.doi.org/10.34917/7645877 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INVESTIGATION OF FLEROVIUM AND ELEMENT 115 HOMOLOGS WITH MACROCYCLIC EXTRACTANTS By John Dustin Despotopulos Bachelor of Science in Chemistry University of Oregon 2010 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy
    [Show full text]
  • Python Module Index 79
    mendeleev Documentation Release 0.9.0 Lukasz Mentel Sep 04, 2021 CONTENTS 1 Getting started 3 1.1 Overview.................................................3 1.2 Contributing...............................................3 1.3 Citing...................................................3 1.4 Related projects.............................................4 1.5 Funding..................................................4 2 Installation 5 3 Tutorials 7 3.1 Quick start................................................7 3.2 Bulk data access............................................. 14 3.3 Electronic configuration......................................... 21 3.4 Ions.................................................... 23 3.5 Visualizing custom periodic tables.................................... 25 3.6 Advanced visulization tutorial...................................... 27 3.7 Jupyter notebooks............................................ 30 4 Data 31 4.1 Elements................................................. 31 4.2 Isotopes.................................................. 35 5 Electronegativities 37 5.1 Allen................................................... 37 5.2 Allred and Rochow............................................ 38 5.3 Cottrell and Sutton............................................ 38 5.4 Ghosh................................................... 38 5.5 Gordy................................................... 39 5.6 Li and Xue................................................ 39 5.7 Martynov and Batsanov........................................
    [Show full text]
  • The Elements.Pdf
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • Synthesis of Superheavy Elements by Cold Fusion
    Radiochim. Acta 99, 405–428 (2011) / DOI 10.1524/ract.2011.1854 © by Oldenbourg Wissenschaftsverlag, München Synthesis of superheavy elements by cold fusion By S. Hofmann1,2,∗ 1 GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany 2 Institut für Kernphysik, Goethe-Universität, Max von Laue-Straße 1, 60438 Frankfurt, Germany (Received February 3, 2011; accepted in revised form April 18, 2011) Superheavy elements / Synthesis / Cold fusion / in 1972, and the RILAC (variable-frequency linear acceler- Cross-sections / Decay properties / Recoil separators / ator) at the RIKEN Nishina Center in Saitama near Tokio in Detector systems 1980. In the middle of the 1960s the concept of the macrosco- pic-microscopic model for calculating binding energies Summary. The new elements from Z = 107 to 112 were of nuclei also at large deformations was invented by synthesized in cold fusion reactions based on targets of lead V. M. Strutinsky [3]. Using this method, a number of the and bismuth. The principle physical concepts are presented measured phenomena could be naturally explained by con- which led to the application of this reaction type in search sidering the change of binding energy as function of defor- experiments for new elements. Described are the technical mation. In particular, it became possible now to calculate the developments from early mechanical devices to experiments with recoil separators. An overview is given of present ex- binding energy of a heavy fissioning nucleus at each point of periments which use cold fusion for systematic studies and the fission path and thus to determine the fission barrier. synthesis of new isotopes.
    [Show full text]
  • Food Periodic Table
    Food Chemistry Periodic Table Celebrating the International Year of the Periodic Table 2019 Created by Jane K Parker Acknowledgements and thanks to the RSC Food Group Committee: Robert Cordina, Bryan Hanley, Taichi Inuit, John Points, Kathy Ridgway, Martin Rose, Wendy Russell, Mike Saltmarsh, Maud Silvent, Clive Thomson, Kath Whittaker, Pete Wilde, and to Martin Chadwick, Cian Moloney and Ese Omoaruhke, for contributions to the elements, to Flaticons for use of their free icons, and to Alinea and TDMA for photographs of He and Ti. In slideshow mode, click on an element in periodic table to find out more, return via the RSC Food Group Logo. Contact: [email protected] Food Chemistry Periodic Table H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og H Hydrogen 1 Occurrences in food Roles in food • Core element in organic compounds (fats, proteins, • H+ gives one of the five basic tastes – sour. carbohydrates, vitamins). • the higher the concentration of H+, the lower the pH • OH pH 2 Lemon juice (very sour) • H2 H2 H2 H2 H2 pH 3 Apple (sour) C C C C C C • pH 5 Meat (not sour) H3C C C C C C O H H H H H 2 2 2 2 2 • pH 7 Tea or water (not sour) • Hydrogen-bonds, one of the strongest forms of bonding, are crucial for the 3D-structure of many • Key element in water, H2O, which is 70% of the human body and 70% of many foods.
    [Show full text]
  • A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements
    A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 2) [5/10/2001 3:08:31 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions.
    [Show full text]
  • S D F P Periodic Table of the Elements O
    shells (energy levels) (energy shells Periodic Table of the Elements levels) (energy shells I A s d p f subshell subshell subshell subshell Note: 1+ Atomic number = # of protons = # of electrons VIII A Atomic mass (rounded to nearest integer) = # of protons + # of neutrons hydrogen KEY most common helium 1 2- oxidation number 2 1 II A 1 H oxygen element name III A IV A V A VI A VII A He 1.00794(7) atomic number 8 4.002602(2) 2+ 3+ 3- 2- 1- symbol lithium beryllium O boron carbon nitrogen oxygen fluorine neon 3 4 5 6 7 8 9 10 2 Li Be 2001 atomic mass 15.9994(3) B C N O F Ne 2 6.941(2) 9.012182(3) Note: The last significant figure is reliable to 4 orbital 10.811(7) 12.0107(8) 14.00674(7) 15.9994(3) 18.9984032(5) 20.1797(6) sodium magnesium +-1 except where greater uncertainty is given p aluminium silicon phosphorus sulfur chlorine argon 11 12 in parentheses ( ). Mass numbers given in 13 3+ 14 15 16 17 18 3 brackets [ ] are of the longest lived isotopes. 3 Na Mg III B IV B V B VI B VII B VIII B I B II B Al Si P S Cl Ar 22.989770(2) 24.3050(6) 26.981538(2) 28.0855(3) 30.973761(2) 32.065(5) 35.453(2) 39.948(1) potassium calcium scandium titanium vanadium chromium manganese iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine krypton 19 20 21 22 23 24 25 26 27 28 29 30 2+ 31 3+ 32 33 34 35 36 4 K Ca 3 Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 4 39.0983(1) 40.078(4) 44.955910(8) 47.867(1) 50.9415(1) 51.9961(6) 54.938049(9) 55.845(2) 58.933200(9) 58.6934(2) 63.546(3) 65.409(4) 69.723(1) 72.64(1) 74.92160(2) 78.96(3)
    [Show full text]
  • The Race for Rutherfordium
    in your element The race for rutherfordium Mitch André Garcia considers the disputed discovery of element 104 and takes a look at how the chemistry of this synthetic element is developing. utherfordium, the 104th element tetravalent hafnium and zirconium tracers on the periodic table, was first and solidified its place as a group 4 metal. Rsynthesized artificially in the 1960s Gas-phase chemistry studies of and was the subject of international rutherfordium took advantage of the volatile controversy for decades. The dispute properties of the group 4 metal chlorides. centred on who should get to name the new Anyone who has worked with hafnium(iv) element. Historically, the discoverer of an chloride will no doubt remember the element is afforded the right to name it, but gag-inducing effect it has! Isothermal gas when two groups have competing discovery chromatography was performed with claims this becomes complicated. the chlorides of zirconium, hafnium and The first research group to claim rutherfordium using a column of SiO2 from discovery of element 104 was a team of set temperatures of 100 °C to 600 °C (ref. 6). scientists at Dubna (in what was the USSR) The experiments measured the relative yields in 1964 (ref. 1). They observed an isotope of products out of the column as a function that underwent spontaneous fission after of temperature, and then the adsorption 242 bombarding their Pu target with a beam enthalpies on SiO2 from a Monte Carlo fit of 22 of Ne ions. A second team of scientists — One of the greatest achievements of Ernest their measurements were calculated.
    [Show full text]