Research and Development of a High-Resolution Piezoelectric Rotary Stage
Total Page:16
File Type:pdf, Size:1020Kb
KAUNAS UNIVERSITY OF TECHNOLOGY IGNAS GRYBAS RESEARCH AND DEVELOPMENT OF A HIGH-RESOLUTION PIEZOELECTRIC ROTARY STAGE Doctoral Dissertation Technological Sciences, Mechanical Engineering (09T) 2017, Kaunas This doctoral dissertation was prepared at Kaunas University of Technology, Institute of Mechatronics during the period of 2013–2017. The studies were supported by the Research Council of Lithuania. Scientific Supervisor: Habil. Dr. Algimantas Bubulis, (Kaunas University of Technology, Technological Sciences, Mechanical Engineering, 09T). Doctoral dissertation has been published in: http://ktu.edu Editor: Dovilė Dumbrauskaitė (Publishing Office “Technologija”) © I. Grybas, 2017 ISBN xxxx-xxxx The bibliographic information about the publication is available in the National Bibliographic Data Bank (NBDB) of the Martynas Mažvydas National Library of Lithuania KAUNO TECHNOLOGIJOS UNIVERSITETAS IGNAS GRYBAS AUKŠTOS SKYROS PJEZOELEKTRINIO SUKAMOJO STALIUKO KŪRIMAS IR TYRIMAS Daktaro disertacija Technologiniai mokslai, mechanikos inžinerija (09T) 2017, Kaunas Disertacija rengta 2013–2017 metais Kauno technologijos universiteto Mechatronikos institute. Mokslinius tyrimus rėmė Lietuvos mokslo taryba. Mokslinis vadovas: Habil. dr. Algimantas Bubulis (Kauno technologijos universitetas, technologiniai mokslai, mechanikos inžinerija, 09T). Interneto svetainės, kurioje skelbiama disertacija, adresas: http://ktu.edu Redagavo: Dovilė Dumbrauskaitė (leidykla “Technologija“) © I. Grybas, 2017 ISBN xxxx-xxxx Leidinio bibliografinė informacija pateikiama Lietuvos nacionalinės Martyno Mažvydo bibliotekos Nacionalinės bibliografijos duomenų banke (NBDB) CONTENTS INTRODUCTION ...................................................................................................... 7 1. LITERATURE REVIEW ..................................................................................... 11 1.1. Introduction to high-precision angular positioning systems .......................... 11 1.2. Conventional and piezoelectric rotary stages ................................................ 12 1.3. A review of piezoelectric rotary motors and drives ....................................... 19 1.3.1. Non-resonant stepping type .................................................................... 19 1.3.2. Non-resonant inertial-type mechanisms ................................................. 22 1.3.3. Resonant ultrasonic standing-wave type ................................................ 25 1.3.4. Resonant ultrasonic travelling-wave type ............................................... 30 1.4. Piezoelectric materials for ultrasonic motors ................................................ 33 1.5. Rotary encoders as a means to determine angular displacement ................... 34 1.6. Incremental (grating) scales ........................................................................... 36 1.6.1. Fabrication methods ............................................................................... 36 1.6.2. Substrate materials .................................................................................. 37 1.7. Chapter conclusions and the objectives of the thesis..................................... 38 2. THEORETICAL INVESTIGATION OF A HIGH-RESOLUTION PIEZOELECTRIC ROTARY STAGE .................................................................... 40 2.1. Design and operation principle ...................................................................... 40 2.2. A geometric model of the piezoelectric stage................................................ 42 2.3. A computational model of the piezocylinder................................................. 45 2.3.1. Evaluation of resonant frequencies and vibration modes ....................... 47 2.3.2. An evaluation of surface displacement ................................................... 51 2.3.3. An evaluation of vibrational motion trajectories of contact zones ......... 53 2.4. A mathematical model of interaction between the piezocylinder and the rotor .............................................................................................................................. 56 2.5. Transient analysis of interaction between the piezocylinder and the rotor .... 60 2.6. Chapter conclusions ....................................................................................... 66 3. EXPERIMENTAL RESEARCH OF A HIGH-RESOLUTION PIEZOELECTRIC ROTARY STAGE .................................................................................................... 67 3.1. Main dynamic characteristics ........................................................................ 67 3.2. Motion trajectories of contact zone elements ................................................ 74 3.3. Assessment of surface displacement of piezocylinder .................................. 78 3.4. Resolution measurement................................................................................ 83 3.5. Torque-related properties .............................................................................. 87 3.6. Generation of torsional oscillations concomitant with rotational motion...... 91 3.7. Chapter conclusions ....................................................................................... 97 4. FABRICATION AND CHARACTERISATION OF POLYMERIC ROTARY INCREMENTAL SCALES ...................................................................................... 99 4.1. The fabrication process and its peculiarities ................................................ 100 5 4.2. Characterisation of the fabricated polymeric scales .................................... 104 4.2.1. Visual inspection and moiré phenomenon ............................................ 104 4.2.2. Surface morphology analysis ................................................................ 107 4.2.3. Investigation of optical properties ........................................................ 111 4.3. Chapter conclusions ..................................................................................... 116 5. THE PROPOSED PROTOTYPE OF A HIGH-RESOLUTION PIEZOELECTRIC ROTARY STAGE .................................................................. 117 5.1. Geometric virtual model of the proposed prototype .................................... 117 5.2. Produced physical prototype ....................................................................... 121 5.3. Chapter conclusions ..................................................................................... 123 CONCLUSIONS .................................................................................................... 124 REFERENCES ....................................................................................................... 126 LIST OF PUBLICATIONS .................................................................................... 136 APPENDIX A ........................................................................................................ 138 APPENDIX B ......................................................................................................... 141 APPENDIX C ......................................................................................................... 142 APPENDIX D ........................................................................................................ 144 APPENDIX E ......................................................................................................... 148 6 INTRODUCTION Research relevance, aim and objectives High-precision positioning often plays the key role in many modern electromechanical and mechatronic devices and systems in a wide range of scale, with a sub-nanometer-size highly expected in the nearest future. Such fields as microscopy, metrology, precise machining, robotics, biomedicine, etc. significantly benefit from angular (rotary) positioning stages [1–7]. Conventional (electromagnetic) motors, extensively designed and employed as actuators for high-precision positioning applications, in particular, high-tech products (e.g. mobile medical robots, drugs delivery systems, space satellites, smart photo cameras, hand watches, etc.), can no longer meet the constantly increasing new technical requirements, including (but not limited to) compactness, simple structure, high precision, low manufacturing costs, and others. They also suffer from noise, backlash and drift, run-out errors, slow response, and so on. Therefore, a lot of effort have been put on the worldwide scale into finding alternatives. The motors based on the electrostatic, magnetostrictive, photo-thermal, thermoelectric, shape- memory and other principles are considered to be potential options [8]. However, due to their merits, piezoelectric motors (particularly, resonant ultrasonic) constitute probably the most prominent category. That is mainly governed by the ability of these devices to fulfil most of the aforementioned requirements and offer such properties as fast response, relatively large output torque at low speed, no electromagnetic interference, low noise, etc. Although resonant ultrasonic standing-wave motors have been widely explored so far as potential drivers for the rotary stages and positioners, they still face issues associated with insufficiently high precision, scalability, structural complexity, wear of contacting surfaces, and relatively high manufacturing costs. Hence, a number of various design and technological methods are applied to solve these problems. The aim of this research is to design, fabricate and characterise high-resolution standing-wave-driven