Pharmacokinetics and Pharmacology of Drugs Used in Children

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacokinetics and Pharmacology of Drugs Used in Children Drug and Fluid Th erapy SECTION II Pharmacokinetics and Pharmacology of Drugs Used CHAPTER 6 in Children Charles J. Coté, Jerrold Lerman, Robert M. Ward, Ralph A. Lugo, and Nishan Goudsouzian Drug Distribution Propofol Protein Binding Ketamine Body Composition Etomidate Metabolism and Excretion Muscle Relaxants Hepatic Blood Flow Succinylcholine Renal Excretion Intermediate-Acting Nondepolarizing Relaxants Pharmacokinetic Principles and Calculations Atracurium First-Order Kinetics Cisatracurium Half-Life Vecuronium First-Order Single-Compartment Kinetics Rocuronium First-Order Multiple-Compartment Kinetics Clinical Implications When Using Short- and Zero-Order Kinetics Intermediate-Acting Relaxants Apparent Volume of Distribution Long-Acting Nondepolarizing Relaxants Repetitive Dosing and Drug Accumulation Pancuronium Steady State Antagonism of Muscle Relaxants Loading Dose General Principles Central Nervous System Effects Suggamadex The Drug Approval Process, the Package Insert, and Relaxants in Special Situations Drug Labeling Opioids Inhalation Anesthetic Agents Morphine Physicochemical Properties Meperidine Pharmacokinetics of Inhaled Anesthetics Hydromorphone Pharmacodynamics of Inhaled Anesthetics Oxycodone Clinical Effects Methadone Nitrous Oxide Fentanyl Environmental Impact Alfentanil Oxygen Sufentanil Intravenous Anesthetic Agents Remifentanil Barbiturates Butorphanol and Nalbuphine 89 A Practice of Anesthesia for Infants and Children Codeine Antiemetics Tramadol Metoclopramide Nonsteroidal Anti-infl ammatory Agents 5-Hydroxytryptamine Type 3 Receptor Ketorolac (5-HT3) Antagonists Acetaminophen Anticholinergics Sedatives Atropine and Scopolamine Diazepam Glycopyrrolate Midazolam Antagonists Dexmedetomidine Naloxone Chloral Hydrate Naltrexone Antihistamines Methylnaltrexone Diphenhydramine Flumazenil Cimetidine, Ranitidine, and Famotidine Physostigmine THE PHARMACOKINETICS AND PHARMACODYNAMICS of most medica- antibiotics, theophylline, and diazepam).17 In addition, some tions, when used in children, especially neonates, diff er from medications, such as phenytoin, salicylate, sulfi soxazole, caf- those in adults.1-11 Children exhibit diff erent pharmacokinetics feine, ceftriaxone, diatrizoate (Hypaque), and sodium benzoate, from adults because of their altered protein binding, larger compete with bilirubin for binding to albumin (see Fig. 6-3 on volume of distribution (Vd), smaller proportion of fat and website). If large amounts of bilirubin are displaced, particularly muscle stores, and immature renal and hepatic function.2,3,12-19 in the presence of hypoxemia and acidosis, which open the Th ese factors and individual diff erences in drug metabolic blood/brain barrier, kernicterus may result.24,25,30,33-35 Because enzymes may reduce a drug’s metabolism and/or delay elimina- these metabolic derangements often occur in sick neonates tion and, in some cases, may increase metabolism.7,20-22 Th is coming to surgery, special care must be taken when selecting necessitates modifi cation of the dose and the interval between doses to achieve the desired clinical response and avoid toxicity.7 8 In addition, some medications may displace bilirubin from its Fetus protein binding sites and possibly predispose an infant to ker- Neonate nicterus.23-28 Th e capacity of the end organ, such as the heart or 7 Adult bronchial smooth muscle, to respond to medications may also diff er in children compared with adults. In this chapter we 6 discuss basic pharmacologic principles as they relate to drugs commonly used by anesthesiologists. 5 Drug Distribution 4 Protein Binding 3 Th e degree of protein binding is usually less in preterm and term infants than in older children and adults. Th is may be attributed Serum protein (grams/100 mL) 2 in part to the lower concentrations of total protein and albumin (Fig. 6-1).29 Many drugs that are highly protein bound in adults have less of an affi nity for protein in neonates (Fig. 6-2, see 1 website).29-33 Lower protein binding results in a greater free frac- tion of medications, thus providing more free medication and 0 greater pharmacologic eff ect.2,3,12,14,17 Th is eff ect is particularly Total protein Albumin important for medications that are highly protein bound because the reduced protein binding increases the free fraction of the Figure 6-1. The changes in total serum protein and albumin medication. For example, phenytoin is 85% protein bound in values with maturation. Note that total protein and albumin are less in preterm than term infants and less in term infants than healthy infants but only 80% in those who are jaundiced. Th is adults. The result may be altered pharmacokinetics and pharmaco- equates to a 33% increase in the free fraction of phenytoin when dynamics for drugs with a high degree of protein binding because jaundice occurs (Fig. 6-3, see website). Diff erences in protein less drug is protein bound and more is available for clinical effect. binding may have considerable infl uence on the response to (Data from Ehrnebo M, Agurell S, Jalling B, et al: Age differences medications that are acidic and are, therefore, highly protein in drug binding by plasma proteins: studies on human fetuses, bound (e.g., phenytoin, salicylate, bupivacaine, barbiturates, neonates and adults. Eur J Clin Pharmacol 1971; 3:189-193.) 90 Pharmacokinetics and Pharmacology of Drugs Used in Children 6 medications for the anesthetic.35 Medications that are basic 90 (e.g., lidocaine or alfentanil) are generally bound to plasma Fat Muscle α -acid glycoprotein; α -acid glycoprotein concentrations in 80 1 1 Water preterm and term infants are less than in older children and adults. Th erefore, for a given dose, the free fraction of a drug is 70 greater in preterm and term infants.36-38 60 Body Composition Volume of Distribution 50 Preterm and term infants have a much greater proportion of body weight in the form of water than older children and adults 40 (Fig. 6-4).19 Th e net eff ect on water-soluble medications is a greater Vd in infants, which in turn increases the initial (loading) 30 dose, based on weight, to achieve the desired serum level and Body composition (percent) clinical response.2,3,14,39,40 Term neonates often require a greater 20 initial loading dose (milligrams per kilogram) for some medica- tions (e.g., digoxin, succinylcholine, and antibiotics), than older 10 children.39-43 However, neonates also tend to be sensitive to the respiratory, neurologic, and circulatory eff ects of many medica- 0 tions and therefore tend to be more responsive to these eff ects Preterm Term Adult at reduced blood concentrations than are children and adults. Neonates Preterm infants are usually more sensitive than term neonates and in general require even lower blood concentrations.2 On the Figure 6-5. Changes in body content for fat, muscle, and water other hand, dopamine may increase blood pressure and urine that occur with maturation. Note the small fat and muscle mass in output in term neonates only at doses as large as 50 μg/kg/min. preterm and term infants. These factors may greatly infl uence the Th is dose, which would induce intense vasoconstriction in pharmacokinetics and pharmacodynamics of medications that adults, suggests that neonates are less sensitive in their cardio- redistribute into fat (e.g., barbiturates) and muscle (e.g., fentanyl) because there is less tissue mass into which the drug may vascular responsiveness.3,41,44-47 It is important to carefully titrate redistribute. (Data from Friis-Hansen B: Body composition during growth: in-vivo measurements and biochemical data correlated to differential anatomical growth. Pediatrics 1971; 47:264-274.) 70 Intracellular fluid Extracellular fluid 60 the doses of all medications that are administered to preterm and term infants to the desired response. 50 Fat and Muscle Content Compared with children and adolescents, preterm and full-term 40 neonates have a smaller proportion of body weight in the form of fat and muscle mass; with growth, the proportion of body weight composed of these tissues increases (Fig. 6-5).2-4,19,45,46,48,49 30 Th erefore, medications that depend on their redistribution into muscle and fat for termination of their clinical eff ects likely have 20 a large initial peak blood concentration. Th ese medications may Body composition (percent) also have a more sustained blood concentration because neo- 10 nates have less tissue for redistribution of these medications. An incorrect dose may result in prolonged undesirable clinical eff ects (e.g. barbiturates and opioids may cause prolonged 0 sedation and respiratory depression). Th e possible infl uence Preterm Term Adult of small muscle mass on the response to muscle relaxants is Neonates exemplifi ed by achieving neuromuscular blockade at lower serum concentrations in infants.41 Figure 6-4. Changes in the intracellular and extracellular compart- ments that occur with maturation. Note the large proportion of extracellular water in preterm and term infants. This large water Metabolism and Excretion compartment creates an increased volume of distribution for highly Hepatic Blood Flow water-soluble medications (e.g., succinylcholine, antibiotics) and may account for the large initial “loading” dose (mg/kg) required Th e liver is one of the most important organs involved in drug for some medications to achieve a satisfactory clinical response. metabolism. Hepatic enzymatic drug metabolism usually con- (Data from Friis-Hansen B: Body composition during growth: in-vivo verts the medication from a less
Recommended publications
  • 1: Clinical Pharmacokinetics 1
    1: CLINICAL PHARMACOKINETICS 1 General overview: clinical pharmacokinetics, 2 Pharmacokinetics, 4 Drug clearance (CL), 6 Volume of distribution (Vd), 8 The half-life (t½), 10 Oral availability (F), 12 Protein binding (PB), 14 pH and pharmacokinetics, 16 1 Clinical pharmacokinetics General overview General overview: clinical pharmacokinetics 1 The ultimate aim of drug therapy is to achieve effi cacy without toxicity. This involves achieving a plasma concentration (Cp) within the ‘therapeutic window’, i.e. above the min- imal effective concentration (MEC), but below the minimal toxic concentration (MTC). Clinical pharmacokinetics is about all the factors that determine variability in the Cp and its time-course. The various factors are dealt with in subsequent chapters. Ideal therapeutics: effi cacy without toxicity Minimum Toxic Concentration (MTC) Ideal dosing Minimum Effective Concentration (MEC) Drug concentration Time The graph shows a continuous IV infusion at steady state, where the dose-rate is exactly appropriate for the patient’s clearance (CL). Inappropriate dosing Dosing too high in relation to the patient’s CL – toxicity likely Minimum Toxic Concentration (MTC) Minimum Effective Concentration (MEC) Dosing too low in relation to the Drug concentration patient’s CL – drug may be ineffective Time Some reasons for variation in CL Low CL High CL Normal variation Normal variation Renal impairment Increased renal blood fl ow Genetic poor metabolism Genetic hypermetabolism Liver impairment Enzyme induction Enzyme inhibition Old age/neonate 2 General overview Clinical Pharmacokinetics Pharmacokinetic factors determining ideal therapeutics If immediate effect is needed, a loading dose (LD) must be given to achieve a desired 1 concentration. The LD is determined by the volume of distribution (Vd).
    [Show full text]
  • Ketamine As a Rapid Antidepressant
    BJPsych Advances (2016), vol. 22, 222–233 doi: 10.1192/apt.bp.114.014274 ARTICLE Ketamine as a rapid anti depressant: the debate and implications Roger C. M. Ho & Melvyn W. Zhang Roger Ho is an Associate Professor response rates to SSRIs and NaSSAs are around SUMMARY and consultant psychiatrist in 62% and 67% respectively (Papakostas 2008). the Department of Psychological Ketamine, a synthetic derivative of phencyclidine, Environmental factors such as relationship Medicine, Yong Loo Lin School of is a commonly misused party drug that is Medicine, National University of problems, financial difficulties and comorbid restricted in high-income countries because of Singapore. He has a special interest substance misuse often lead to poor treatment its addictive potential. Ketamine is also used as in psychoneuroimmunology and response, and antidepressants combined with the interface between medicine an anaesthetic in human and veterinary medicine. and psychiatry. Melvyn Zhang In the 1990s, research using ketamine to study the CBT have shown promising results in prevention is a senior resident with the pathophysiology of schizophrenia was terminated of mood disorders (Brenner 2010). Although 70– National Addiction Management owing to ethical concerns. Recently, controversy 90% of patients with depression achieve remission, Service, Institute of Mental Health, surrounding the drug has returned, as researchers around 10–30% are refractory to initial treatment Singapore. Correspondence Dr Roger C. M. have demonstrated that intravenous ketamine but respond to switching or combination of Ho, National University of Singapore, infusion has a rapid antidepressant effect and antidepressants, electroconvulsive therapy (ECT) Department of Psychological have therefore proposed ketamine as a novel or psychotherapy.
    [Show full text]
  • Pharmacokinetics, Biodistribution, and Pharmacodynamics of Drug Delivery Systems
    JPET Fast Forward. Published on March 5, 2019 as DOI: 10.1124/jpet.119.257113 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 257113 Title: Pharmacokinetic and Pharmacodynamic Properties of Drug Delivery Systems Authors: Patrick M. Glassman, Vladimir R. Muzykantov Affiliation: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania Address: 3400 Civic Center Boulevard, Bldg 421, Philadelphia, Pennsylvania 19104-5158, United States Downloaded from jpet.aspetjournals.org at ASPET Journals on September 24, 2021 1 JPET Fast Forward. Published on March 5, 2019 as DOI: 10.1124/jpet.119.257113 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 257113 Running Title: PK/PD Properties of Drug Delivery Systems Corresponding Authors: Vladimir R. Muzykantov ([email protected], (215) 898-9823) and Patrick M. Glassman ([email protected]) # of Text Pages: 22 # of Tables: 2 # of Figures: 4 Word Count – Abstract: 144 Word Count – Introduction: 350 Word Count – Discussion: N/A Downloaded from Non-Standard Abbreviations: Absorption, Distribution, Metabolism, and Elimination (ADME) Biodistribution (BD) Drug Delivery Systems (DDSs) Enhanced Permeability & Retention (EPR) jpet.aspetjournals.org Gastrointestinal (GI) Intravenously (IV) Neonatal Fc Receptor (FcRn) Monoclonal Antibody (mAb) Reticuloendothelial System (RES) at ASPET Journals on September 24, 2021 Pharmacodynamics (PD) Pharmacokinetics (PK) Physiologically-Based Pharmacokinetic (PBPK) Subcutaneously (SC) Target-Mediated Drug Disposition (TMDD) Recommended Section: Drug Discovery and Translational Medicine 2 JPET Fast Forward. Published on March 5, 2019 as DOI: 10.1124/jpet.119.257113 This article has not been copyedited and formatted.
    [Show full text]
  • Predicting Intestinal and Hepatic First-Pass Metabolism of Orally Administered Testosterone Undecanoate
    applied sciences Article Predicting Intestinal and Hepatic First-Pass Metabolism of Orally Administered Testosterone Undecanoate Atheer Zgair 1,2,* , Yousaf Dawood 1, Suhaib M. Ibrahem 1, Hyun-moon Back 3, Leonid Kagan 3, Pavel Gershkovich 2 and Jong Bong Lee 2 1 College of Pharmacy, University of Anbar, Ramadi 31001, Iraq; [email protected] (Y.D.); [email protected] (S.M.I.) 2 School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; [email protected] (P.G.); [email protected] (J.B.L.) 3 Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; [email protected] (H.-m.B.); [email protected] (L.K.) * Correspondence: [email protected]; Tel.: +964-(0)-781-777-1463 Received: 2 October 2020; Accepted: 15 October 2020; Published: 18 October 2020 Abstract: The bioavailability of orally administered drugs could be impacted by intestinal and hepatic first-pass metabolism. Testosterone undecanoate (TU), an orally administered ester prodrug of testosterone, is significantly subjected to first-pass metabolism. However, the individual contribution of intestinal and hepatic first-pass metabolism is not well determined. Therefore, the aim of the current study was to predict the metabolic contribution of each site. The hydrolysis–time profiles of TU incubation in human liver microsomes and Caco-2 cell homogenate were used to predict hepatic and intestinal first-pass metabolism, respectively. The in vitro half-life (t1/2 inv) for the hydrolysis of TU in microsomal mixtures was 28.31 3.51 min. By applying the “well-stirred” model, the fraction ± of TU that could escape hepatic first-pass metabolism (F ) was predicted as 0.915 0.009.
    [Show full text]
  • Management of Chronic Problems
    MANAGEMENT OF CHRONIC PROBLEMS INTERACTIONS BETWEEN ALCOHOL AND DRUGS A. Leary,* T. MacDonald† SUMMARY concerned. Alcohol may alter the effects of the drug; drug In western society alcohol consumption is common as is may change the effects of alcohol; or both may occur. the use of therapeutic drugs. It is not surprising therefore The interaction between alcohol and drug may be that concomitant use of these should occur frequently. The pharmacokinetic, with altered absorption, metabolism or consequences of this combination vary with the dose of elimination of the drug, alcohol or both.2 Alcohol may drug, the amount of alcohol taken, the mode of affect drug pharmacokinetics by altering gastric emptying administration and the pharmacological effects of the drug or liver metabolism. Drugs may affect alcohol kinetics by concerned. Interactions may be pharmacokinetic or altering gastric emptying or inhibiting gastric alcohol pharmacodynamic, and while coincidental use of alcohol dehydrogenase (ADH).3 This may lead to altered tissue may affect the metabolism or action of a drug, a drug may concentrations of one or both agents, with resultant toxicity. equally affect the metabolism or action of alcohol. Alcohol- The results of concomitant use may also be principally drug interactions may differ with acute and chronic alcohol pharmacodynamic, with combined alcohol and drug effects ingestion, particularly where toxicity is due to a metabolite occurring at the receptor level without important changes rather than the parent drug. There is both inter- and intra- in plasma concentration of either. Some interactions have individual variation in the response to concomitant drug both kinetic and dynamic components and, where this is and alcohol use.
    [Show full text]
  • Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development
    Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development Gerlie Gieser, Ph.D. Office of Clinical Pharmacology, Div. IV Objectives • Outline the Phase 1 studies conducted to characterize the Clinical Pharmacology of a drug; describe important design elements of and the information gained from these studies. • List the Clinical Pharmacology characteristics of an Ideal Drug • Describe how the Clinical Pharmacology information from Phase 1 can help design Phase 2/3 trials • Discuss the timing of Clinical Pharmacology studies during drug development, and provide examples of how the information generated could impact the overall clinical development plan and product labeling. Phase 1 of Drug Development CLINICAL DEVELOPMENT RESEARCH PRE POST AND CLINICAL APPROVAL 1 DISCOVERY DEVELOPMENT 2 3 PHASE e e e s s s a a a h h h P P P Clinical Pharmacology Studies Initial IND (first in human) NDA/BLA SUBMISSION Phase 1 – studies designed mainly to investigate the safety/tolerability (if possible, identify MTD), pharmacokinetics and pharmacodynamics of an investigational drug in humans Clinical Pharmacology • Study of the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the drug in humans – PK: what the body does to the drug (Absorption, Distribution, Metabolism, Excretion) – PD: what the drug does to the body • PK and PD profiles of the drug are influenced by physicochemical properties of the drug, product/formulation, administration route, patient’s intrinsic and extrinsic factors (e.g., organ dysfunction, diseases, concomitant medications,
    [Show full text]
  • Isoflurane Produces Antidepressant Effects and Induces Trkb Signaling in Rodents
    bioRxiv preprint doi: https://doi.org/10.1101/084525; this version posted July 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Isoflurane produces antidepressant effects and induces TrkB signaling in rodents Hanna Antilaa, Maria Ryazantsevaa,b, Dina Popovaa, Pia Sipiläa, Ramon Guiradoa, Samuel Kohtalaa,b, Ipek Yalcinc, Jesse Lindholma, Liisa Vesaa, Vinicius Satod, Joshua Cordeirae, Henri Autioa, Mikhail Kislina, Maribel Riose, Sâmia Jocad, Plinio Casarottoa, Leonard Khirouga, Sari Lauria,b, Tomi Tairaa,f, Eero Castréna* and Tomi Rantamäkia,b* aNeuroscience Center, P.O. Box 56, FI-00014 University of Helsinki, Helsinki, Finland. bDivision of Physiology and Neuroscience, Department of Biosciences, Faculty of Biological and Environmental Sciences, P.O. Box 66, FI-00014 University of Helsinki, Helsinki, Finland. cInstitut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, FR-67084 Strasbourg Cedex, France. dSchool of Pharmaceutical Sciences of Ribeirão Preto 14040-903, Brazil. eTufts University, Boston, MA, USA. fDepartment of Veterinary Biosciences, Faculty of Veterinary Medicine P.O. Box 66, FI-00014 University of Helsinki, Helsinki, Finland. *To whom correspondence should be addressed at: Eero Castrén ([email protected]) or Tomi Rantamäki ([email protected]) A brief burst-suppressing isoflurane anesthesia has been shown to rapidly alleviate symptoms of depression in a subset of patients, but the neurobiological basis of these observations remains obscure. We show that a single isoflurane anesthesia produces antidepressant-like behavioural effects in the learned helplessness paradigm and regulates molecular events implicated in the mechanism of action of rapid-acting antidepressant ketamine: activation of brain-derived neurotrophic factor (BDNF) receptor TrkB, facilitation of mammalian target of rapamycin (mTOR) signaling pathway and inhibition of glycogen synthase kinase 3β (GSK3β).
    [Show full text]
  • Unesco – Eolss Sample Chapters
    PHARMACOLOGY – Vol. II - Anesthetics - Amanda Baric and David Pescod. ANESTHETICS Amanda Baric and David Pescod. Department of Anesthesia and Perioperative medicine, The Northern Hospital, Melbourne, Australia. Keywords: Anesthesia, pharmacology, inhalational, neuromuscular blockade, induction agent, local anesthetic. Contents 1. Inhalation agents 1.1. Introduction 1.2. Pharmacokinetics and Pharmacodynamics 1.3. Specific Agents 1.3.1. Diethyl Ether (Ether) 1.3.2. Chloroform 1.3.3. Cyclopropane 1.3.4. Trichloroethylene 1.3.5. Halogenated Alkanes and Ethers 1.3.6. Nitrous Oxide. 1.3.7. Xenon 2. Neuromuscular blocking agents. 2.1. Introduction 2.2. Non-Depolarizing Muscle Relaxants 2.2.1. Tubocurarine (1935) 2.2.2. Metocurine (dimethyl tubocurarine chloride/bromide) 2.2.3. Alcuronium (1961) 2.2.4. Gallamine (1948) 2.2.5. Pancuronium (1968) 2.2.6. Vecuronium (1983) 2.2.7. Atracurium (1980s) 2.2.8. Cis-atracurium (1995) 2.2.9. Mivacurium (1993) 2.2.10. Rocuronium (1994) 2.2.11. SugammadexUNESCO (2003) – EOLSS 2.2.12. Rapacuronium 2.3. Reversal Drugs (Anticholinesterase) 2.4. DepolarizingSAMPLE Muscle Relaxants (Suxamethonium CHAPTERS or Succinylcholine) 3. Local anesthetics 3.1. Introduction 3.2. Pharmacokinetics and Pharmacodynamics 3.3. Toxicity 3.4. Specific Agents 3.4.1. Cocaine 3.4.2. Procaine 3.4.3 Chloroprocaine 3.4.4. Tetracaine (Amethocaine) ©Encyclopedia of Life Support Systems (EOLSS) PHARMACOLOGY – Vol. II - Anesthetics - Amanda Baric and David Pescod. 3.4.5. Lidocaine 3.4.6. Prilocaine 3.4.7. Mepivacaine 3.4.8. Bupivacaine 3.4.9. Ropivacaine 3.4.10. Eutectic Mixture of Local Anesthetics (EMLA) 4. Intravenous Induction Agents 4.1.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • PHARMACY of the MONTH Discovery Pharmacy, Volume 3, Number 7, January 2013 PHARMACY of the MONTH 18 54 – EISSN 2278 26 54 – Pharmacy
    PHARMACY OF THE MONTH Discovery Pharmacy, Volume 3, Number 7, January 2013 PHARMACY OF THE MONTH 18 54 – EISSN 2278 26 54 – Pharmacy ISSN 2278 Intra- and Inter-Subject Variation in the Pharmacokinetics of Some Drugs- A Review Balasubramanian J1,2&4*, Tamil selvan2 1. Shield Health Care Pvt Ltd, Chennai-600 095, India 2. Sai Bio – Sciences Pvt Ltd, Chennai-600 094, India 3. Periyar Maniammai University, Thanjavur-613 403, Tamilnadu, India *Corresponding author: E-mail: [email protected] Received 24 November; accepted 21 December; published online 01 January; printed 16 January 2013 1. INTRODUCTION "Inter-individual variations of drugs pharmacokinetic parameters, resulting in fairly different plasma concentration-time profiles after administration of the same dose to different patients." Substantial differences in response to most drugs exist among patients. Therefore, the therapeutic standard dose of a drug, which is based on trails in healthy volunteers and patients, is not suitable for every patient. Variability exists in both pharmacokinetics and pharmacodynamics. For a typical drug, one standard deviation in the values observed for bioavailability (F), clearance (CL) and volume of distribution (Vd) would be about 20%, 50% and 30% respectively. Therefore, 95% of the time, the average concentration (Cav) will be between 35% and 270% of the target value. The most important factors in variability of pharmacokinetic parameters are: Genetic, Disease, Age and body size, Concomitant drugs, Environmental factors (e.g. foods, pollutants) and other factors include compliance, pregnancy, alcohol intake, seasonal variations, gender, or conditions of drug intake. 1.1. Genetic Patients vary widely in their responses to drugs.
    [Show full text]
  • THE HARD TRUTH ABOUT PROKINETIC MEDICATION USE in PETS Introduction Pathophysiology/Etiology to That Observed in Dogs
    VETTALK Volume 15, Number 04 American College of Veterinary Pharmacists THE HARD TRUTH ABOUT PROKINETIC MEDICATION USE IN PETS Introduction Pathophysiology/Etiology to that observed in dogs. It can be The moving topic of this Vet Talk As with most diseases in the veteri- due to a trichobezoar, dehydration, newsletter will be prokinetic medica- nary world, the etiology and patho- obesity, old age, diabetes, immobility, tions. The availability of information physiology of constipation are varied pain from trauma to the low back, on the many prokinetic agents is var- depending on the species being dis- bladder infection, or an anal sac infec- ied at best so an overall consensus of cussed, where in their gastrointestinal tion. In cases that are more chronic, prokinetic medications will be as- tract the problem is occurring, and underlying disease such as colitis or sessed in this article, hopefully giving any accompanying comorbid condi- Irritable Bowel Syndrome (IBS) may better insight to practitioners about tions. be the culprit. On the other hand, the which agents to use in their patients. cause may be idiopathic which is Canines: In man’s best friend, consti- frustrating for both veterinarian and Prevalence pation has many origins. A dog’s patient since this form is most diffi- Chronic constipation and gastroin- digestive tract itself is complex but cult to treat. testinal stasis are highly debilitating ultimately the mass movements and conditions that not only affect human haustral contractions from the large Equines: Despite their large size, patients but our four legged patients intestine (colon), propel feces into the horses have incredibly delicate diges- as well! Though this condition is rectum stimulating the internal anal tive systems.
    [Show full text]
  • Pharmacology – Inhalant Anesthetics
    Pharmacology- Inhalant Anesthetics Lyon Lee DVM PhD DACVA Introduction • Maintenance of general anesthesia is primarily carried out using inhalation anesthetics, although intravenous anesthetics may be used for short procedures. • Inhalation anesthetics provide quicker changes of anesthetic depth than injectable anesthetics, and reversal of central nervous depression is more readily achieved, explaining for its popularity in prolonged anesthesia (less risk of overdosing, less accumulation and quicker recovery) (see table 1) Table 1. Comparison of inhalant and injectable anesthetics Inhalant Technique Injectable Technique Expensive Equipment Cheap (needles, syringes) Patent Airway and high O2 Not necessarily Better control of anesthetic depth Once given, suffer the consequences Ease of elimination (ventilation) Only through metabolism & Excretion Pollution No • Commonly administered inhalant anesthetics include volatile liquids such as isoflurane, halothane, sevoflurane and desflurane, and inorganic gas, nitrous oxide (N2O). Except N2O, these volatile anesthetics are chemically ‘halogenated hydrocarbons’ and all are closely related. • Physical characteristics of volatile anesthetics govern their clinical effects and practicality associated with their use. Table 2. Physical characteristics of some volatile anesthetic agents. (MAC is for man) Name partition coefficient. boiling point MAC % blood /gas oil/gas (deg=C) Nitrous oxide 0.47 1.4 -89 105 Cyclopropane 0.55 11.5 -34 9.2 Halothane 2.4 220 50.2 0.75 Methoxyflurane 11.0 950 104.7 0.2 Enflurane 1.9 98 56.5 1.68 Isoflurane 1.4 97 48.5 1.15 Sevoflurane 0.6 53 58.5 2.5 Desflurane 0.42 18.7 25 5.72 Diethyl ether 12 65 34.6 1.92 Chloroform 8 400 61.2 0.77 Trichloroethylene 9 714 86.7 0.23 • The volatile anesthetics are administered as vapors after their evaporization in devices known as vaporizers.
    [Show full text]