The Use of Midazolam, Isoflurane, and Nitrous Oxide for Sedation and Anesthesia of Ball Pythons (Python Regius)

Total Page:16

File Type:pdf, Size:1020Kb

The Use of Midazolam, Isoflurane, and Nitrous Oxide for Sedation and Anesthesia of Ball Pythons (Python Regius) The Use of Midazolam, Isoflurane, and Nitrous Oxide for Sedation and Anesthesia of Ball Pythons (Python regius) by Cédric B. Larouche A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Veterinary Science in Pathobiology Guelph, Ontario, Canada © Cédric B. Larouche, August, 2019 ABSTRACT THE USE OF MIDAZOLAM, ISOFLURANE, AND NITROUS OXIDE FOR SEDATION AND ANESTHESIA OF BALL PYTHONS (PYTHON REGIUS) Cédric B. Larouche Co-advisors: University of Guelph, 2019 Nicole Nemeth Dorothee Bienzle The objectives of this project were to characterize the pharmacodynamics and pharmacokinetics of midazolam in the ball python (Python regius), and to evaluate the effects of midazolam and nitrous oxide (N2O) on the minimum anesthetic concentration of isoflurane (MACIso) in this species. The pharmacodynamics of midazolam were evaluated in a blinded, randomized, crossover study comparing two dosages (1 and 2 mg/kg intramuscular [IM]) in ten ball pythons. There were no significant differences between the two dosages for any parameter evaluated. Midazolam provided moderate sedation and muscle relaxation in all snakes starting 10-15 min post-injection and lasting up to 3-5 days, with a peak effect 60 min post-injection. Heart rates were significantly lower than baseline from 30 min to 5.3 days post-injection with both dosages. In an open trial using 9 ball pythons, the reversal effect of flumazenil was evaluated by administering 0.08 mg/kg IM 60 min after the administration of 1 mg/kg IM of midazolam. Sedation and muscle relaxation were fully reversed within 10 min of administration, but all snakes fully resedated within 3 h. In a semi-blinded, randomized, crossover trial, nine ball pythons were used to evaluate the effects of 1 mg/kg IM midazolam and N2O mixed 50:50 with oxygen on the MACIso. Midazolam significantly decreased the MACIso from 1.11% (95% confidence interval [CI], 0.94-1.28%) to 0.48% (95% CI, 0.29-0.67%), and N2O decreased the MACIso to 0.92% (95% CI, 0.74-1.09%). No clinically relevant differences between treatments were noted regarding blood gases but isoflurane induction with face mask caused marked acidemia that resolved with mechanical ventilation. Central venous catheters were surgically placed in twelve ball pythons to evaluate the pharmacokinetics of midazolam. Snakes were randomly and equally divided into two groups receiving 1 mg/kg of midazolam either intracardiac (IC; group 1) or IM (group 2). Plasma concentrations of midazolam and its major metabolite 1- hydroxymidazolam were determined using high-performance liquid chromatography tandem-mass spectrometry. Mean bioavailability following IM administration was 89%. Mean ± SD clearance of midazolam was 0.053 ± 0.008 L/h/kg, leading to slow elimination half-lives (12.04 ± 3.25 h [IC] and 16.54 ± 7.10 h [IM]). iv ACKNOWLEDGEMENTS This thesis has been a series of mostly self-imposed, tight deadlines. I would therefore like to thank all the members of my advisory committee for dealing so brilliantly with all my last-minute questions and revision requests: Chris Dutton, Dorothee Bienzle, Nicole Nemeth, Hugues Beaufrère, Craig Mosley, and Ron Johnson. There are so many people I wish to thank for their contribution and support. If I have forgotten to mention you, please feel free to request a beer any time. I would like to thank the Toronto Zoo, OVC Pet Trust, and the Andrea Leger Dunbar Summer Research Studentship for providing funding for this DVSc. This project would have never been possible without their financial support. I would like to thank Chris Dutton and Pauline Delnatte for being my anchor from day 1 until the very end of my residency. With so many people coming and going, you two have been a constant I could always rely on throughout this project and residency. Chris, your enthusiasm is contagious and working with you is such a delight. You are a brilliant veterinarian and leader, and I consider myself extremely lucky to have been your resident for 3 years. Pauline, you are one of the most dedicated and talented veterinarians I know. Your trust in my skills and your desire to do what’s best for every single animal made every second spent with you a learning opportunity. I am very grateful to Dorothee Bienzle for her constant support. This project would not have been completed as smoothly without your advice and attention to my timeline. I would also like to thank Hugues Beaufrère for his major help in every step of the project, from providing the original idea to the statistical analyses, and the ACZM preparation classes. This project would have never been successful without the amazing work of the Toronto Zoo’s Wildlife Health Center staff. All of you either took care of my massive ball pythons, helped me in some way with the experimentation, and/or made my whole residency such a delight. Thank you Tasha Long, Rick Vos, Mark Bongelli, Andrea Dada, Dianne Morrison, Nigel Parr, Lydia Attard, Gerri Mintha, Margaret Kolakowski, Brian Telford, Charles Guthrie, Jason Dawes, Kerri Chase, and Julie Digiandomenico. I especially want to mention the invaluable help from the most amazing veterinary technicians I could have hoped for: Michelle Lovering, Dawn Mihailovic, Cassia Devison, and Stephanie Fleming. I would also like to thank Simon Hollamby and David McLelland for all the teaching opportunities. I would like to thank Kristopher Afshaun Zaman for his huge help and dedication to the project. You made my life so much easier with your exceptional technical and mental support during the summer 2018. These ball pythons are extremely grateful for the amazing care you provided. I am grateful for all the students who provided technical v support for the experimentation or care of these snakes, especially Hannah Bagnall and Sydney Swartz for their help with the pharmacokinetic project, and Malika Ladak for her help with my first side project on tarantulas. The last chapter of this thesis on the pharmacokinetics of midazolam would have never been possible without the dedication of Yu Gu. I would like to thank her, Ron Johnson, and everyone who helped with this assay. I am grateful to Francis Beaudry for his help with the pharmacokinetic analysis. I contacted you out of nowhere and you immediately helped. I would like to acknowledge again the support of my whole advisory committee. Craig, you offered me invaluable advices on the planning, execution, and analysis of this project. Nicole, your support during the preparation phase was highly appreciated. Your talent in writing and revising scientific manuscripts significantly improved the quality of this thesis. I am very grateful to Leonardo Susta for his incredible dedication to the zoo pathology program. With all the major changes that happened to the program during my residency, you took it upon yourself to make sure the quality of the teaching would be maintained, and I cannot express how much I learned screening and discussing with you. I would also like to thank all the other pathologists who taught me everything I know about pathology, especially Emily Brouwer, Nicole Nemeth, Dale Smith, and Rob Foster. My weekly trips to Guelph would have been much harder without the great comradery of the anatomical and clinical pathology residents in the microscope room. Thank you for being such an awesome team! I cannot mention all these people without naming my co-residents, who made this whole residency such a delight. Ellie Milnes, you are such a strong, confident, and talented person; nothing can stop you from accomplishing your dreams. Your informal help with every step of this project and my residency probably had the biggest influence on my success. Thank you so much for being that amazing! Jessica Aymen, we didn’t get to work very long together as co-residents, but I wanted to thank you as well for being such an amazing person. The young veterinary student I knew back in Saint- Hyacinthe has become a confident and very talented veterinarian in such a small period of time. This whole residency craziness started with my first partner in crime, Émilie L. Couture. You introduced me to the zoological medicine department and always pushed me to reach further. The whole team in Saint-Hyacinthe made the step into the residency so much smoother. I would like to thank especially Graham Zoller, Guy Fitzgerald, Isabelle Langlois, Stéphane Lair, Édouard Maccolini, Julie Hébert, Marion Desmarchelier, Marie-Josée Limoges, Shannon Ferrell, Valérie Lacasse, and Léa Ahmed. vi I am infinitely grateful to Adam McCall for his immense support throughout this residency. I have no idea how I could have gone through all of this without your help. Finally, I would like to thank my family that has always been there for me, supporting every choice and steps that I made. Without all the opportunities you have given me, all the lessons you’ve taught me, and all the love you’ve provided, none of this would have ever been possible. Cédric B. Larouche Scarborough, August 2019 vii TABLE OF CONTENTS Abstract ...........................................................................................................................ii Acknowledgements .......................................................................................................iv Table of Contents ......................................................................................................... vii List of Tables .................................................................................................................xi
Recommended publications
  • National Competency Framework for Anesthesia Assistance
    National Competency Framework In Anesthesia Assistance Validated June 2016 201-2460 Lancaster Road Ottawa, Ontario K1B 4S5 1 INTRODUCTION ................................................................................................................ 3 ACKNOWLEDGEMENTS .................................................................................................. 3 HISTORICAL PERSPECTIVE ............................................................................................ 4 UNDERSTANDING THIS DOCUMENT ........................................................................... 6 SECTION 1: PROFESSIONAL AND ORGANIZATIONAL COMPETENCIES ............. 7 A. Demonstrate professionalism toward patients and their families, co-workers and the public .................................................................................................................................... 7 B. Demonstrate effective communication with the patient and their families, co-workers and the public ........................................................................................................................ 7 C. Demonstrate critical thinking and reasoning ............................................................... 7 D. Ensure the health and safety of the patient, co-workers and self ................................ 8 E. Use evidence to inform practice .................................................................................. 8 F. Perform administrative duties .....................................................................................
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 De Juan Et Al
    US 200601 10428A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110428A1 de Juan et al. (43) Pub. Date: May 25, 2006 (54) METHODS AND DEVICES FOR THE Publication Classification TREATMENT OF OCULAR CONDITIONS (51) Int. Cl. (76) Inventors: Eugene de Juan, LaCanada, CA (US); A6F 2/00 (2006.01) Signe E. Varner, Los Angeles, CA (52) U.S. Cl. .............................................................. 424/427 (US); Laurie R. Lawin, New Brighton, MN (US) (57) ABSTRACT Correspondence Address: Featured is a method for instilling one or more bioactive SCOTT PRIBNOW agents into ocular tissue within an eye of a patient for the Kagan Binder, PLLC treatment of an ocular condition, the method comprising Suite 200 concurrently using at least two of the following bioactive 221 Main Street North agent delivery methods (A)-(C): Stillwater, MN 55082 (US) (A) implanting a Sustained release delivery device com (21) Appl. No.: 11/175,850 prising one or more bioactive agents in a posterior region of the eye so that it delivers the one or more (22) Filed: Jul. 5, 2005 bioactive agents into the vitreous humor of the eye; (B) instilling (e.g., injecting or implanting) one or more Related U.S. Application Data bioactive agents Subretinally; and (60) Provisional application No. 60/585,236, filed on Jul. (C) instilling (e.g., injecting or delivering by ocular ion 2, 2004. Provisional application No. 60/669,701, filed tophoresis) one or more bioactive agents into the Vit on Apr. 8, 2005. reous humor of the eye. Patent Application Publication May 25, 2006 Sheet 1 of 22 US 2006/0110428A1 R 2 2 C.6 Fig.
    [Show full text]
  • General Anesthetic Actions on GABAA Receptors Paul Garcia, Emory University Scott E
    General Anesthetic Actions on GABAA Receptors Paul Garcia, Emory University Scott E. Kolesky, Emory University Andrew Jenkins, Emory University Journal Title: Current Neuropharmacology Volume: Volume 8, Number 1 Publisher: Bentham Science Publishers | 2010-03, Pages 2-9 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.2174/157015910790909502 Permanent URL: http://pid.emory.edu/ark:/25593/fkg4m Final published version: http://www.eurekaselect.com/71259/article Copyright information: ©2010 Bentham Science Publishers Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution 2.5 Generic License ( http://creativecommons.org/licenses/by/2.5/), which permits distribution, public display, and publicly performance, distribution of derivative works, making multiple copies, provided the original work is properly cited. This license requires credit be given to copyright holder and/or author. Accessed September 28, 2021 5:01 PM EDT 2 Current Neuropharmacology, 2010, 8, 2-9 General Anesthetic Actions on GABAA Receptors Paul S. Garcia, Scott E. Kolesky and Andrew Jenkins* Departments of Anesthesiology and Pharmacology, Emory University, School of Medicine, Rollins Research Center #5013, 1510 Clifton Rd NE, Atlanta GA, USA Abstract: General anesthetic drugs interact with many receptors in the nervous system, but only a handful of these inter- actions are critical for producing anesthesia. Over the last 20 years, neuropharmacologists have revealed that one of the most important target sites for general
    [Show full text]
  • Pharmacology – Inhalant Anesthetics
    Pharmacology- Inhalant Anesthetics Lyon Lee DVM PhD DACVA Introduction • Maintenance of general anesthesia is primarily carried out using inhalation anesthetics, although intravenous anesthetics may be used for short procedures. • Inhalation anesthetics provide quicker changes of anesthetic depth than injectable anesthetics, and reversal of central nervous depression is more readily achieved, explaining for its popularity in prolonged anesthesia (less risk of overdosing, less accumulation and quicker recovery) (see table 1) Table 1. Comparison of inhalant and injectable anesthetics Inhalant Technique Injectable Technique Expensive Equipment Cheap (needles, syringes) Patent Airway and high O2 Not necessarily Better control of anesthetic depth Once given, suffer the consequences Ease of elimination (ventilation) Only through metabolism & Excretion Pollution No • Commonly administered inhalant anesthetics include volatile liquids such as isoflurane, halothane, sevoflurane and desflurane, and inorganic gas, nitrous oxide (N2O). Except N2O, these volatile anesthetics are chemically ‘halogenated hydrocarbons’ and all are closely related. • Physical characteristics of volatile anesthetics govern their clinical effects and practicality associated with their use. Table 2. Physical characteristics of some volatile anesthetic agents. (MAC is for man) Name partition coefficient. boiling point MAC % blood /gas oil/gas (deg=C) Nitrous oxide 0.47 1.4 -89 105 Cyclopropane 0.55 11.5 -34 9.2 Halothane 2.4 220 50.2 0.75 Methoxyflurane 11.0 950 104.7 0.2 Enflurane 1.9 98 56.5 1.68 Isoflurane 1.4 97 48.5 1.15 Sevoflurane 0.6 53 58.5 2.5 Desflurane 0.42 18.7 25 5.72 Diethyl ether 12 65 34.6 1.92 Chloroform 8 400 61.2 0.77 Trichloroethylene 9 714 86.7 0.23 • The volatile anesthetics are administered as vapors after their evaporization in devices known as vaporizers.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness Et Al
    USOO6264,917B1 (12) United States Patent (10) Patent No.: US 6,264,917 B1 Klaveness et al. (45) Date of Patent: Jul. 24, 2001 (54) TARGETED ULTRASOUND CONTRAST 5,733,572 3/1998 Unger et al.. AGENTS 5,780,010 7/1998 Lanza et al. 5,846,517 12/1998 Unger .................................. 424/9.52 (75) Inventors: Jo Klaveness; Pál Rongved; Dagfinn 5,849,727 12/1998 Porter et al. ......................... 514/156 Lovhaug, all of Oslo (NO) 5,910,300 6/1999 Tournier et al. .................... 424/9.34 FOREIGN PATENT DOCUMENTS (73) Assignee: Nycomed Imaging AS, Oslo (NO) 2 145 SOS 4/1994 (CA). (*) Notice: Subject to any disclaimer, the term of this 19 626 530 1/1998 (DE). patent is extended or adjusted under 35 O 727 225 8/1996 (EP). U.S.C. 154(b) by 0 days. WO91/15244 10/1991 (WO). WO 93/20802 10/1993 (WO). WO 94/07539 4/1994 (WO). (21) Appl. No.: 08/958,993 WO 94/28873 12/1994 (WO). WO 94/28874 12/1994 (WO). (22) Filed: Oct. 28, 1997 WO95/03356 2/1995 (WO). WO95/03357 2/1995 (WO). Related U.S. Application Data WO95/07072 3/1995 (WO). (60) Provisional application No. 60/049.264, filed on Jun. 7, WO95/15118 6/1995 (WO). 1997, provisional application No. 60/049,265, filed on Jun. WO 96/39149 12/1996 (WO). 7, 1997, and provisional application No. 60/049.268, filed WO 96/40277 12/1996 (WO). on Jun. 7, 1997. WO 96/40285 12/1996 (WO). (30) Foreign Application Priority Data WO 96/41647 12/1996 (WO).
    [Show full text]
  • Veterinary Anaesthesia (Tenth Edition)
    W. B. Saunders An imprint of Harcourt Publishers Limited © Harcourt Publishers Limited 2001 is a registered trademark of Harcourt Publishers Limited The right of L.W. Hall, K.W. Clarke and C.M. Trim to be identified as the authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act, 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior permission of the publishers (Harcourt Publishers Limited, Harcourt Place, 32 Jamestown Road, London NW1 7BY), or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Limited, 90 Tottenham Court Road, London W1P 0LP. First edition published in 1941 by J.G. Wright Second edition 1947 (J.G. Wright) Third edition 1948 (J.G. Wright) Fourth edition 1957 (J.G. Wright) Fifth edition 1961 (J.G. Wright and L.W. Hall) Sixth edition 1966 (L.W. Hall) Seventh edition 1971 (L.W. Hall), reprinted 1974 and 1976 Eighth edition 1983 (L.W. Hall and K.W. Clarke), reprinted 1985 and 1989 Ninth edition 1991 (L.W. Hall and K.W. Clarke) ISBN 0 7020 2035 4 Cataloguing in Publication Data: Catalogue records for this book are available from the British Library and the US Library of Congress. Note: Medical knowledge is constantly changing. As new information becomes available, changes in treatment, procedures, equipment and the use of drugs become necessary. The authors and the publishers have taken care to ensure that the information given in this text is accurate and up to date.
    [Show full text]
  • Low-Flow, Minimal-Flow and Metabolic-Flow Anaesthesia Clinical Techniques for Use with Rebreathing Systems ACKNOWLEDGEMENT: AHEAD of HIS TIME Professor Jan A
    Low-flow, minimal-flow and metabolic-flowLow-flow, anaesthesia D-38293-2015 Low-flow, minimal-flow and metabolic-flow anaesthesia Clinical techniques for use with rebreathing systems Christian Hönemann Bert Mierke Drägerwerk KGaA & Co. AG IMPORTANT NOTES Medical expertise is continually undergoing change due to research and clinical experience. The authors of this book intend to ensure that the views, opinions and assumptions in this book, especially those concerning applications and effects, correspond to the current state of knowledge. But this does not relieve the reader from the duty to personally carry the responsibilities for clinical measures. The use of registered names, trademarks, etc. in this publication does not mean that such names are exempt from the applicable protection laws and regulations, even if there are no related specific statements. All rights to this book, especially the rights to reproduce and copy, are reserved by Drägerwerk AG & Co. KGaA. No part of this book may be reproduced or stored mechanically, electronically or photographically without prior written authorization by Drägerwerk AG & Co. KGaA. Fabius®, Primus®, Zeus® and Perseus® are trademarks of Dräger. AUTHORS Christian Hönemann Bert Mierke PhD, MD PhD, MD Vice Medical Director Medical Director Chief physician in the collegiate system of Chief physician of the Clinic for the department of Anaesthesia and Operative Anesthesiology and Intensive Care Intensive Care, St. Marienhospital Vechta St. Elisabeth GmbH, Lindenstraße 3–7, Catholic Clinics Oldenburger Münsterland, 49401 Damme, Germany Marienstraβe 6–8, 49377 Vechta, Germany Low-flow, minimal-flow and metabolic-flow anaesthesia Clinical techniques for use with rebreathing systems ACKNOWLEDGEMENT: AHEAD OF HIS TIME Professor Jan A.
    [Show full text]
  • Lotus Wind Power Project
    Initial Environmental Examination – Appendix H Project Number: 54211-001 March 2021 Document Stage: Draft Viet Nam: Lotus Wind Power Project Prepared by ERM Vietnam for Lien Lap Wind Power Joint Stock Company, Phong Huy Wind Power Joint Stock Company, and Phong Nguyen Wind Power Joint Stock Company as a requirement of the Asian Development Bank. The initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “Terms of Use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. Biodiversity survey Wet season report Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam 7 July 2020 Prepared by ERM’s Subcontractor for ERM Vietnam Document details Document title Biodiversity survey Wet season report Document subtitle Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam Date 7 July 2020 Version 1.0 Author ERM’s Subcontractor Client Name ERM Vietnam Document history Version Revision Author Reviewed by ERM approval to issue Comments Name Date Draft 1.0 Name Name Name 00.00.0000 Text Version: 1.0 Client: ERM Vietnam 7 July 2020 BIODIVERSITY SURVEY WET SEASON REPORT CONTENTS Phong Huy Wind Power Project, Huong Hoa, Quang Tri, Viet Nam CONTENTS 1.
    [Show full text]
  • Analysis of Colubroidea Snake Venoms by Liquid Chromatography with Mass Spectrometry: Evolutionary and Toxinological Implications
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2003; 17: 2047–2062 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rcm.1148 Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications Bryan G. Fry1,2*, Wolfgang Wu¨ ster3, Sheik Fadil Ryan Ramjan2, Timothy Jackson1, Paolo Martelli4 and R. Manjunatha Kini2 1Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Vic 3010, Australia 2Department of Biological Sciences, Faculty of Science, National University of Singapore 119260, Singapore 3School of Biological Sciences, University of Wales, Bangor LL57 2UW, Wales, UK 4Veterinary Department, Singapore Zoo, Mandai Rd., Singapore Received 12 June 2003; Revised 7 July 2003; Accepted 9 July 2003 The evolution of the venomous function of snakes and the diversification of the toxins has been of tremendous research interest and considerable debate. It has become recently evident that the evo- lution of the toxins in the advanced snakes (Colubroidea) predated the evolution of the advanced, front-fanged delivery mechanisms. Historically, the venoms of snakes lacking front-fanged venom- delivery systems (conventionally grouped into the paraphyletic family Colubridae) have been lar- gely neglected. In this study we used liquid chromatography with mass spectrometry (LC/MS) to analyze a large number of venoms from a wide array of species representing the major advanced snake clades Atractaspididae,
    [Show full text]
  • Un Novedoso Enfoque Para El Diseño De Fármacos Antimicrobianos Asistido Por Computadora
    TOMOCOMD-CARDD: Un Novedoso Enfoque para el Diseño de Fármacos Antimicrobianos Asistido por Computadora Autora: Yasnay Valdés Rodríguez. Tutores: Prof. Dr. Yovani Marrero Ponce. Prof. MSc. Ricardo Medina Marrero. 2005-2006 La ignorancia afirma o niega rotundamente; la ciencia duda… Voltaire (1694-1778) Quiero dedicar este trabajo a todas aquellas personas que me aprecian y desean lo mejor para mi, especialmente a mis padres. A mi padre Dedico este trabajo con mucho amor, por hacerme comprender que siempre se puede llegar mas lejos, y que no hay nada imposible, solamente hay que luchar... A mi madre Por su infinita bondad, por su sacrificio inigualable. A mis familiares Por todo su apoyo y ayuda que me han mostrado incondicionalmente. A mi hermano Por ser mi fuente de inspiración. A la humanidad “...porque si supiera que el mundo se acaba mañana, yo, hoy todavía, plantaría un árbol” Quiero agradecer a todas aquellas personas que me han ayudado a realizar este sueño: A mis padres por todo el sacrificio realizado, y aún parecerles poco, los amo mucho. A mi madre por estar siempre a mi lado en los buenos y malos momentos ayudándome a levantarme en cualquier recaída. A mi padre por guiarme en la vida y brindarme sus consejos siempre útiles, por darme fuerza y vitalidad. A mi mayor tesoro, mi hermano, que me alumbra de esperanza día a día. A mis tías y primos que me ayudaron mucho, aún estando lejos. A mi novio que me apoyo en todas mis decisiones y con paciencia supo ayudarme. A mis tutores y cotutores que siempre me dieron la mano; especialmente a Yovani por su paciencia, a quien debo gran parte de mi formación como profesional por sus exigencias.
    [Show full text]
  • MAHS Care Sheet Master List *By Eric Roscoe Care Sheets Are Often An
    MAHS Care Sheet Master List *By Eric Roscoe Care sheets are often an excellent starting point for learning more about the biology and husbandry of a given species, including their housing/enclosure requirements, temperament and handling, diet , and other aspects of care. MAHS itself has created many such care sheets for a wide range of reptiles, amphibians, and invertebrates we believe to have straightforward care requirements, and thus make suitable family and beginner’s to intermediate level pets. Some species with much more complex, difficult to meet, or impracticable care requirements than what can be adequately explained in a one page care sheet may be multiple pages. We can also provide additional links, resources, and information on these species we feel are reliable and trustworthy if requested. If you would like to request a copy of a care sheet for any of the species listed below, or have a suggestion for an animal you don’t see on our list, contact us to let us know! Unfortunately, for liability reasons, MAHS is unable to create or publish care sheets for medically significant venomous species. This includes species in the families Crotilidae, Viperidae, and Elapidae, as well as the Helodermatidae (the Gila Monsters and Mexican Beaded Lizards) and some medically significant rear fanged Colubridae. Those that are serious about wishing to learn more about venomous reptile husbandry that cannot be adequately covered in one to three page care sheets should take the time to utilize all available resources by reading books and literature, consulting with, and working with an experienced and knowledgeable mentor in order to learn the ropes hands on.
    [Show full text]
  • Pharmacokinetics and Pharmacology of Drugs Used in Children
    Drug and Fluid Th erapy SECTION II Pharmacokinetics and Pharmacology of Drugs Used CHAPTER 6 in Children Charles J. Coté, Jerrold Lerman, Robert M. Ward, Ralph A. Lugo, and Nishan Goudsouzian Drug Distribution Propofol Protein Binding Ketamine Body Composition Etomidate Metabolism and Excretion Muscle Relaxants Hepatic Blood Flow Succinylcholine Renal Excretion Intermediate-Acting Nondepolarizing Relaxants Pharmacokinetic Principles and Calculations Atracurium First-Order Kinetics Cisatracurium Half-Life Vecuronium First-Order Single-Compartment Kinetics Rocuronium First-Order Multiple-Compartment Kinetics Clinical Implications When Using Short- and Zero-Order Kinetics Intermediate-Acting Relaxants Apparent Volume of Distribution Long-Acting Nondepolarizing Relaxants Repetitive Dosing and Drug Accumulation Pancuronium Steady State Antagonism of Muscle Relaxants Loading Dose General Principles Central Nervous System Effects Suggamadex The Drug Approval Process, the Package Insert, and Relaxants in Special Situations Drug Labeling Opioids Inhalation Anesthetic Agents Morphine Physicochemical Properties Meperidine Pharmacokinetics of Inhaled Anesthetics Hydromorphone Pharmacodynamics of Inhaled Anesthetics Oxycodone Clinical Effects Methadone Nitrous Oxide Fentanyl Environmental Impact Alfentanil Oxygen Sufentanil Intravenous Anesthetic Agents Remifentanil Barbiturates Butorphanol and Nalbuphine 89 A Practice of Anesthesia for Infants and Children Codeine Antiemetics Tramadol Metoclopramide Nonsteroidal Anti-infl ammatory Agents 5-Hydroxytryptamine
    [Show full text]