THE HARD TRUTH ABOUT PROKINETIC MEDICATION USE in PETS Introduction Pathophysiology/Etiology to That Observed in Dogs

Total Page:16

File Type:pdf, Size:1020Kb

THE HARD TRUTH ABOUT PROKINETIC MEDICATION USE in PETS Introduction Pathophysiology/Etiology to That Observed in Dogs VETTALK Volume 15, Number 04 American College of Veterinary Pharmacists THE HARD TRUTH ABOUT PROKINETIC MEDICATION USE IN PETS Introduction Pathophysiology/Etiology to that observed in dogs. It can be The moving topic of this Vet Talk As with most diseases in the veteri- due to a trichobezoar, dehydration, newsletter will be prokinetic medica- nary world, the etiology and patho- obesity, old age, diabetes, immobility, tions. The availability of information physiology of constipation are varied pain from trauma to the low back, on the many prokinetic agents is var- depending on the species being dis- bladder infection, or an anal sac infec- ied at best so an overall consensus of cussed, where in their gastrointestinal tion. In cases that are more chronic, prokinetic medications will be as- tract the problem is occurring, and underlying disease such as colitis or sessed in this article, hopefully giving any accompanying comorbid condi- Irritable Bowel Syndrome (IBS) may better insight to practitioners about tions. be the culprit. On the other hand, the which agents to use in their patients. cause may be idiopathic which is Canines: In man’s best friend, consti- frustrating for both veterinarian and Prevalence pation has many origins. A dog’s patient since this form is most diffi- Chronic constipation and gastroin- digestive tract itself is complex but cult to treat. testinal stasis are highly debilitating ultimately the mass movements and conditions that not only affect human haustral contractions from the large Equines: Despite their large size, patients but our four legged patients intestine (colon), propel feces into the horses have incredibly delicate diges- as well! Though this condition is rectum stimulating the internal anal tive systems. Their stomach is rela- equally widespread amongst our nu- sphincter to relax. This then signals tively small compared to their body merous veterinary species, there are a the diaphragm and abdominal mus- size which then passes food through few specific groups who are more at cles to contract increasing pressure approximately 100 feet of digestive risk. For example, prevalence of con- while the external anal sphincter re- tract to include the small intestine, stipation is higher in the following laxes resulting in defecation. How- then cecum, large colon, small colon, dog breeds: English Bulldogs, Boston ever, various factors can impede this and finally rectum. Terriers, and German Shepherds. multifaceted process. Such examples During times of illness or stress Cats who are most affected include include ingesting foreign objects (i.e. horses may stop eating, drinking, and Siamese, Domestic Shorthair, and socks, garden hoses, shoes), anal sac Manx as well as those cats who are inflammation, long term opioid use middle-aged and male. Horses, rab- (i.e.tramadol), chemotherapeutic bits, guinea pigs, and chinchillas may medications (i.e.vincristine), obesity, also experience various forms of con- old age, immobility, and dehydration. stipation due to their unique digestive However, other more severe underly- systems. ing physiologic etiologies such as neuromuscular disease, diabetic gas- troparesis, or a neoplastic gastrointes- tinal obstruction may also be attribut- able to GI stasis. Felines: Cats can also develop con- stipation from several causes as their process of defecation is fairly similar with all of the aforementioned rea- Summary of Clinical Signs can develop colic which even in the sons, will surely result in a final out- 1. Increased tenesmus mildest form, results in pain, abnor- come of poor gastric motility 2. Failure to defecate mal motility, and even ileus. Colic 3. Fecal matter, if passed, is reduced has many origins but the forms most Rodents: Guinea pigs and chinchillas in quantity and is usually dry and likely to cause constipation are im- have a high metabolic rate, a hard paction colics due to fecal material, monogastric stomach, and an impres- 4. Presence of blood in stool parasites, or enteroliths. Other causes sive cecum that is so large it takes up 5. Feces that are particularly foul for gut immobility include pelvic approximately ½ of their body cavity. smelling flexure impaction from food, poor In the cecum, much like in horses and 6. May continuously get in and out food quality, an inability to access rabbits, there is fermentation by key of litter box without passing fecal free forage, dehydration, severe hind microflora. If their diets aren’t main- material limb pain or injury, or long term use tained appropriately with high fiber 7. Circling or pacing the stall with of anticholinergic medications such and low carbohydrates (similar to intermittent straining as atropine. lagomorphs), dysbiosis occurs result- 8. Decreased activity and lethargy ing in GI distress. Other reasons for likely due to pain constipation include dehydration, old 9. Painful and/or bloated abdomen age, spinal pain, obesity, excess fatty 10. Decreased interest in food diet, a lack of exercise, and dental 11. Irritability disease than can severely impair eat- ing and drinking. Diagnosis The primary means of diagnosing Clinical Signs and Symptoms any species with gastrointestinal sta- The classical clinical sign of consti- sis is through a complete history, pation is straining to defecate without thorough physical exam, and careful production of feces, droppings, or observation of their patient’s behav- manure. Affected animals can be of ior. A CBC and Chemistry Panel will Lagomorphs: Rabbits and hares have either sex, although in cats there is a be useful for identifying and/or ruling digestive systems that resemble male predilection, and of any age out other disease processes such as horses, rather than dogs or cats. Per- though often younger or older ani- diabetes, pancreatitis, or an underly- haps it is for this reason that they too mals are most affected. Besides ing infection. Abdominal radio- are very prone to GI stasis. The tran- straining, there may also be signs of graphs and ultrasounds both present sit time of the small intestine is rapid, general discomfort, irritability, a de- the practitioner with an even better and fibrous material is quickly moved crease in appetite, and a frequent understanding to what is, or is not, to the cecum and large intestine. need to want to defecate with postur- palpated on physical exam. It is very The cecum is where fermentation by ing and lifted tail. Variations of these important to discuss with the owner bacteria occurs. Indigestible fibrous physical demonstrations will be spe- about being vigilant in observing particles then accumulate in the colon cies specific. These problems, if not their pet and noting any changes in and are rapidly transported to the rec- resolved, can become life threatening. their diet or daily bathroom habits tum for defecation, usually within 4 Chronic constipation causes severe then recording these and letting their hours of ingestion. However, a diet pain, endotoxemia, decreased blood veterinarian know as they make their low in fiber in turn results in low flow and eventual necrosis of the in- way through this process with their amounts of fiber in the colon and testinal tissue that if not medically pet. cecum which reduces the production managed aggressively, may lead to of volatile fatty acids, increases pH, surgery. Diagnostic Algorithm and destroys natural microflora. 1. Assess history, physical exam, A diet high in carbohydrates may and clinical signs result in clostridial overgrowth, while a. Auscultation of the abdomen excessive protein can cause increased b. Rectal exam and palpation ammonia which also results in dys- where appropriate biosis. Obesity, inactivity, spinal c. Perform oral exams on lago- trauma, trichobezoars, dehydration, morphs and rodents as this excess fruit or nuts, in combination could be affecting their die- 4. Urine analysis crease the water content of stool. It is tary intake 5. Abdominal Radiographs most often used in horses for treat- d. Determine from owners if pa- 6. Abdominal ultrasound ment of constipation and fecal impac- tient has ingested any foreign tions via a properly place nasogastric objects tube. Due to the detrimental risk of 2. Rule out iatrogenic disease aspiration, it is administered orally a. Current or past medications via a stomach tube at 10-50 ml per (oral, ophthalmic, otic, topical) dog every 12 hours, 10-25 ml per cat b. Exposure to possible house every 12 hours and 500-1000ml per hold toxins (plants, owner horse up to 2-4 liters daily. Rabbits medications, household may be given 1-2 ml per day for 3-5 cleansers) days. A dose for guinea pigs isn’t 3. Preliminary Lab Results Treatment established. For short term use this is a. CBC There are several options available a certainly an appropriate option but i. Identify a possible for veterinarians to treat constipation for chronic constipation, as soon as underlying infection and GI stasis in their patients, most of laxative use ceases, constipation often b. Chemistry Profile which are focused on the underlying returns. This product is generally safe i. Serum chemistry disease such as giving fluids for dehy- in the hands of a practitioner with profiles may identify a dration or surgically removing an ob- minimal side effects of oily stool and comorbid disease state struction. We want to keep all our abdominal cramping. Despite being such as diabetes or renal animal patients well hydrated and OTC, this should never be recom- disease increase the fiber in their diets and mended for owners to give to their c. Urinalysis decrease the amount of carbohydrates. pets due to the deadly risk of aspira- i. Helpful to rule out a However, several of the most success- tion! possible urinary tract ful therapies for treatments of idio- infection as the source of pathic constipation (i.e., feline Lactulose pain and straining megacolon) have been removed from This is a disaccharide sugar con- 4. Radiographs the US market and are only available taining both fructose and galactose.
Recommended publications
  • Gastrointestinal (GI) Motility, Chronic Therapeutic Class Review
    Gastrointestinal (GI) Motility, Chronic Therapeutic Class Review (TCR) March 7, 2019 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management. All requests for permission should be mailed to: Magellan Rx Management Attention: Legal Department 6950 Columbia Gateway Drive Columbia, Maryland 21046 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to [email protected]. March 2019 Proprietary Information. Restricted Access – Do not disseminate or copy without approval. © 2004–2019 Magellan Rx Management. All Rights Reserved. FDA-APPROVED INDICATIONS Drug Manufacturer Indication(s) alosetron (Lotronex®)1 generic, .
    [Show full text]
  • Granisetron "Vianex"
    EU‐RISK MANAGEMENT PLAN GRANISETRON VIANEX® 1 MG/ML, SOLUTION FOR INJECTION/ INFUSION precautionary measure, breast‐feeding should not be advised during treatment with Granisetron “Vianex”. Legal Status: Prescription only product. VI.2 Elements for a public summary VI.2.1 Overview of disease epidemiology Nausea and vomiting associated with chemotherapy and radiotheraphy: One of the most distressing symptoms for patients undergoing both surgery and chemotherapy is nausea and vomiting. These symptoms have a significant impact on quality of life and can lead to malnutrition, inability to respond to treatment and an increased length of hospitalization. Emesis is more commonly associated with chemotherapeutic agents; however, radiation‐induced nausea and vomiting (RINV) can affect a significant proportion of patients, depending on the treated area, dose fractionation, and volume of radiotherapy. The relative risk for developing nausea and vomiting with chemotherapy ranges from 30 to 90% and is dependent upon the chemotherapeutic agent used. Relative risk for nausea and vomiting with radiation therapy is approximately 40%.2,3,4,5 Post‐operative nausea and vomiting Postoperative nausea and vomiting (PONV) is a major source of patient dissatisfaction and is the leading cause of discharge delays and unanticipated postsurgical hospital admissions. In the absence of pharmacological treatment, the rate of PONV is approximately 30% in general population, and can be as high as 70% in patients at highest risk. Several risk factors as surgery type, female gender, non‐smoker status, history of postoperative nausea and vomiting or motion sickness and post‐operative opioid use have been acknowledged. Additionally, post‐ operative vomiting (POV) occurs twice as frequently in children as in adults, increasing until puberty and then decreasing to adult incidence rates.
    [Show full text]
  • Management of Chronic Problems
    MANAGEMENT OF CHRONIC PROBLEMS INTERACTIONS BETWEEN ALCOHOL AND DRUGS A. Leary,* T. MacDonald† SUMMARY concerned. Alcohol may alter the effects of the drug; drug In western society alcohol consumption is common as is may change the effects of alcohol; or both may occur. the use of therapeutic drugs. It is not surprising therefore The interaction between alcohol and drug may be that concomitant use of these should occur frequently. The pharmacokinetic, with altered absorption, metabolism or consequences of this combination vary with the dose of elimination of the drug, alcohol or both.2 Alcohol may drug, the amount of alcohol taken, the mode of affect drug pharmacokinetics by altering gastric emptying administration and the pharmacological effects of the drug or liver metabolism. Drugs may affect alcohol kinetics by concerned. Interactions may be pharmacokinetic or altering gastric emptying or inhibiting gastric alcohol pharmacodynamic, and while coincidental use of alcohol dehydrogenase (ADH).3 This may lead to altered tissue may affect the metabolism or action of a drug, a drug may concentrations of one or both agents, with resultant toxicity. equally affect the metabolism or action of alcohol. Alcohol- The results of concomitant use may also be principally drug interactions may differ with acute and chronic alcohol pharmacodynamic, with combined alcohol and drug effects ingestion, particularly where toxicity is due to a metabolite occurring at the receptor level without important changes rather than the parent drug. There is both inter- and intra- in plasma concentration of either. Some interactions have individual variation in the response to concomitant drug both kinetic and dynamic components and, where this is and alcohol use.
    [Show full text]
  • Subanesthetic Doses of Ketamine Transiently Decrease Serotonin Transporter Activity: a PET Study in Conscious Monkeys
    Neuropsychopharmacology (2013) 38, 2666–2674 & 2013 American College of Neuropsychopharmacology. All rights reserved 0893-133X/13 www.neuropsychopharmacology.org Subanesthetic Doses of Ketamine Transiently Decrease Serotonin Transporter Activity: A PET Study in Conscious Monkeys 1 1 1 1 1 Shigeyuki Yamamoto , Hiroyuki Ohba , Shingo Nishiyama , Norihiro Harada , Takeharu Kakiuchi , 1 ,2 Hideo Tsukada and Edward F Domino* 1 2 Central Research Laboratory, Hamamatsu Photonics KK, Hamakita, Japan; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA Subanesthetic doses of ketamine, an N-methyl-D-aspartic acid (NMDA) antagonist, have a rapid antidepressant effect which lasts for up to 2 weeks. However, the neurobiological mechanism regarding this effect remains unclear. In the present study, the effects of subanesthetic doses of ketamine on serotonergic systems in conscious monkey brain were investigated. Five young monkeys 11 underwent four positron emission tomography measurements with [ C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)benzoni- 11 trile ([ C]DASB) for the serotonin transporter (SERT), during and after intravenous infusion of vehicle or ketamine hydrochloride in a 11 dose of 0.5 or 1.5 mg/kg for 40 min, and 24 h post infusion. Global reduction of [ C]DASB binding to SERT was observed during ketamine infusion in a dose-dependent manner, but not 24 h later. The effect of ketamine on the serotonin 1A receptor (5-HT1A-R) and dopamine transporter (DAT) was also investigated in the same subjects studied with [11C]DASB. No significant changes were observed in either 5-HT -R or DAT binding after ketamine infusion. Microdialysis analysis indicated that ketamine infusion transiently increased 1A serotonin levels in the extracellular fluid of the prefrontal cortex.
    [Show full text]
  • SENATE BILL No. 52
    As Amended by Senate Committee Session of 2017 SENATE BILL No. 52 By Committee on Public Health and Welfare 1-20 1 AN ACT concerning the uniform controlled substances act; relating to 2 substances included in schedules I, II and V; amending K.S.A. 2016 3 Supp. 65-4105, 65-4107 and 65-4113 and repealing the existing 4 sections. 5 6 Be it enacted by the Legislature of the State of Kansas: 7 Section 1. K.S.A. 2016 Supp. 65-4105 is hereby amended to read as 8 follows: 65-4105. (a) The controlled substances listed in this section are 9 included in schedule I and the number set forth opposite each drug or 10 substance is the DEA controlled substances code which has been assigned 11 to it. 12 (b) Any of the following opiates, including their isomers, esters, 13 ethers, salts, and salts of isomers, esters and ethers, unless specifically 14 excepted, whenever the existence of these isomers, esters, ethers and salts 15 is possible within the specific chemical designation: 16 (1) Acetyl fentanyl (N-(1-phenethylpiperidin-4-yl)- 17 N-phenylacetamide)......................................................................9821 18 (2) Acetyl-alpha-methylfentanyl (N-[1-(1-methyl-2-phenethyl)-4- 19 piperidinyl]-N-phenylacetamide)..................................................9815 20 (3) Acetylmethadol.............................................................................9601 21 (4) AH-7921 (3.4-dichloro-N-[(1- 22 dimethylaminocyclohexylmethyl]benzamide)...............................9551 23 (4)(5) Allylprodine...........................................................................9602
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Keeping up with FDA Drug Approvals: 60 New Drugs in 60 Minutes Elizabeth A
    Keeping Up with FDA Drug Approvals: 60 New Drugs in 60 Minutes Elizabeth A. Shlom, PharmD, BCPS Senior Vice President & Director Clinical Pharmacy Program | Acurity, Inc. Privileged and Confidential April 10, 2019 Privileged and Confidential Program Objectives By the end of the presentation, the pharmacist or pharmacy technician participant will be able to: ▪ Identify orphan drugs and first-in-class medications approved by the FDA in 2018. ▪ List five new drugs and their indications. ▪ Identify the place in therapy for three novel monoclonal antibodies. ▪ Discuss at least two new medications that address public health concerns. Dr. Shlom does not have any conflicts of interest in regard to this presentation. Both trade names and generic names will be discussed throughout the presentation Privileged and Confidential 2018 NDA Approvals (NMEs/BLAs) ▪ Lutathera (lutetium Lu 177 dotatate) ▪ Braftovi (encorafenib) ▪ Vizimpro (dacomitinib) ▪ Biktarvy (bictegravir, emtricitabine, ▪ TPOXX (tecovirimat) ▪ Libtayo (cemiplimab-rwic) tenofovir, ▪ Tibsovo (ivosidenib) ▪ Seysara (sarecycline) alafenamide) ▪ Krintafel (tafenoquine) ▪ Nuzyra (omadacycline) ▪ Symdeko (tezacaftor, ivacaftor) ▪ Orilissa (elagolix sodium) ▪ Revcovi (elapegademase-lvir) ▪ Erleada (apalutamide) ▪ Omegaven (fish oil triglycerides) ▪ Tegsedi (inotersen) ▪ Trogarzo (ibalizumab-uiyk) ▪ Mulpleta (lusutrombopag) ▪ Talzenna (talazoparib) ▪ Ilumya (tildrakizumab-asmn) ▪ Poteligeo (mogamulizumab-kpkc) ▪ Xofluza (baloxavir marboxil) ▪ Tavalisse (fostamatinib disodium) ▪ Onpattro (patisiran)
    [Show full text]
  • The Pharmacology of Prokinetic Agents and Their Role in the Treatment of Gastrointestinal Disorders
    The Pharmacology of ProkineticAgents IJGE Issue 4 Vol 1 2003 Review Article The Pharmacology of Prokinetic Agents and Their Role in the Treatment of Gastrointestinal Disorders George Y. Wu, M.D, Ph.D. INTRODUCTION Metoclopramide Normal peristalsis of the gut requires complex, coordinated neural and motor activity. Pharmacologic Category : Gastrointestinal Abnormalities can occur at a number of different Agent. Prokinetic levels, and can be caused by numerous etiologies. This review summarizes current as well as new Symptomatic treatment of diabetic gastric agents that show promise in the treatment of stasis gastrointestinal motility disorders. For these Gastroesophageal reflux e conditions, the most common medications used in s Facilitation of intubation of the small the US are erythromycin, metoclopramide, and U intestine neostigmine (in acute intestinal pseudo- Prevention and/or treatment of nausea and obstruction). A new prokinetic agent, tegaserod, vomiting associated with chemotherapy, has been recently approved, while other serotonin radiation therapy, or post-surgery (1) agonist agents (prucalopride, YM-31636, SK-951, n ML 10302) are currently undergoing clinical o Blocks dopamine receptors in chemoreceptor i t studies. Other prokinetics, such as domperidone, c trigger zone of the CNS (2) A are not yet approved in the US, although are used in f Enhances the response to acetylcholine of o other countries. tissue in the upper GI tract, causing enhanced m s i n motility and accelerated gastric emptying a DELAYED GASTRIC EMPTYING OR h without stimulating gastric, biliary, or c G A S T R O E S O P H A G E A L R E F L U X e pancreatic secretions.
    [Show full text]
  • Marketing Authorisations Granted in December 2020
    Marketing authorisations granted in December 2020 PL Number Grant Date MA Holder Licensed Name(s) Active Ingredient Quantity Units Legal Status Territory PL 14251/0100 01/12/2020 MANX HEALTHCARE LIMITED COLCHICINE 500 MICROGRAMS TABLETS COLCHICINE 0.500 MILLIGRAMS POM UK PL 34424/0050 02/12/2020 KEY PHARMACEUTICALS LIMITED SPIRONOLACTONE 25MG FILM-COATED TABLETS SPIRONOLACTONE 25 MILLIGRAMS POM UK PL 34424/0051 02/12/2020 KEY PHARMACEUTICALS LIMITED SPIRONOLACTONE 50MG FILM-COATED TABLETS SPIRONOLACTONE 50 MILLIGRAMS POM UK PL 34424/0052 02/12/2020 KEY PHARMACEUTICALS LIMITED SPIRONOLACTONE 100MG FILM-COATED TABLETS SPIRONOLACTONE 100 MILLIGRAMS POM UK PL 36282/0021 03/12/2020 RIA GENERICS LIMITED COLCHICINE 500 MICROGRAM TABLETS COLCHICINE 500 MICROGRAMS POM UK PL 39352/0439 03/12/2020 KOSEI PHARMA UK LIMITED FROVATRIPTAN 2.5 MG FILM-COATED TABLETS FROVATRIPTAN SUCCINATE MONOHYDRATE 2.5 MILLIGRAMS POM UK PL 31750/0174 04/12/2020 SUN PHARMACEUTICAL INDUSTRIES EUROPE BV CETRORELIX SUN 0.25 MG SOLUTION FOR INJECTION IN PRE-FILLED SYRINGE CETRORELIX ACETATE 0.25 MILLIGRAMS PER MILLILITRE POM UK PL 34424/0054 04/12/2020 KEY PHARMACEUTICALS LIMITED ALIMEMAZINE TARTRATE 10MG FILM COATED TABLETS ALIMEMAZINE TARTRATE 10.00 MILLIGRAMS POM UK PL 17780/0858 07/12/2020 ZENTIVA PHARMA UK LIMITED FINGOLIMOD ZENTIVA 0.5 MG HARD CAPSULES FINGOLIMOD HYDROCHLORIDE 0.56 MILLIGRAMS POM UK PL 01502/0113 08/12/2020 HAMELN PHARMA LTD AMIODARONE HYDROCHLORIDE 20 MG/ML SOLUTION FOR INFUSION AMIODARONE HYDROCHLORIDE 20 MILLIGRAMS POM UK PL 16786/0006 08/12/2020
    [Show full text]
  • Potential Cannabis Antagonists for Marijuana Intoxication
    Central Journal of Pharmacology & Clinical Toxicology Bringing Excellence in Open Access Review Article *Corresponding author Matthew Kagan, M.D., Cedars-Sinai Medical Center, 8730 Alden Drive, Los Angeles, CA 90048, USA, Tel: 310- Potential Cannabis Antagonists 423-3465; Fax: 310.423.8397; Email: Matthew.Kagan@ cshs.org Submitted: 11 October 2018 for Marijuana Intoxication Accepted: 23 October 2018 William W. Ishak, Jonathan Dang, Steven Clevenger, Shaina Published: 25 October 2018 Ganjian, Samantha Cohen, and Matthew Kagan* ISSN: 2333-7079 Cedars-Sinai Medical Center, USA Copyright © 2018 Kagan et al. Abstract OPEN ACCESS Keywords Cannabis use is on the rise leading to the need to address the medical, psychosocial, • Cannabis and economic effects of cannabis intoxication. While effective agents have not yet been • Cannabinoids implemented for the treatment of acute marijuana intoxication, a number of compounds • Antagonist continue to hold promise for treatment of cannabinoid intoxication. Potential therapeutic • Marijuana agents are reviewed with advantages and side effects. Three agents appear to merit • Intoxication further inquiry; most notably Cannabidiol with some evidence of antipsychotic activity • THC and in addition Virodhamine and Tetrahydrocannabivarin with a similar mixed receptor profile. Given the results of this research, continued development of agents acting on cannabinoid receptors with and without peripheral selectivity may lead to an effective treatment for acute cannabinoid intoxication. Much work still remains to develop strategies that will interrupt and reverse the effects of acute marijuana intoxication. ABBREVIATIONS Therapeutic uses of cannabis include chronic pain, loss of appetite, spasticity, and chemotherapy-associated nausea and CBD: Cannabidiol; CBG: Cannabigerol; THCV: vomiting [8]. Recreational cannabis use is on the rise with more Tetrahydrocannabivarin; THC: Tetrahydrocannabinol states approving its use and it is viewed as no different from INTRODUCTION recreational use of alcohol or tobacco [9].
    [Show full text]
  • Tegaserod in the Treatment of Constipation-Predominant Functional Gastrointestinal Disorders
    DRUG PROFILE Tegaserod in the treatment of constipation-predominant functional gastrointestinal disorders Anurag Agrawal & Irritable bowel syndrome is a common condition for which, until recently, treatment Peter Whorwell† options have been limited. Tegaserod has selective serotonin subtype 4 receptor agonist †Author for correspondence activity and acts by increasing gastrointestinal motility, secretion and possibly reducing ERC Building, First Floor, Wythenshawe Hospital, visceral sensitivity. It has been developed to treat patients with irritable bowel syndrome Southmoor Road, who suffer from abdominal pain, constipation and bloating. Studies so far suggest that it is Manchester, M23 9LT, an effective treatment for these symptoms with an excellent safety profile. Its role in other UK Tel.: +44 161 291 5813 functional gastrointestinal disorders, such as functional dyspepsia, is still being assessed. Fax: +44 161 291 4184 This review describes the structure, pharmacokinetic and pharmacodynamic properties of tegaserod and its effect on gastrointestinal physiology, as well as its clinical utility. Irritable bowel syndrome (IBS) is the most com- drugs such as antidiarrheals, laxatives, antispas- mon condition dealt with by gastroenterolo- modics and antidepressants. Behavioral therapy gists, accounting for up to 30% of their practice is sometimes tried in patients who do not and 10% of primary care case loads [1]. It is respond to conventional treatment. characterized by abdominal pain or discomfort In addition to its costs to the patient, IBS also often related to a change in bowel habit and fre- has a significant direct and indirect economic quently exacerbated by eating. Investigation burden. The direct cost in terms of healthcare reveals no structural abnormality, although a utilization has been estimated to be between variety of gastrointestinal (GI) physiological US$1.7–10 billion/year in the USA alone.
    [Show full text]
  • Exploring the Cocrystallization Potential of Urea and Benzamide
    JMolModel (2016) 22:103 DOI 10.1007/s00894-016-2964-6 ORIGINAL PAPER Exploring the cocrystallization potential of urea and benzamide Piotr Cysewski1 & Maciej Przybyłek1 & Dorota Ziółkowska 2 & Karina Mroczyńska2 Received: 14 November 2015 /Accepted: 14 March 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The cocrystallization landscape of benzamide and defined by excess thermodynamic functions, and all known urea interacting with aliphatic and aromatic carboxylic acids cocrystals are outside of this range belonging to the third or was studied both experimentally and theoretically. Ten new fourth quartile. On the contrary, such a simple separation of cocrystals of benzamide were synthesized using an oriented positive and negative cases of benzamide miscibility in the samples approach via a fast dropped evaporation technique. solid state is not observed. The difference in properties be- Information about types of known bi-component cocrystals tween urea and benzamide R2,2(8) heterosynthons is also augmented with knowledge of simple binary eutectic mixtures documented by alterations of substituent effects. was used for the analysis of virtual screening efficiency Intermolecular interactions of urea with para substituted among 514 potential pairs involving aromatic carboxylic acids benzoic acid analogues are stronger compared to those of interacting with urea or benzamide. Quantification of intermo- benzamide. Also, the amount of charge transfer from amide lecular interaction was achieved by estimating the excess ther- to aromatic carboxylic acid and vice versa is more pronounced modynamic functions of binary liquid mixtures under for urea. However, in both cases, the greater the electron with- supercooled conditions within a COSMO-RS framework.
    [Show full text]