Large-Scale Piezoelectric-Based Systems for More Electric Aircraft Applications

Total Page:16

File Type:pdf, Size:1020Kb

Large-Scale Piezoelectric-Based Systems for More Electric Aircraft Applications micromachines Review Large-Scale Piezoelectric-Based Systems for More Electric Aircraft Applications Tran Vy Khanh Vo 1 , Tomasz Marek Lubecki 1, Wai Tuck Chow 2, Amit Gupta 1 and King Ho Holden Li 2,* 1 Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, Singapore 637460, Singapore; [email protected] (T.V.K.V.); [email protected] (T.M.L.); [email protected] (A.G.) 2 School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore; [email protected] * Correspondence: [email protected]; Tel.: +65-6790-6398 Abstract: A new approach in the development of aircraft and aerospace industry is geared toward increasing use of electric systems. An electromechanical (EM) piezoelectric-based system is one of the potential technologies that can produce a compactable system with a fast response and a high power density. However, piezoelectric materials generate a small strain, of around 0.1–0.2% of the original actuator length, limiting their potential in large-scale applications. This paper reviews the potential amplification mechanisms for piezoelectric-based systems targeting aerospace applications. The concepts, structural designs, and operation conditions of each method are summarized and compared. This review aims to provide a good understanding of piezoelectric-based systems toward selecting suitable designs for potential aerospace applications and an outlook for novel designs in the near future. Keywords: piezoelectric stack; amplification mechanism; quasi-static stepped system; ultrasonic Citation: Vo, T.V.K.; Lubecki, T.M.; system; piezoelectric-hydraulic; aerospace applications Chow, W.T.; Gupta, A.; Li, K.H.H. Large-Scale Piezoelectric-Based Systems for More Electric Aircraft Applications. Micromachines 2021, 12, 1. Introduction 140. https://doi.org/10.3390/ A concept of more/all-electric aircraft has recently received huge attention in the mi12020140 research and development work in the field of aerospace engineering [1–7]. The intent is to use more electrical systems in aircraft and aerospace applications to bring an impact on Academic Editor: Jose the environment [8]. With the fast development of electrification, more researchers and Luis Sanchez-Rojas manufacturers are shifting to this dynamic trend involving a high demand for increasing Received: 24 December 2020 the load, improving fuel efficiency, reducing emissions, and lowering the total cost of oper- Accepted: 22 January 2021 Published: 28 January 2021 ation. Researchers seek different approaches and technologies to broaden this fashionable concept in a wide range of applications. The choice of actuators in the aircraft is based on Publisher’s Note: MDPI stays neutral various critical factors, such as power density, reliability, efficiency, control features, and with regard to jurisdictional claims in thermal robustness, as well as the weight, size, and maintenance cost. In a commercial published maps and institutional affil- aircraft, actuators are essential in various applications, such as flight control, engine starter, iations. landing system, brake actuation, and fuel pump [9,10]. The specifications of actuators in an aircraft vary across a wide range. Typical requirements can be listed as 1–320 kN of force, 10–700 mm of stroke, and 10–500 mm/s of speed, with the requirement of both modulated and two-position control methods [4,11]. For these actuation systems in the aircraft engine, the working temperature is from −50 to 150 ◦C at the engine intake; and it is higher for the Copyright: © 2021 by the authors. actuators located toward the high-pressure compressor void (300–400 ◦C) or the tail cone Licensee MDPI, Basel, Switzerland. ◦ This article is an open access article area (500–600 C) [12]. Overall, actuators in an aircraft require both the advantages of mate- distributed under the terms and rials that allow them to deliver the required power in extreme environmental conditions conditions of the Creative Commons and the optimal structural designs to maximize their performance within a constrained Attribution (CC BY) license (https:// weight and space. creativecommons.org/licenses/by/ In the development of signal-by-wire and power-by-wire actuators in aircraft, elec- 4.0/). tromechanical (EM) systems have seen a huge improvement, with significant results from Micromachines 2021, 12, 140. https://doi.org/10.3390/mi12020140 https://www.mdpi.com/journal/micromachines Micromachines 2021, 12, 140 2 of 28 Micromachines 2021, 12, x FOR PEER REVIEW 2 of 29 both researchers and manufacturers. Electrical actuators, which have taken advantage of In the development of signal-by-wire and power-by-wire actuators in aircraft, elec- state-of-the-arttromechanical (EM) motors systems and have power seen screws, a huge improvement, are among these with systems significant [13 results–17]. Thefrom electrical actuatorsboth researchers could and provide manufacturers. a load range Electrical of up actuators, to 90 kN wh, withich have over taken 90% advantage efficiency, of making themstate-of suitable-the-art motors for replacing and power several screws, conventional are among these hydraulic systems or [13 fueldraulic–17]. The electrical systems in the jetactuators engine could [18, 19provide]. These a load systems range bringof up moreto 90 kN advantages, with over in90% terms efficiency, of a compactmaking design (eliminatingthem suitable for pipes replacing and heavy several elements) conventional and hyd power-to-weightraulic or fueldraulic ratio systems (weight in the reducing), enhancingjet engine [18,19]. aircraft These stability systems and bring thus more providing advantages the ability in terms to incorporateof a compact moredesign functions within(eliminating thecontrol pipes and system heavy toelements) further and enhance power- aircraftto-weight utility. ratio (weight Besides reducing), electrical en- actuators, smart-material-basedhancing aircraft stability actuators and thus areproviding also considered the ability ato promising incorporate approach. more functions The develop- mentwithin of the smart control materials, system to such further as enhance piezoelectric aircraft materials utility. Besides [20], shapeelectrical memory actuators, alloys [21], smart-material-based actuators are also considered a promising approach. The develop- magnetostrictive materials [22], and electroactive polymers [23,24], also offers advantages ment of smart materials, such as piezoelectric materials [20], shape memory alloys [21], in the aerospace applications [25,26]. Looking beyond the potential of replacing the con- magnetostrictive materials [22], and electroactive polymers [23,24], also offers advantages ventionalin the aerospace system applications with similar [25,26]. or even Looking better beyond performance the potential actuators, of replacing the smart the con- behavior of suchventional materials system may with offersimilar more or even room better for performance the development actuators, ofnovel the smart systems. behavior For of example, thesuch shape-changing materials may offer ability more of room smart for materials the development can be exploredof novel systems. in morphing For example, aircraft [27,28]. Shapethe shape memory-changing alloy-based ability of smart [29,30 materials] and piezoelectric-based can be explored in morphing bender designs aircraft [ [27,28].31] can be used forShape noise memory reduction alloy- whenbased mounting[29,30] and thepiezoelectric bender on-based the bender trailing designs edge of [31] the can jet enginebe fan nozzleused for and noise the reduction rotor of when the helicopter, mounting the respectively. bender on the Each trailing material edge respondsof the jet engine differently to thefan nozzle stimuli, and and the various rotor of the actuation helicopter, modes respectively. can be achieved Each material with responds distinct differently working concepts andto the geometrical stimuli, and designs. various actuation Among them, modes piezoelectric can be achieved materials with distinct have shownworking great con- potential incepts aircraft and geometrical and spacecraft designs. applications Among them, [32– 36piezoelectric]. The definition materials of have piezoelectric shown great materials is thatpotential they in can aircraft either and generate spacecraft an applications output voltage [32–36]. when The definition subjected of piezoelectric to mechanical ma- stress or terials is that they can either generate an output voltage when subjected to mechanical perform a dimensional change when subjected to an electric field. These phenomena are stress or perform a dimensional change when subjected to an electric field. These phe- knownnomena asare direct known and as direct indirect and modesindirect ofmodes operation, of operation, which which can becan used be used for for generators gen- [37], sensorserators [37], [38], sensors and actuators [38], and [actuators39]. Piezoelectric [39]. Piezoelectric materials materials have the have advantages the advantages of high power density,of high power high efficiency,density, high driving efficiency, force, driving and displacement force, and displacement resolution resolution over electromagnetic over materials.electromagnetic They materials. also do not They generate also do electromagneticnot generate electromagnetic noise and arenoise nonflammable and are non- [40–42]. Piezoelectricflammable [40– materials42]. Piezoelectric come inmaterials different come forms, in different such asforms, sheet, such
Recommended publications
  • Research and Development of a High-Resolution Piezoelectric Rotary Stage
    KAUNAS UNIVERSITY OF TECHNOLOGY IGNAS GRYBAS RESEARCH AND DEVELOPMENT OF A HIGH-RESOLUTION PIEZOELECTRIC ROTARY STAGE Doctoral Dissertation Technological Sciences, Mechanical Engineering (09T) 2017, Kaunas This doctoral dissertation was prepared at Kaunas University of Technology, Institute of Mechatronics during the period of 2013–2017. The studies were supported by the Research Council of Lithuania. Scientific Supervisor: Habil. Dr. Algimantas Bubulis, (Kaunas University of Technology, Technological Sciences, Mechanical Engineering, 09T). Doctoral dissertation has been published in: http://ktu.edu Editor: Dovilė Dumbrauskaitė (Publishing Office “Technologija”) © I. Grybas, 2017 ISBN xxxx-xxxx The bibliographic information about the publication is available in the National Bibliographic Data Bank (NBDB) of the Martynas Mažvydas National Library of Lithuania KAUNO TECHNOLOGIJOS UNIVERSITETAS IGNAS GRYBAS AUKŠTOS SKYROS PJEZOELEKTRINIO SUKAMOJO STALIUKO KŪRIMAS IR TYRIMAS Daktaro disertacija Technologiniai mokslai, mechanikos inžinerija (09T) 2017, Kaunas Disertacija rengta 2013–2017 metais Kauno technologijos universiteto Mechatronikos institute. Mokslinius tyrimus rėmė Lietuvos mokslo taryba. Mokslinis vadovas: Habil. dr. Algimantas Bubulis (Kauno technologijos universitetas, technologiniai mokslai, mechanikos inžinerija, 09T). Interneto svetainės, kurioje skelbiama disertacija, adresas: http://ktu.edu Redagavo: Dovilė Dumbrauskaitė (leidykla “Technologija“) © I. Grybas, 2017 ISBN xxxx-xxxx Leidinio bibliografinė informacija pateikiama
    [Show full text]
  • DESIGN, CONTROL, and APPLICATION of PIEZOELECTRIC ACTUATOR External-Sensing and Self-Sensing Actuator
    DESIGN, CONTROL, AND APPLICATION OF PIEZOELECTRIC ACTUATOR External-Sensing and Self-Sensing Actuator ANDI SUDJANA PUTRA NATIONAL UNIVERSITY OF SINGAPORE 2008 DESIGN, CONTROL, AND APPLICATION OF PIEZOELECTRIC ACTUATOR External-Sensing and Self-Sensing Actuator ANDI SUDJANA PUTRA (B.Eng., Brawijaya University, M.T.D., National University of Singapore) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2008 Acknowledgements I would like to express my sincere appreciation to all who have helped me during my candidature; without whom my study here would have been very much different. First and foremost, I thank my supervisors: Associate Professor Tan Kok Kiong and Associate Professor Sanjib Kumar Panda, who have provided invaluable guidance and suggestion, as well as inspiring discussions. With their enthusiasm and efforts in explaining things clearly, they have made research a fun and fruitful activity. I would have been lost without their direction. I would also like to thank the National University of Singapore for providing me with scholarship and research support; without which it would have been impossible to finish my study here. It is difficult to overstate my gratitude to the officers and students in Mechatronics and Automation Laboratory, who have also become my friends. Dr. Huang Sunan, Dr. Tang Kok Zuea, Dr. Zhao Shao, Dr. Teo Chek Sing, and Mr. Tan Chee Siong have always been very supportive and encouraging through the easy and difficult time during my research. I am indebted to many more colleagues in Faculty of Engineering and Faculty of Medicine, whose names, regrettably, I cannot mention all here.
    [Show full text]
  • Course Description Bachelor of Technology (Electrical Engineering)
    COURSE DESCRIPTION BACHELOR OF TECHNOLOGY (ELECTRICAL ENGINEERING) COLLEGE OF TECHNOLOGY AND ENGINEERING MAHARANA PRATAP UNIVERSITY OF AGRICULTURE AND TECHNOLOGY UDAIPUR (RAJASTHAN) SECOND YEAR (SEMESTER-I) BS 211 (All Branches) MATHEMATICS – III Cr. Hrs. 3 (3 + 0) L T P Credit 3 0 0 Hours 3 0 0 COURSE OUTCOME - CO1: Understand the need of numerical method for solving mathematical equations of various engineering problems., CO2: Provide interpolation techniques which are useful in analyzing the data that is in the form of unknown functionCO3: Discuss numerical integration and differentiation and solving problems which cannot be solved by conventional methods.CO4: Discuss the need of Laplace transform to convert systems from time to frequency domains and to understand application and working of Laplace transformations. UNIT-I Interpolation: Finite differences, various difference operators and theirrelationships, factorial notation. Interpolation with equal intervals;Newton’s forward and backward interpolation formulae, Lagrange’sinterpolation formula for unequal intervals. UNIT-II Gauss forward and backward interpolation formulae, Stirling’s andBessel’s central difference interpolation formulae. Numerical Differentiation: Numerical differentiation based on Newton’sforward and backward, Gauss forward and backward interpolation formulae. UNIT-III Numerical Integration: Numerical integration by Trapezoidal, Simpson’s rule. Numerical Solutions of Ordinary Differential Equations: Picard’s method,Taylor’s series method, Euler’s method, modified
    [Show full text]
  • Dynamic Analysis of a Piezoelectric Ultrasonic Motor with Application to the Design of a Compact High-Precision Positioning Stage
    Department of Precision and Microsystems Engineering Dynamic analysis of a piezoelectric ultrasonic motor With application to the design of a compact high-precision positioning stage Name: Teunis van Dam Report no: ME 11.036 Coach: R. Ellenbroek Professor: prof. ir. R. H. Munnig Schmidt Specialization: Mechatronics Type of report: Masters Thesis Date: Delft, November 22, 2011 2 3 Preface This thesis describes the work I have done at Mapper Lithography B.V. in Delft, as a final project for my masters Precision and Microsystems Engineering at Delft University of Technology, faculty 3mE. This project is part of the process of designing a high-precision linear positioning stage for a wafer scanner using electron beam lithography. The first part of my work is focused on the conceptual design of this stage, in which choosing the actuator type plays a dominant role. The second and largest part is focused on detailed analysis of the dynamic behavior of the selected actuator, a piezoelectric ultrasonic motor, by building a simulation model of the motor and validating this model by experiments. I want to thank my professor, Robert Munnig Schmidt, and my supervisor at Mapper Lithography, Rogier Ellenbroek, for their support and valuable feedback on my work. Furthermore I would like to thank my design leader at Mapper Lithography, Jerry Peijster, and my other colleagues, for granting me this opportunity and for the pleasant cooperation. Teunis van Dam Contents 1 Introduction 6 1.1 General introduction . 6 1.2 Machine description and problem statement . 6 1.3 Overviewofcontents......................................... 7 2 Stage requirements 9 2.1 Functionality .
    [Show full text]
  • Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives
    Review Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives Matthias Hunstig Grube 14, 33098 Paderborn, Germany; [email protected] Academic Editor: Delbert Tesar Received: 26 November 2016; Accepted: 18 January 2017; Published: 6 February 2017 Abstract: Piezoelectric inertia motors—also known as stick-slip motors or (smooth) impact drives—use the inertia of a body to drive it in small steps by means of an uninterrupted friction contact. In addition to the typical advantages of piezoelectric motors, they are especially suited for miniaturisation due to their simple structure and inherent fine-positioning capability. Originally developed for positioning in microscopy in the 1980s, they have nowadays also found application in mass-produced consumer goods. Recent research results are likely to enable more applications of piezoelectric inertia motors in the future. This contribution gives a critical overview of their historical development, functional principles, and related terminology. The most relevant aspects regarding their design—i.e., friction contact, solid state actuator, and electrical excitation—are discussed, including aspects of control and simulation. The article closes with an outlook on possible future developments and research perspectives. Keywords: inertia motor; stick-slip motor; smooth impact drive; piezeoelectric motor; review 1. Introduction Piezoelectric actuators have long been used in diverse applications, especially because of their short response time and high resolution. The major drawback of these solid state actuators in positioning applications is their small stroke: actuators made of state-of-the-art lead zirconate titanate (PZT) ceramics only reach strains up to 2 . A typical piezoelectric actuator with 10 mm length thus reaches a maximum stroke of only 20 µm.h Bending actuator designs [1] and other mechanisms [2] can increase the stroke at the expense of stiffness and actuation force ([3]; [4] (pp.
    [Show full text]
  • Brushless DC Electric Motor
    Please read: A personal appeal from Wikipedia author Dr. Sengai Podhuvan We now accept ₹ (INR) Brushless DC electric motor From Wikipedia, the free encyclopedia Jump to: navigation, search A microprocessor-controlled BLDC motor powering a micro remote-controlled airplane. This external rotor motor weighs 5 grams, consumes approximately 11 watts (15 millihorsepower) and produces thrust of more than twice the weight of the plane. Contents [hide] 1 Brushless versus Brushed motor 2 Controller implementations 3 Variations in construction 4 AC and DC power supplies 5 KM rating 6 Kv rating 7 Applications o 7.1 Transport o 7.2 Heating and ventilation o 7.3 Industrial Engineering . 7.3.1 Motion Control Systems . 7.3.2 Positioning and Actuation Systems o 7.4 Stepper motor o 7.5 Model engineering 8 See also 9 References 10 External links Brushless DC motors (BLDC motors, BL motors) also known as electronically commutated motors (ECMs, EC motors) are electric motors powered by direct-current (DC) electricity and having electronic commutation systems, rather than mechanical commutators and brushes. The current-to-torque and frequency-to-speed relationships of BLDC motors are linear. BLDC motors may be described as stepper motors, with fixed permanent magnets and possibly more poles on the rotor than the stator, or reluctance motors. The latter may be without permanent magnets, just poles that are induced on the rotor then pulled into alignment by timed stator windings. However, the term stepper motor tends to be used for motors that are designed specifically to be operated in a mode where they are frequently stopped with the rotor in a defined angular position; this page describes more general BLDC motor principles, though there is overlap.
    [Show full text]
  • Development of a Linear Ultrasonic Motor with Segmented Electrodes
    Development of a Linear Ultrasonic Motor with Segmented Electrodes by Jacky Ka Ki Lau A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Mechanical and Industrial Engineering University of Toronto © Copyright by Jacky Ka Ki Lau 2012 Development of a Linear Ultrasonic Motor with Segmented Electrodes Jacky Ka Ki Lau Master of Applied Science Graduate Department of Mechanical and Industrial Engineering University of Toronto 2012 ABSTRACT A novel segmented electrodes linear ultrasonic motor (USM) was developed. Using a planar vibration mode concept to achieve elliptical motion at the USM drive-tip, an attempt to decouple the components of the drive-tip trajectory was made. The proposed design allows greater control of the drive-tip trajectory without altering the excitation voltage. Finite element analyses were conducted on the proposed design to estimate the performance of the USM. The maximum thrust force and speed are estimated to be 46N and 0.5370m/s, respectively. During experimental investigation, the maximum thrust force and speed observed were 36N and 0.223m/s, respectively, at a preload of 70N. Furthermore, the smallest step achievable was 9nm with an 18µs impulse. Nevertheless, the proposed design allowed the speed of the USM to vary while keeping the thrust force relatively constant and allowed the USM to achieve high resolution without a major sacrifice of thrust force. ii Acknowledgements I would like to thank everyone who helped me in to the completion of my thesis and my Master’s program. Special mention goes to the following people and organizations: My supervisor, Professor Ridha Ben Mrad, for his guidance and support throughout my project.
    [Show full text]
  • Gradniki in Tehnologije V Sistemih Vodenja
    Univerza v Ljubljani Fakulteta za elektrotehniko Alesˇ Belicˇ Gradniki in tehnologije v sistemih vodenja Ljubljana 22. januar 2012 2 3 Predgovor Obravnava snovi pri predmetih Gradniki v sistemih vodenja na Univerzitetnem studijskemˇ programu in Gradniki v tehnologiji vodenja na visokosolskemˇ strokovnem studijskemˇ pro- gramu Fakultete za elektrotehniko Univerze v Ljubljani je nekoliko drugacnaˇ kot pri ostalih predmetih na smeri Avtomatika. Cepravˇ sta to dva od osnovnih predmetov na smereh, pa se vendarle ne navezujeta cistoˇ neposredno na ostale predmete na studijskihˇ programih Avto- matike. Ucbenikˇ obravnava prakticneˇ in izvedbene vidike sistemov vodenja, ki ostanejo pri poglobljeni obravnavi algoritmov vodenja mnogokrat v ozadju. Izbira ustreznih merilnih sistemov, krmilnikov ali regulatorjev ter izvrsnihˇ sistemov, ki pokrijejo potrebe po mociˇ in preciznosti vodenja, je kljucnaˇ za kvalitetno izvedbo vodenja. Ne glede na dobro nacrtanoˇ shemo vodenja, je na koncu vse odvisno od izvedbe. V praksi je delezˇ vlozenegaˇ dela v resnici mocnoˇ na strani izvedbenih problemov sistema vodenja, medtem ko se algoritmom vodenja posvetimo seleˇ proti koncu izvedbe, ko je obicajnoˇ premalo casa,ˇ da bi algoritem in njegove parametre optimalno nastavili. Pomen snovi tega predmeta za izvedbo sistemov vodenja je torej nesporen. Po drugi strani pa je to predmet, ki zahteva precej ucenjaˇ na pa- met, saj je potrebno sirokoˇ poznavanje moznihˇ podsistemov in principov delovanja. Snov, ki je zbrana v tej knjigi je plod lastnih izkusenjˇ avtorja na tem podrocjuˇ s pomembnimi pri- spevki prof. dr. Riharda Karbe, prof. dr. Jusaˇ Kocijana, prof. dr. Maje Atanasijevic-Kunc,´ doc. dr. Gregorja Klancarjaˇ in dr. Janka Petrovciˇ ca,ˇ ki zeˇ dolga leta sodelujejo na temah, ki jih predmet obravnava.
    [Show full text]
  • Hoofdblad IE Nummer 49/19 4 December
    Nummer 49/19 04 december 2019 Nummer 49/19 2 04 december 2019 Inleiding Introduction Hoofdblad Patent Bulletin Het Blad de Industriële Eigendom verschijnt The Patent Bulletin appears on the 3rd working op de derde werkdag van een week. Indien day of each week. If the Netherlands Patent Office Octrooicentrum Nederland op deze dag is is closed to the public on the above mentioned gesloten, wordt de verschijningsdag van het blad day, the date of issue of the Bulletin is the first verschoven naar de eerstvolgende werkdag, working day thereafter, on which the Office is waarop Octrooicentrum Nederland is geopend. Het open. Each issue of the Bulletin consists of 14 blad verschijnt alleen in elektronische vorm. Elk headings. nummer van het blad bestaat uit 14 rubrieken. Bijblad Official Journal Verschijnt vier keer per jaar (januari, april, juli, Appears four times a year (January, April, July, oktober) in elektronische vorm via www.rvo.nl/ October) in electronic form on the www.rvo.nl/ octrooien. Het Bijblad bevat officiële mededelingen octrooien. The Official Journal contains en andere wetenswaardigheden waarmee announcements and other things worth knowing Octrooicentrum Nederland en zijn klanten te for the benefit of the Netherlands Patent Office and maken hebben. its customers. Abonnementsprijzen per (kalender)jaar: Subscription rates per calendar year: Hoofdblad en Bijblad: verschijnt gratis Patent Bulletin and Official Journal: free of in elektronische vorm op de website van charge in electronic form on the website of the Octrooicentrum
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    111111 1111111111111111111111111111111111111111111111111111111111111111111111111111 us 20200002828Al (19) United States (12) Patent Application Publication (10) Pub. No.: US 2020/0002828 At MILLS (43) Pub. Date: Jan. 2, 2020 (54) ELECTRICAL POWER GENERATION Publication Classification SYSTEMS AND METHODS REGARDING (51) Int. Cl. SAME e25B 13104 (2006.01) H05H 1124 (2006.01) (71) Applicant: BRILLIANT LIGHT POWER, INC., HOlL 3110725 (2006.01) Cranbury, NJ (US) HOlL 3110735 (2006.01) H02S 40132 (2006.01) (72) Inventor: RANDELL L. MILLS, CRANBURY, H02S 40138 (2006.01) NJ (US) H02S 40122 (2006.01) H02S 40142 (2006.01) (73) Assignee: BRILLIANT LIGHT POWER, INC., e25B 1104 (2006.01) CRANBURY, NJ (US) (52) U.S. Cl. CPC ............... e25B 13104 (2013.01); H05H 1124 (21) Appl. No.: 16/567,689 (2013.01); HOlL 3110725 (2013.01); HOlL 3110735 (2013.01); H05H 2277/13 (2013.01); (22) Filed: Sep. 11, 2019 H02S 40138 (2014.12); H02S 40122 (2014.12); H02S 40142 (2014.12); e25B 1104 (2013.01); Related U.S. Application Data H02S 40132 (2014.12) (63) Continuation of application No. 15/314,196, filed on (57) ABSTRACT Nov. 28, 2016, now Pat. No. 10,443,139, filed as A solid or liquid fuel to plasma to electricity power source application No. PCTlUS2015/033165 on May 29, that provides at least one of electrical and thermal power 2015. comprising (i) at least one reaction cell for the catalysis of (60) Provisional application No. 62/004,883, filed on May atomic hydrogen to form hydrinos, (ii) a chemical fuel 29, 2014, provisional application No. 62/012,193, mixture comprising at least two components chosen from: a source of H 0 catalyst or H 0 catalyst; a source of atomic filed on Jun.
    [Show full text]
  • Model 6000 Inchworm Motor Controller Instruction Manual
    MODEL 6000 'nchworm%otor Controller 'nstruction Manual CONTENTS PAGE Chapter 1 - Introduction Chapter 2 - System Overview Chapter 3 - Installation Location 3-1 Connecting Inchworm Motors 3-1 Connecting The Model 6003 Joystick 3-1 Interfacing To Encoders 3-1 Selecting Display Resolution 3-2 Une Voltage Selection 3-2 Line Voltage Conversion 3-2 Chapter 4 - Operation Front Panel 4-1 Model 6003 Joystick 4-2 Model 6005 Handset 4-3 Chapter 5 - Interfacing Level I TTL Open Loop Interface 5-1 Level I Closed Loop Interface 5-4 Level II Closed Loop Interface 5-6 Function Table 5-9 Extended Function Table 5-10 Changes Effecting All 6000 Controllers 5-13 Chapter 6 - Trouleshooting Appendix A - Specifications Appendix B - Hardware Conflguration Chapter 1 - Introduction Burleigh Instruments Inc. thanks you for choosing INITIAL TEST our Model 6000 Inchworm Motor ControUer. It's design has been optimized for the operation of IMPORTANT: Before plugging in the line cord Burleigh's 700 series and LTS/LTO series Inchworm confirm that the rear panel voltage selector position Motors. matches the available line voltage. Incorrect settmg can cause permanent damage to the system. Burleigh Instruments introduced Inchworm Motor systems in the early 1970's. These unique Do NOT connect an Inchworm Motor to the piezoelectric devices produce ultra-high resolution Controller until you have read the Installation linear motion with no backlash or leadscrew errors. section of this manual and followed the instructions They have been found indispensable in a wide range contained therein. This initial test is performed with of applications including fiber optic alignment, disk nothing but the line cord connected to the Controller.
    [Show full text]
  • Synthesis and Characterization of Zno Finewires for the Conceptual Design of a Mechanical Battery
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Synthesis and characterization of ZnO finewires for the conceptual design of a mechanical battery Ph. D. Thesis written by Oscar Gilberto Súchil Pérez Under the supervision of Francesc Torres and Gabriel Abadal Electronic Circuits and Systems and NOEMS for energy laboratory Bellaterra (Cerdanyola del Vallès), May 2017 Synthesisii and characterization of ZnO finewires for the conceptual design of a me chanical battery The undersigned, Dr, Francesc Torres and Gabriel Abadal, Professors of the Electronic Engineering Department (Engineering School) of the Universitat Autònoma de Barcelona, CERTIFY: That the thesis entitled “Synthesis and characterization of ZnO finewires for the conceptual design of a mechanical battery” has been written by Oscar Gilberto Súchil Pérez under their supervision, in fulfillment of the requirements for the PhD degree of Electronic Engineering. And hereby to acknowledge the above, sign the present. Frances Torres Gabriel Abadal Bellaterra (Cerdanyola del vallès, May 2017) ii Acknowledgments Firstly, a special acknowledgment to my father, who supports me from the beginning for start this journey in the research field.
    [Show full text]