UCLA Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
UCLA UCLA Electronic Theses and Dissertations Title Pediatric Mechanical Circulatory Support Applications for Frequency-Leveraged Piezoelectric Hydraulic Pumps Permalink https://escholarship.org/uc/item/34b4t1zg Author Valdovinos, John Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Pediatric Mechanical Circulatory Support Applications for Frequency-Leveraged Piezoelectric Hydraulic Pumps A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Engineering by John Valdovinos 2014 © Copyright by John Valdovinos 2014 ABSTRACT OF DISSERTATION Pediatric Mechanical Circulatory Support Applications for Frequency-Leveraged Piezoelectric Hydraulic Pumps By John Valdovinos Doctor of Philosophy in Biomedical Engineering University of California, Los Angeles, 2014 Professor Gregory P. Carman, Co-Chair Professor Daniel S. Levi, Co-Chair While the development of ventricular assist devices for the pediatric population has grown and helped these patients in bridge-to-transplantation, the motors used for these devices have remained electromagnetic. Because the physical space requirements for pediatric ventricular assist devices (PVADs) implantation are smaller in children, these motors are susceptible to decreased power output and efficiency as they are scaled down. Piezoelectric actuators, which scale down favorably in terms of power output and efficiency, have yielded novel compact piezoelectric hydraulic pumps in the aerospace industry. The focus of this research is on the development of a ventricular assist driver powered by a miniature piezoelectric hydraulic pump (PHP). This driver is designed to drive a working fluid to an extracorporeal ventricular assist ii device, also called a blood pump, which has been fabricated at UCLA for bridge-to- transplantation mechanical support. The majority of the focus for this dissertation was on developing a fundamental understanding of the factors that affect the transduction of power from a small scale piezoelectric to the human circulation. Two piezoelectric pumps were developed and mechanically tested. An 8.1 W/kg pump with 3% efficient pump was fabricated. In-vitro studies were carried out to show that the piezoelectric pump could produce physiological pressure and flow rate waveforms for pediatric patients. While the driver could only provide 1 L/min flow to the mock circulation, these studies have laid the groundwork to optimize piezoelectric pump technology for mechanical support applications in the pediatric community. iii The dissertation of John Valdovinos is approved. Christopher S. Lynch Jacob J. Schmidt Daniel S. Levi, Committee Co-Chair Gregory P. Carman, Committee Co-Chair University of California, Los Angeles 2014 iv To my parents, Juan and Esther, my sister, Marissa, and my fiancée, Irene. v Table of Contents Chapter 1: Introduction ................................................................................................................1 1.1 Motivation and Background ...................................................................................................1 1.2 Hypothesis ..............................................................................................................................3 1.3 Summary of Chapters .............................................................................................................4 Chapter 2: Mechanical Circulatory Support Literature Review .............................................7 2.1 Human Cardiovascular Physiology and Heart Failure ..........................................................7 2.2 Overview of Mechanical Circulatory Support .....................................................................12 2.3 Pediatric MCS Devices .......................................................................................................17 2.4 Pulsatile Blood Pump Driver Design ..................................................................................19 2.5 MCS In Vitro and In Vivo Testing ......................................................................................24 2.6 Summary .............................................................................................................................26 Chapter 3: Piezoelectric Hydraulic Pump Literature Review ................................................28 3.1 Piezoelectric Transducer Background .................................................................................28 3.2 Piezoelectric Actuators and Motors .....................................................................................35 3.3 Piezoelectric Hydraulic Pumps ............................................................................................41 3.4 Summary ..............................................................................................................................51 Chapter 4: Piezohydraulic Pump Ventricular Assist Device Driver: Feasibility Study ......53 4.1 Theoretical Analysis for Design Requirements....................................................................53 4.2 Experimental Setup ..............................................................................................................61 4.3 Results and Discussion .........................................................................................................65 4.4 Summary ..............................................................................................................................72 Chapter 5: Miniature Piezohydraulic Pump Design, Modeling, and Mechanical Testing ..74 5.1 Piezohydraulic Pump Design and Components ...................................................................74 5.2 Three Dimensional Piezoelectric Hydraulic Pump Model ...................................................96 5.3 Piezohydraulic Pump Prototype Testing and Results ........................................................112 5.4 Summary ............................................................................................................................128 Chapter 6: Pediatric Blood Pump Design and Piezohydraulic Driver ................................130 6.1 Pulsatile Blood Pump Design .............................................................................................130 6.2 Piezoelectric Hydraulic Ventricular Assist Device Driver Design ....................................145 6.3 In-vitro Testing and Results ...............................................................................................147 vi 6.5 Summary ............................................................................................................................154 Chapter 7: Fontan Mechanical Circulatory Support Research ...........................................155 7.1 Fontan Physiology Background ........................................................................................156 7.2 Fontan Assist Materials and Methods ...............................................................................158 7.3 Results and Discussion .......................................................................................................162 7.4 Summary ............................................................................................................................171 Conclusion .................................................................................................................................172 APPENDIX A: Piezohydraulic Pump Drawings ...................................................................174 APPENDIX B: Blood Pump Drawings ....................................................................................185 BIBLIOGRAPHY ......................................................................................................................190 vii List of Figures Figure 1-1. Development of a piezohydraulic driven pediatric ventricular assist device driver proposed in this dissertation.............................................................................................................4 Figure 2-1. (a) Left atrial and ventricular pressure and ventricular volume produced by the left heart during the cardiac cycle and (b) the corresponding left ventricular pressure-volume curve .9 Figure 2-2. (a) Effect of increased ventricular preload (filling) on the ventricular pressure- volume curve and (b) the effect of increased ventricular afterload (back pressure) on the ventricular pressure-volume curve ................................................................................................10 Figure 2-3. Comparison of a normal heart with normal and a heart with dilated cardiomyopathy ........................................................................................................................................................11 Figure 2-4. (a) Drawings of the first clinically used paracorporeal pneumatically actuated pulsatile VAD from Thoratec (PVAD) (b) images of the developed device ................................14 Figure 2-5. (a) Cross-sectional view of an axial continuous flow VAD (b) centrifugal continuous flow VAD [17], (c) the Jarvik 2000 axial flow VAD, and (d) the Heart-Ware HVAD centrifugal pump .............................................................................................................................................15 Figure 2-6. (a) Performance curve for a dynamic type pump and (b) performance