Multiphase Machine Theory and Its Applications

Total Page:16

File Type:pdf, Size:1020Kb

Multiphase Machine Theory and Its Applications Proceedings of ICEMS2008 The 11th International Conference on Electrical Machines and Systems October 17-20, 2008 Wuhan, China Sponsored by China Electrotechnical Society National Natural Science Foundation of China Co-Sponsored by The Korean Institute of Electrical Engineers The Institute of Electrical Engineers of Japan Technical Co-Sponsored by IEEE Industry Application Society IEEE Industrial Electronics Society The Institution of Engineering and Technology Organized by Huazhong University of Science and Technology Published by World Publishing Corporation ISBN: 978-1-4244-3946-1 IEEE Catalog Number: CFP08801-PRT TABLE OF CONTENTS Multiphase Machine Theory and Its Applications ...........................................................................................1 J. Huang, M. Kang, J. Q. Yang, H. B. Jiang, D. Liu Estimation of Parameters for Induction Motor’s Analytical Model by Direct Search .................................8 M. R. Rao A Speed Sensorless Vector Control System of Induction Motors Using Current Observer and Taking into Account Iron Loss .................................................................................................................11 S. Chen, M. Tsuji, F. Xu, L. Wang Transient DC Side Short Circuit Currents of 12-phase Generator-Rectifier System.................................16 M. Fang, L. Fu, Z. Ye Synchronous Generator Model Identification Using Half-Complex Wavelet Nonlinear ARX Network ....................................................................................................................................................20 X. Wu, Y. Fan Analysis of Rotor Equivalent Parameters of Solid-Rotor Synchronous Motors .........................................26 C. Liang, W. Shamming Investigation for the Flashover Phenomenon in DC Machines.....................................................................30 Y. Nakanishi, K. Sugimoto, N. Morita Flashover and Transformer Voltage ...............................................................................................................36 K. Sugimoto, Y. Nakanishi, N. Morita Basic Studies For Accurate Commutation Analysis Which Enables Commutation Spark Energy Estimation.............................................................................................................................................42 Q. Zhang, T. Ueno, N. Morita Passivity-Based Control of Induction Motor Based on Euler-Lagrange (EL) Model with Flexible Damping ..............................................................................................................................................48 Z. Xu, J. Wang, P. Wang Load Characteristics of Induction Motor Made of Soft Magnetic Composite (SMC) ................................53 T. Fukuda, M. Morimoto Experimental Transient Characteristics of a Three-Phase Squirrel-Cage Induction Motor Under Unbalanced Voltage Condition ............................................................................................................57 I. Hirotsuka, K. Tsuboi, F. Ueda Optimal Design of Rotor Slot of Three Phase Induction Motor with Die-Cast Copper Rotor Cage....................................................................................................................................................................61 K. J. Park, K. Kim, S. H. Lee, D. H. Koo, K. C. Ko, J. Lee Experimental Study of Radial Distributions of Electromagnetic Vibration and Noise in Three-Phase Squirrel-Cage Induction Motor at No-load ..............................................................................64 I. Hirotsuka, Y. Niwa, K. Tsuboi, M. Kawakami A Dynamic Decoupling Method for Speed-Sensorless Vector Control of Induction Motor.......................69 Z. Zhang, Q. Ge Practical Speed Estimation Method for Induction Motor Vector Control System using Digital Signal Processor(DSP)..........................................................................................................................74 Z. Jian, W. X. Hui, H. Yang Rotor Resistance and Inductance Calculation of Single-Phase Induction Motors with Skin Effect Consideration .........................................................................................................................................79 D. Shan, X. Wu A Novel V/F Control System Based on Stator Voltage Oriented Method....................................................83 R. Yang, W. Chen, Y. Yu, D. Xu Stability Improvement of V/F Controlled Induction Motor Driver Systems Based on Reactive Current Compensation......................................................................................................................88 R. Yang, W. Chen, Y. Yu, D. Xu Research on Voltage-Reduce Energy Saving Strategy for Three-Phase Induction Motor.........................91 J. Du, T. Du A Modified Voltage Model Flux Estimation of Induction Motors................................................................94 K. Zhao, F. Lin, X. You Time-Stepping Finite Element Analysis of Wye and Delta Connection Influence on Induction Motor Copper Losses under Over-Voltage Condition .................................................................98 H. Zhao, X. Liu, Y. Luo, J. Hu Single-Phase Self-regulated Self-Excited Induction Generator with Series Capacitance.........................102 Y. P. Sun Determination of the High Frequency Inductance Profile of Surface Mounted Permanent Magnet Synchronous Motors .........................................................................................................................105 K. Lu, M. Vetuschi, P. O. Rasmussen, E. Ritchie A Novel Direct Torque Control for Permanent Magnet Synchronous Motor Drive.................................110 J. Wang, H. Wang, T. Lu, D. Teng Simulation of Three-Phase Short-Circuit at the Terminals of Synchronous Machine .............................115 X. Liu, D. Liu, Y. Huang Analysis of The No-Load Harmonic Electromagnetic Field of Synchronous Generator Using Tooth Flux Method...............................................................................................................................118 X. Yonghong, H. Shaogang, G. Aigang, J. Rengmou, Z. Ping Design of PID Excitation Controllers for Synchronous Generators Based on Fuzzy RBF Neural Network ...............................................................................................................................................122 R. Gong, Y. Huang, H. Wei, X. Meng, L. Xie Design and Simulation of a Traction Motor for Variable Speed Drive......................................................128 H. Liu, Y. Zhang, W. Kang, Z. Xia Simulation for Researching Stator Insulation Structure of 135MW Evaporative Cooling Turbo-Generator By Marinating...................................................................................................................132 L. R. J. Zhi-jian, L. Ying-zi The Design of an Electrical Fault-Waveform Regenerator .........................................................................136 X. Sun, D. Liu, H. Long, L. Yun Applied Engineering Design of Three Gorges’ 840MVA Hydro-Generator with Close Loop Self Circulating Evaporative Cooling System...............................................................................................142 J. Yuan, G. Gu, L. Ruan, X. Tian, L. Duo, T. Zhang Research of Power System Stabilizer Based on Prony On-line Identification and Neural Network Control..............................................................................................................................................146 Z. Qiaoe, S. Xiaolin, Z. Shuangxi Coupling and Decoupling Network for Surge Immunity Test on Power Lines .........................................151 M. Zhou, J. Wang, Y. Liu, F. Liu Experimental Study on Magnetizing and Loss Characteristics of Electrical Strip for Different Frequencies......................................................................................................................................156 Y. Xu, F. Wang A Rapid Method for Load Testing and Efficiency Measurement of Three-Phase Induction Motors ..............................................................................................................................................................160 C. Grantham, D. J. McKinnon Development of Exposed Environment of Overhead Transmission Lines on Mice ..................................166 D. Geng, G. Xu, H. Yu, C. Li, Q. Yang, W. Yan Optimization Design of Linear Halbach Array ............................................................................................170 J. Wang, C. Li, Y. Li, L. Yan Cylindrical Linear Halbach Arrays for Permanent Magnet Tubular Linear Machines..........................175 L. Zhao, Y. Peng, C. Sha, R. Li, Y. Xu Design of Three-Stage Screw-Type Labyrinth Seal Using on Main Drainage Motor in Mine and Research of Its Experiment.....................................................................................................................179 C. Du, G. Meng Design of Cooperative Manufacturing System Based on Multi-Agent.......................................................183 L. Xue On Study of Visualization in Electrical Machinery CAD ............................................................................186 Y. Boa, X. Xu Cyclic Shift Genetic Algorithm Applied to Design Optimization of Electromagnetic Devices.................189 C. Tanggong, W. Youhua, L. Zibin, S. Qunfang, Z. Zhizhong Shield-shape Design for Vacuum Circuit Breakers......................................................................................193
Recommended publications
  • Sri Venkateswara College of Engineering and Technology Department of Electrical & Electronics Engineering EE 6504-Electrical
    Sri Venkateswara College of Engineering and Technology Department of Electrical & Electronics Engineering EE 6504-Electrical Machines-II UNIT-I 1. Why a 3-phase synchronous motor will always run at synchronous speed? Because of the magnetic coupling between the stator poles and rotor poles the motor runs exactly at synchronous speed. 2. What are the two classification synchronous machines? The classification synchronous machines are: i. Cylindrical rotor type ii. Salient pole rotor type 3. What are the essential features of synchronous machine? i. The rotor speed is synchronous with stator rotating field. ii. Varying its field current can easily vary the speed. iii. It is used for constant speed operation. 4. Mention the methods of starting of 3-phase synchronous motor. a. A D.C motor coupled to the synchronous motor shaft. b. A small induction motor coupled to its shaft.(pony method) c. Using damper windings –started as a squirrel cage induction motor. 5. What are the principal advantages of rotating field system type of construction of synchronous machines? · Form Stationary connection between external circuit and system of conditions enable the machine to handle large amount of volt-ampere as high as 500 MVA. · The relatively small amount of power required for field system can be easily supplied to the rotating field system via slip rings and brushes. · More space is available in the stator part of the machine for providing more insulation to the system of conductors. · Insulation to stationary system of conductors is not subjected to mechanical stresses due to centrifugal action. · Stationary system of conductors can easily be braced to prevent deformation.
    [Show full text]
  • Research and Development of a High-Resolution Piezoelectric Rotary Stage
    KAUNAS UNIVERSITY OF TECHNOLOGY IGNAS GRYBAS RESEARCH AND DEVELOPMENT OF A HIGH-RESOLUTION PIEZOELECTRIC ROTARY STAGE Doctoral Dissertation Technological Sciences, Mechanical Engineering (09T) 2017, Kaunas This doctoral dissertation was prepared at Kaunas University of Technology, Institute of Mechatronics during the period of 2013–2017. The studies were supported by the Research Council of Lithuania. Scientific Supervisor: Habil. Dr. Algimantas Bubulis, (Kaunas University of Technology, Technological Sciences, Mechanical Engineering, 09T). Doctoral dissertation has been published in: http://ktu.edu Editor: Dovilė Dumbrauskaitė (Publishing Office “Technologija”) © I. Grybas, 2017 ISBN xxxx-xxxx The bibliographic information about the publication is available in the National Bibliographic Data Bank (NBDB) of the Martynas Mažvydas National Library of Lithuania KAUNO TECHNOLOGIJOS UNIVERSITETAS IGNAS GRYBAS AUKŠTOS SKYROS PJEZOELEKTRINIO SUKAMOJO STALIUKO KŪRIMAS IR TYRIMAS Daktaro disertacija Technologiniai mokslai, mechanikos inžinerija (09T) 2017, Kaunas Disertacija rengta 2013–2017 metais Kauno technologijos universiteto Mechatronikos institute. Mokslinius tyrimus rėmė Lietuvos mokslo taryba. Mokslinis vadovas: Habil. dr. Algimantas Bubulis (Kauno technologijos universitetas, technologiniai mokslai, mechanikos inžinerija, 09T). Interneto svetainės, kurioje skelbiama disertacija, adresas: http://ktu.edu Redagavo: Dovilė Dumbrauskaitė (leidykla “Technologija“) © I. Grybas, 2017 ISBN xxxx-xxxx Leidinio bibliografinė informacija pateikiama
    [Show full text]
  • A Review of Application and Development Trends in Ultrasonic Motors
    ES Mater. Manuf., 2021, 12, 3-16 ES Materials and Manufacturing DOI: https://dx.doi.org/10.30919/esmm5f933 A Review of Application and Development Trends in Ultrasonic Motors Xiaoniu Li, Zhiyi Wen, Botao Jia, Teng Cao, De Yu and Dawei Wu* Abstract The structure and performance of ultrasonic motors have gradually improved with the emergence of new materials, techniques, and structural forms. Therefore, the application scope of this technology is also expanding, especially in the field of high-end equipment. This paper conducts a review of research on the application status and progress at the frontier of research on ultrasonic motors. A summary and classification of both the status of application and cutting-edge research progress are presented, including the use of ultrasonic motors in aerospace, precision, biomedical and optical engineering and the influence on ultrasonic motor design resulting from the breakthrough in advanced processing and preparation technology, structural and functional integration technology, low voltage drives and open-loop control systems. Moreover, the performance of products developed with the aid of ultrasonic motors and representative devices are compared; and state of the art ultrasonic motor designs are discussed and summarized. Finally, potential future research efforts and prospects are highlighted. Keywords: Ultrasonic motors; applications; research progress; piezoelectric ceramics. Received date: 26 October 2020; Accepted date: 3 December 2020. Article type: Review article. 1. Introduction piezoelectric ceramics, micro-electro-mechanical systems Ultrasonic motors (USMs) involve the use of inverse (MEMS) micro-machining and 3D printing additive piezoelectric effects in piezoelectric ceramic materials to manufacturing technology.[10,11] generate rotation or linear motion by controlling the Until now, such advantages have enabled successful mechanical deformation.
    [Show full text]
  • Meshing Drive Mechanism of Double Traveling Waves for Rotary Piezoelectric Motors
    mathematics Article Meshing Drive Mechanism of Double Traveling Waves for Rotary Piezoelectric Motors Dawei An , Weiqing Huang *, Weiquan Liu, Jinrui Xiao, Xiaochu Liu and Zhongwei Liang School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China; [email protected] (D.A.); [email protected] (W.L.); [email protected] (J.X.); [email protected] (X.L.); [email protected] (Z.L.) * Correspondence: [email protected] Abstract: Rotary piezoelectric motors based on converse piezoelectric effect are very competitive in the fields of precision driving and positioning. Miniaturization and larger output capability are the crucial design objectives, and the efforts on structural modification, new materials application and optimization of control systems are persistent but the effectiveness is limited. In this paper, the resonance rotor excited by stator is investigated and the meshing drive mechanism of double traveling waves is proposed. Based on the theoretical analysis of bending vibration, the finite element method (FEM) is used to compare the modal shape and modal response in the peripheric, axial, and radial directions for the stator and three rotors. By analyzing the phase offset and vibrational orientation of contact particles at the interface, the principle of meshing traveling waves is discussed graphically and the concise formula obtaining the output performance is summarized, which is analogous with the principles of gear connection. Verified by the prototype experimental results, the speed of the proposed motor is the sum of the velocity of the stator’s contact particle and the resonance rotor’s Citation: An, D.; Huang, W.; Liu, W.; contact particle, while the torque is less than twice the motor using the reference rotor.
    [Show full text]
  • Electrical Machines-II 2015-16(ODD)
    A Course Material on Electrical Machines-II 2015-16(ODD) By Mrs. M.Latha Assistant Professor DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING SASURIE COLLEGE OF ENGINEERING VIJAYAMANGALAM – 638 056 QUALITY CERTIFICATE This is to certify that the e-course material Subject Code : EE6504 Subject : Electrical Machines -II Class : III YEAR EEE Being prepared by me and it meets the knowledge requirement of the university curriculum. Signature of the Author Name: M.Latha Designation: AP This is to certify that the course material being prepared by Mrs.M.Latha is of adequate quality. She has referred more than five books among them minimum one is from aboard author. Signature of HD Name: SEAL Syllabus EE6504 Electrical Machines -II UNIT I SYNCHRONOUS GENERATOR Constructional details – Types of rotors –winding factors- emf equation – Synchronous reactance –Armature reaction – Phasor diagrams of non salient pole synchronous generator connected to infinite bus--Synchronizing and parallel operation – Synchronizing torque -Change of excitation and mechanical input- Voltage regulation – EMF, MMF, ZPF and A.S.A methods – steady state power angle characteristics– Two reaction theory –slip test -short circuit transients - Capability Curves UNIT II SYNCHRONOUS MOTOR Principle of operation – Torque equation – Operation on infinite bus bars - V and Inverted V curves – Power input and power developed equations – Starting methods – Current loci for constant power input, constant excitation and constant power developed-Hunting – natural frequency of oscillations – damper windings- synchronous condenser. UNIT III THREE PHASE INDUCTION MOTOR Constructional details – Types of rotors –- Principle of operation – Slip –cogging and crawling- Equivalent circuit – Torque-Slip characteristics - Condition for maximum torque – Losses and efficiency – Load test - No load and blocked rotor tests - Circle diagram – Separation of losses – Double cage induction motors –Induction generators – Synchronous induction motor.
    [Show full text]
  • Shaded-Pole Single-Phase Motors Written By: Shankar • Edited By: Kennethsleight • Updated: 8/31/2009
    Shaded-Pole Single-Phase Motors written by: shankar • edited by: KennethSleight • updated: 8/31/2009 We know that single phase induction motors are not self-starting. Inorder to make single phase motor a self-starting one, a certain arrangement must be provided so that the stator flux produced becomes a rotating one rather than alternating one.Such an arrangement is provided by shaded pole motors. Introduction Shaded pole motor is one of the types of single phase induction motors, which are used for producing a rotating stator flux in order to make the single phase induction motor a self starting one. Let us discuss the constructional details, diagrams and working of shaded pole motors in detail. Shaded-Pole SIngle-Phase Motors Like any other motors the shaded pole induction motor also consists of a stator and rotor. The stator is of salient pole type and the rotor is of squirrel cage type. The poles of shaded pole induction motor consist of slots, which are cut across the laminations. The smaller part of the slotted pole is short-circuited with the help of a coil. The coils are made up of copper and it is highly inductive in nature. This coil is known as shading coil. The part of the pole which has the coil is called the shaded part and the other part of the pole is called unshaded part. Now let us consider that an alternating current is passed through the excited winding which surrounds the pole. Due to the presence of shading coil, the axis of the pole shift from unshaded part to shaded part.
    [Show full text]
  • Actuator 2006: Ultrasonic Piezoelectric Motor
    White Paper for ACTUATOR 2006 Survey of the Various Operating Principles of Ultrasonic Piezomotors K. Spanner Physik Instrumente GmbH & Co. KG, Karlsruhe, Germany Abstract: Piezoelectric ultrasonic motors have been known for more than 30 years. In recent years especially, a large number of different designs have been developed, both for rotation and linear drives. This talk will provide a definition of piezoelectric ultrasonic motors and classify their different operating principles. The operation of each type will then be explained, commercially available implementations described and the advantages and disadvantages of each discussed. The goal is to provide an international perspective on the current state of development of piezoelectric ultrasonic motors. Keywords: piezomotor, PZT, ultrasonic motor, travelling-wave, standing-wave, piezoelectric actuator Introduction There is today a large variety of drive designs arranged that their vibrational motion was exploiting motion obtainable from the inverse converted into rotary motion of a shaft and gear. piezoelectric effect. Ultrasonic piezomotors have a very special place among such devices. These motors achieve high speeds and drive forces, while still permitting the moving part to be positioned with very high accuracy. Such characteristics make these motors of great interest for many companies Fig. 1 Piezoelectric motor of L.W Williams and who make precision devices for which these drives Walter J. Brown [1]. are, in many cases, irreplaceable. Since then, there have been numerous Piezoelectric Motors developments in the field of piezoelectric motors. They can be classified by working principle, Piezoelectric actuators are electro-mechanical geometry, or the type of oscillation excited in the energy transducers; they transform electrical energy piezoceramic.
    [Show full text]
  • Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives
    Review Piezoelectric Inertia Motors—A Critical Review of History, Concepts, Design, Applications, and Perspectives Matthias Hunstig Grube 14, 33098 Paderborn, Germany; [email protected] Academic Editor: Delbert Tesar Received: 26 November 2016; Accepted: 18 January 2017; Published: 6 February 2017 Abstract: Piezoelectric inertia motors—also known as stick-slip motors or (smooth) impact drives—use the inertia of a body to drive it in small steps by means of an uninterrupted friction contact. In addition to the typical advantages of piezoelectric motors, they are especially suited for miniaturisation due to their simple structure and inherent fine-positioning capability. Originally developed for positioning in microscopy in the 1980s, they have nowadays also found application in mass-produced consumer goods. Recent research results are likely to enable more applications of piezoelectric inertia motors in the future. This contribution gives a critical overview of their historical development, functional principles, and related terminology. The most relevant aspects regarding their design—i.e., friction contact, solid state actuator, and electrical excitation—are discussed, including aspects of control and simulation. The article closes with an outlook on possible future developments and research perspectives. Keywords: inertia motor; stick-slip motor; smooth impact drive; piezeoelectric motor; review 1. Introduction Piezoelectric actuators have long been used in diverse applications, especially because of their short response time and high resolution. The major drawback of these solid state actuators in positioning applications is their small stroke: actuators made of state-of-the-art lead zirconate titanate (PZT) ceramics only reach strains up to 2 . A typical piezoelectric actuator with 10 mm length thus reaches a maximum stroke of only 20 µm.h Bending actuator designs [1] and other mechanisms [2] can increase the stroke at the expense of stiffness and actuation force ([3]; [4] (pp.
    [Show full text]
  • Outline (Motors)
    ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ Products or specifications on the catalog are 〈Warranty Coverage〉 subject to be changed without notice. Please If any malfunctions should occur due to our inquire our sales agents for our latest fault, NIDEC COPAL ELECTRONICS warrants specifications. We require an acknowl edgment any part of our product within one year from the of specification documents for product use date of delivery by repair or replacement at beyond our specifications, and conditions free of charge. However, warranty is not appli- needing high reliability, such as nuclear reactor cable if the causes of defect should result control, railroads, aviation, automobile, from the following con ditions: combustion, medical, amusement, • Failure or damages caused by inappropriate Disaster prevention equipment and etc. use, inappropriate conditions, and Furthermore, we ask you to perform a swift inappropriate handling. incoming inspection for delivered products and • Failure or dam ages caused by inappropriate we wouldalso appreciate if full attention is given mod i fi cations, adjustment, or repair. to the storage conditions of the product. • Failure or damage caused by technically and sci en tif i cally unpredictable factors. 〈Warranty Period〉 • Failure or damage caused by natural disaster, The Warranty period is one year from the date fire or unavoid able factors. of delivery. The warranty is only applicable to the product itself, not applic a ble to con sumable products such as batteries and etc. STEPPING MOTORS OUTLINE (MOTORS) COPAL ELECTRONICS handles motors marked by the Induction motors Induction motors make use of the rotation of a basket placed in a rotating magnetic field. Three phase AC is used to produce the rotating magnetic field, so most large output motors in factories are of this type.
    [Show full text]
  • ADJUSTABLE SPEED DRIVES By: Richard D
    Service Application Manual SAM Chapter 620-130 Section 6A ADJUSTABLE SPEED DRIVES By: Richard D. Beard P.E. Consultant, RSES Manufacturers’ Service Advisory Council INTRODUCTION Many commercial and industrial machines and processes require adjustable speed. Adjustable speed usually makes a machine more universally compatible and increases its versatility. Adjustable-speed drives also are being used in residential equipment, including air conditioners, refrigerators, heat pumps, furnaces, and other devices driven by motors. These drives optimize speed and torque, making them generally more efficient than non-adjustable-speed drives. An adjustable-speed motor is one in which the speed can be varied gradually over a wide range—but, once adjusted, it remains nearly unaffected by the load. A variable-speed motor is one in which the speed varies with the load, usually decreasing when the load increases. The term "adjustable speed" implies that some external adjustment, which is independent of load, will cause the speed to change. A variable-frequency inverter drive is an example. The term "variable speed" describes a drive in which load changes inherently cause significant changes in speed. A direct current series motor, for example, exhibits this characteristic. An adjustable variable-speed motor is one in which the speed can be adjusted gradually. However, once adjusted for a given load, the speed will vary with changes in the load. A multispeed motor is one that can be operated at any one of two or more definite speeds, each being practically independent of the load. The multispeed motor is neither an adjustable-speed nor a variable-speed drive. Multispeed motors usually have two, three, or four definite operating speeds.
    [Show full text]
  • A.1 Appendix a Field-Oriented Control
    Appendix A Field-Oriented Control A.1 Introduction Chronologically, Field-Oriented Control (F.O.C.) was the first vector control method developed for controlling induction motors. The principle of this method was proposed in the early 1970s by F. Blaschke of Siemens, who used physical analysis to show that the two components of the stator current space vector projected along two rectangular axes, to be defined later, called the direct and transverse axes, play the same roles as the field and armature currents in a DC motor. The direct axis was found to be oriented along the axis of the magnetic rotor field, !e:lm2' (see Chap.7, Sec7.2.2, Eq.7.21), which is why this approach has been called Field Orientation. In the following paragraphs we shall present a more direct approach to Field-Oriented Control and explain how to implement it. However, first we must introduce some preliminary investigations before taking up discussion of the Field Orientation Principle. A.2 Preliminary Investigation Imagine a set of symmetrical three-phase rotor windings revolving inside a magnetic field. The magnitude and orientation of the field may be time­ dependent. However, we assume that the field has a plane of symmetry containing the rotor axis. Therefore, the cross section of the field by any plane perpendicular to the shaft will have a common axis of symmetry at any given time. Let the electrical angle of the axis of the field with respect to rotor phase "a" axis be A. The flux linkages of the various rotor phases would then be "'a = ",(t)COS(A) (A.1), '"b = ",(t) COS(A - 21r / 3) (A.2), "'c = ",(t)cos(A-4n /3) (A.3).
    [Show full text]
  • Electric Machine Structure Trainer
    WSM-5 Electric Machine Structure Trainer Introduction ■ This trainer is designed for studying structure of a motor & generator. ■ This trainer has each assemble part such as a rotor, magnetic pole and brush. ■ It is possible to make and operate a motor and generator directly. ■ It consists of several type electric machine. - Permanent magnet and field coil DC - Generator, rotary field type and rotary type - Generator, rotary converter and generator, permanent - Magnet&DC motor, synchronous motor&3 phase induction motor - Shading coil type 1 phase induction motor Experiment ▣ Generator ■ The Principle of Generator. ■ DC Generator by Permanent Magnet ■ AC Generator by Permanent Magnet ■ Rotation Magnetic Field type Single Phase ■ DC Generator by Magnetic Field Winding AC Generator ■ The Three phase Generator ■ Rotary Armature type Generator ■ Rotary Converter ▣ Motor ■ DC Motor by Permanent Magnet ■ Series Motor by Magnetic Field Winding ■ Shunt motor ■ Compound motor ■ AC Commutator motor ■ Rotor Field ■ Squirrel Cage Induction motor ■ Pole-number Alteration motor ■ Repulsion motor ■ Resistor Motor (Spilt-Phase Motor) ■ Shading Coil motor * Product's design and appearance can be changed without any notice. 122_Woosun Control WSM-5 Electric Machine Structure Trainer Specification ■ Main Voltage : 1 Phase 220~240V / 50/60Hz ■ Working Table ■ Working Frame - 3 Step - 220 ~ 240V Output Socket ■ Module Storage Cabinet : 1EA 01 ▣ Experiment Module ■ WSM5-01 ■ WSM5-02 Low Voltage Supply Module DC Electric Machine Yoke Module ■ WSM5-03 ■ WSM5-04
    [Show full text]