Synthesis and Characterization of Zno Finewires for the Conceptual Design of a Mechanical Battery
Total Page:16
File Type:pdf, Size:1020Kb
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Synthesis and characterization of ZnO finewires for the conceptual design of a mechanical battery Ph. D. Thesis written by Oscar Gilberto Súchil Pérez Under the supervision of Francesc Torres and Gabriel Abadal Electronic Circuits and Systems and NOEMS for energy laboratory Bellaterra (Cerdanyola del Vallès), May 2017 Synthesisii and characterization of ZnO finewires for the conceptual design of a me chanical battery The undersigned, Dr, Francesc Torres and Gabriel Abadal, Professors of the Electronic Engineering Department (Engineering School) of the Universitat Autònoma de Barcelona, CERTIFY: That the thesis entitled “Synthesis and characterization of ZnO finewires for the conceptual design of a mechanical battery” has been written by Oscar Gilberto Súchil Pérez under their supervision, in fulfillment of the requirements for the PhD degree of Electronic Engineering. And hereby to acknowledge the above, sign the present. Frances Torres Gabriel Abadal Bellaterra (Cerdanyola del vallès, May 2017) ii Acknowledgments Firstly, a special acknowledgment to my father, who supports me from the beginning for start this journey in the research field. Secondly, to my mom and brothers, for their unconditional support and love, in overall this period of my life. To the rest of my family that gave me the strength from far, to conclude this period of knowledge acquisition. To my professors that make me gain a lot of knowledge and experience with a lot of effort and patience Francesc Torres and Gabriel Abadal Berini. To all the collegues and friends, that share with me more than a cup of coffee, to discuss and clear many doubts during the research: Carlos Couso, Marcos Maestro, Francisco Pasadas, Alberto Rodriguez, Miquel Moras and finally to Javier Hellin who gave its technical support and experience for this work. This work was financed by EXPLORA project TEC2010-10459-E, NEMS Based Mechanical Energy Storage funded by “Ministerio de Ciencia e Innovación”, and with a collaboration of “Consejo Nacional de Ciencia y Tecnología (CONACYT)” coordinated by the Mexican government, which support my scholarship to accomplish this Ph.D. Oscar Gilberto Súchil Pérez Barcelona, 2017 Synthesisiv and characterization of ZnO finewires for the conceptual design of a me chanical battery Abstract The synthesis and characterization for a ZnO array have been done with the aim of fabricate an experimental battery that uses the strain energy as energy source. The storage principle is based on a common spring which is loaded by the force associated to the energy to be harvested. By following the same principle our approach is based on pressing an array of fine wires (fws) grown vertically on a substrate surface. The ZnO has been chosen as a fabrication material due fine wires growth is cheap and simple using the hydrothermal method. By taking the best aligned ZnO array samples obtained from our previous experiments the characterization was performed in two phases, firstly a statistical study was computed for quantify the ZnO fws physical dimensions as average density, diameters and lengths. Secondly a mechanical study for a single fine wire was done applying the linear elastic theory and later corroborated by a FEM simulation. The boundary conditions free-fixed and pinned-fixed as possible behaviors were considered. Finally the fine wires array was submitted to a compression test in order to see the deformation levels and energy storage capability as an experimental reference. iv Resumen La caracterización de arreglos de micro hilos de óxido de Zinc (ZnO) se ha realizado con la finalidad de diseñar una batería experimental que utiliza la energía de deformación como fuente de energía. El principio de almacenamiento esta basado en la compression simple de un muelle cuya fuerza de compression se encuentra asociada a la energía que es cosechada. Mediante el mismo principio se propone la compression de un arreglo de nanohilos de ZnO crecidos de forma alineada perpendiculars al sustrato de crecimiento, funcionando como muelles elásticos que almacenen energía en un medio enteramente mecánico. El ZnO se ha elegido por ser un material en el que se pueden crecer nanoestructuras con forma de hilos, barras y filamentos de manera sencilla y de bajo coste a través de un método de síntesis llamado método hidrotérmico. Tomando en cuenta las mejores muestras alineadas de microhilos de ZnO, se realizó un proeso para su caracterización mecánica en dos fases principales. La primera fase coniste en el estudio estadístico para dimensionar su morfología y tamaños asaí como su densidad de crecimiento media por toda la muestra. En segundo lugar se llevó a cabo la realización de la aplicación de la teoría lineal elástica que después fue corroborada y replicada con simulaciones de elementos finitos (FEM). Las condiciones de contorno consideradas como comportamientos posibles en los microhilos de ZnO fuero libre-empotrado y articulado-empotrado. Finalmente los microhilos se sometieron a pruebas de compresión simple utilizando un nanoindentador comercial, para llevar a cabo el análisis experimental puntual de las propiedades del material del que se conforman y así determinar la discrepancia con el modelo teórico así como su capacidad de almacenamiento de energía real. Synthesisvi and characterization of ZnO finewires for the conceptual design of a me chanical battery Index Acknowledgments ........................................................................................................... iii Abstract ........................................................................................................................... iv Resumen ........................................................................................................................... v Index ................................................................................................................................ vi List of figures .................................................................................................................... ix List of tables .................................................................................................................... xii List of equations ............................................................................................................. xiii Abbreviations ................................................................................................................. xv Chapter 1. Introduction .............................................................................................. 17 1.1 Energy storage systems ............................................................................................. 18 1.1.1 Energy storage systems at macro-scale ........................................................... 18 1.1.1.1 Large-scale energy storage techniques ...................................................................... 18 1.1.1.2 Small-scale energy storage techniques ...................................................................... 19 1.1.2 Energy storage systems at micro/nano-scale .................................................. 20 1.1.2.1 Micro-scale energy storage applications ................................................................... 20 1.1.2.2 Nano-scale of energy storage applications ................................................................ 21 1.1.3 Storing energy in the mechanical domain ....................................................... 22 1.2 General approach to the mechanical energy storage system ................................ 24 1.2.1 Category 1: “Mechanical energy storage on MEMS” ...................................... 24 1.2.2 Category 2:”Mechanical energy storage on Nanotubes” ............................... 26 1.2.3 Category 3:”Mechanical energy harvesting with Nanowire interfaces” ....... 28 1.2.4 Scope of research and methodology ................................................................ 31 1.2.5 Methodology proposed for design of MESS .................................................... 33 Chapter 2. Fabrication of ZnO Nano/Micro structures................................................ 35 2.1. General properties of ZnO .............................................................................................. 36 2.2. Fabrication of ZnO microstructures using the Hydrothermal Method ....................... 38 2.2.1. Description of Hydrothermal Method .............................................................. 38 2.2.2. Background on Hydrothermal Growth ............................................................. 41 2.2.3. Optimization process of HTM with ZnO seed deposition ............................... 45 2.2.4. Statistical analysis of dimensions and densities for ZnO microstructures ..... 51 2.3. Summary ......................................................................................................................... 54 Chapter