Stamford Newage the Following Item S Have Been Added to Your Cart

Total Page:16

File Type:pdf, Size:1020Kb

Stamford Newage the Following Item S Have Been Added to Your Cart Stamford newage The following item s have been added to your cart. You can now continue shopping or go straight to checkout. Stamford UC is perfect for industrial and marine ac generators in the range 40 to kVA. Single and three phase voltages available from a 12 wire reconnectable winding. The SX is a half wave controlled thyristor type automatic voltage regulator AVR and forms part of the excitation system for a brushless generator. Stamford Newage alternators are well known for their enhanced performance and rugged reliability. This line of generator ends is recognized for their quality and versatility around the world. The Triton solution is more than the industry's highest quality generators. Privacy Policy Sitemap Designed by web design company Media. Contact Us Create an Account Login. Facebook Twitter Google Plus Youtube. Confirm full specs prior to ordering. Details Stamford Newage alternators are well known for their enhanced performance and rugged reliability. The Brand The Triton solution is more than the industry's highest quality generators. We will assist with all your technical questions and service needs. Average User Rating:. Talk about this Product. Newage was the name of a former electrical engineering company in Stamford, Lincolnshire , that made electrical generators from 20— kVA. In it produced the first brushless alternator. The name and reference to Newage has now been reintroduced as the Newage branded low voltage alternator range, as part of the Newage, Stamford and AvK brand portfolio by Cummins Generator Technologies. It was incorporated on 27 August as Newage Engineers Limited. In March it changed its name to Newage International Limited; it would keep this name until June In it produced the first generator with a permanent magnet synchronous generator pmg for automatic voltage regulation avr excitation. In the name was again changed. It was renamed Stamford-AVK. The Newage naming has since been reintroduced as the Newage branded alternator range, by Cummins Generator Technologies. It made gearboxes for marine engines. It made alternators. The alternators are fed by full-wave bridge rectifiers. In March , Cummins Generator Technologies reintroduced the Newage reference as their third alternator brand, Newage. From Wikipedia, the free encyclopedia. Electric machines. Components and accessories. Alternator Electric generator. History, education, recreational use. Timeline of the electric motor Ball bearing motor Barlow's wheel Lynch motor Mendocino motor Mouse mill motor. Coilgun Railgun Superconducting machine. Blocked-rotor test Circle diagram Electromagnetism Open-circuit test Open-loop controller Power-to-weight ratio Two-phase system Inchworm motor Starter Voltage controller. Clessie Cummins. Joseph Irwin Miller Tim Solso. Tom Linebarger. Namespaces Article Talk. Views Read Edit View history. Help Learn to edit Community portal Recent changes Upload file. Download as PDF Printable version. Add links. Founders Clessie Cummins. The population at the census was 19, In it was rated the best place to live in a survey by The Sunday Times. They also built a town to the north, at Great Casterton on the River Gwash. The Anglo-Saxons later chose Stamford as their main town, being on a more important river than the Gwash. The place-name Stamford is first attested in the Anglo-Saxon Chronicle , where it appears as Steanford in and Stanford in It appears as Stanford in the Domesday Book of The name means "stony ford". In King Edgar made Stamford a borough. The Anglo-Saxons and Danes faced each other across the river. Stamford was the only one of the Five Boroughs of the Danelaw not to become a county town. Initially a pottery centre making Stamford Ware , it had gained fame by the Middle Ages for its production of the woollen cloth known as Stamford cloth or haberget , which "In Henry III's reign Stamford was a walled town, [7] but only a small portion of the walls remains. Stamford became an inland port on the Great North Road , the latter superseding Ermine Street in importance. Notable buildings in the town include the medieval Browne's Hospital , several churches and the buildings of Stamford School , a public school founded in A Norman castle was built about and apparently demolished in A small part of the curtain wall survives at the junction of Castle Dyke and Bath Row. During the English Civil War local loyalties were split. Thomas Hatcher MP was a Parliamentarian. Royalists used Wothorpe and Burghley as defensive positions. In the summer of the Royalists were besieged at Burghley on 24 July after a defeat at Peterborough on 19 July. The army of Viscount Campden was heavily outnumbered and surrendered the following day. Stamford has been hosting an annual fair since the Middle Ages. The fair, held in mid-Lent, is now the largest street fair in Lincolnshire and among the largest in the country. On 7 March , crusaders at the fair led a pogrom , in which many of Stamford's Jews were massacred. Some butchers came to part the combatants and one of the bulls ran into the town. The earl mounted his horse and rode after the animal; he enjoyed the sport so much that he gave the meadow in which the fight began to the butchers of Stamford on condition that they continue to provide a bull, to be run in the town every 13 November. The East Coast Main Line would have gone through Stamford, as an important postal town at the time, but resistance there led to routing it instead through Peterborough , whose importance and size increased at Stamford's expense. During the Second World War, the area round Stamford was home to several military sites, particularly RAF stations and airborne encampments, but also a prisoner-of-war camp. A memorial plaque was unveiled at the house in Stamford Museum occupied a Victorian building in Broad Street from until June , when it was closed by Lincolnshire County Council budget cuts. Stamford belongs to the parliamentary constituency of Grantham and Stamford. His predecessor, Nick Boles , had left the Conservatives in March It previously belonged to Kesteven County Council. Stamford's town council [22] has arms: Per pale dexter side Gules three Lions passant guardant in pale Or and the sinister side chequy Or and Azure. Stamford, as a town and civil parish in the South Kesteven district of Lincolnshire , on the River Welland , forms a south-westerly protrusion of Lincolnshire between Rutland to the north and west, Peterborough to the south, and Northamptonshire to the south-west. The Welland forms the border between two historic counties: Lincolnshire to the north and the Soke of Peterborough in Northamptonshire to the south. In , the boundary between Lincolnshire and Rutland then part of Leicestershire in the Stamford area was redrawn. The conjoined parish of Wothorpe is in the city of Peterborough. The river downstream of the town bridge and some of the meadows fall within the drainage area of the Welland and Deepings Internal Drainage Board. Much of Stamford is built on Middle Jurassic Lincolnshire limestone , with mudstones and sandstones. The area is known for its limestone and slate quarries. Cream-coloured Collyweston stone slate is found on the roofs of many Stamford stone buildings. Stamford Stone in Barnack has two quarries at Marholm and Holywell. In , a specimen of the sauropod dinosaur Cetiosaurus oxoniensis was found in the Williamson Cliffe Quarry, close to Great Casterton in adjacent Rutland. Tourism plays an important part in Stamford's economy, as do professional law and accountancy firms. Health, education and other public-service employers also feature, notably a hospital, a large medical general practice, schools some independent and a further education college. The licensed premises reflect the history of the town. The town has a significant retail and service sector. The town centre has many independent boutique stores and draws shoppers from a wide area. Several streets are traffic free. The outlets include among others gift shops, eateries, men's and women's outfitters, shoe shops, florists, hairdressers, beauty therapists, and acupuncture and health-care services. Stamford has a number of hotels, coffee shops and restaurants. There is a branch in the town of the national jeweller F. Hinds which can trace its history back to the clockmaker Joseph Hinds, who worked in Stamford in the first half of the 19th century. There are two retail parks a little way from the centre. The town has three builders' merchants and several other specialist trade outlets and skilled trades such as roofers, builders, tilers etc. There are two car showrooms and a number of car-related businesses. Local services include convenience stores, post offices, newsagents and take-aways. The base opened in as RFC Stamford. It closed in , but reopened in under its present name. The engineering company, largely closed since June , is Cummins Generator Technologies formerly Newage Lyon, then Newage International , a maker of electrical generators in Barnack Road. The Pick Motor Company was founded in Stamford in about A number of smaller firms — welders, printers and so forth — are in small collections of industrial units or more traditional premises in older, mixed-use parts of the town. Stamford lies in the midst of some of England's richest farmland and close to the famous "double-cropping" land of parts of the fens. Agriculture still provides a small, but steady number of jobs in farming, agricultural machinery, distribution and ancillary services. The Stamford Mercury claimed to have been published since , as "Britain's oldest newspaper", but in fact it was founded in as the Stamford Post. Local radio provision was shared between Peterborough's Heart East Stamford has its own lower-power television relay transmitter, due to the town being in a valley [37] [38] which takes its transmission from Waltham , not Belmont.
Recommended publications
  • Research and Development of a High-Resolution Piezoelectric Rotary Stage
    KAUNAS UNIVERSITY OF TECHNOLOGY IGNAS GRYBAS RESEARCH AND DEVELOPMENT OF A HIGH-RESOLUTION PIEZOELECTRIC ROTARY STAGE Doctoral Dissertation Technological Sciences, Mechanical Engineering (09T) 2017, Kaunas This doctoral dissertation was prepared at Kaunas University of Technology, Institute of Mechatronics during the period of 2013–2017. The studies were supported by the Research Council of Lithuania. Scientific Supervisor: Habil. Dr. Algimantas Bubulis, (Kaunas University of Technology, Technological Sciences, Mechanical Engineering, 09T). Doctoral dissertation has been published in: http://ktu.edu Editor: Dovilė Dumbrauskaitė (Publishing Office “Technologija”) © I. Grybas, 2017 ISBN xxxx-xxxx The bibliographic information about the publication is available in the National Bibliographic Data Bank (NBDB) of the Martynas Mažvydas National Library of Lithuania KAUNO TECHNOLOGIJOS UNIVERSITETAS IGNAS GRYBAS AUKŠTOS SKYROS PJEZOELEKTRINIO SUKAMOJO STALIUKO KŪRIMAS IR TYRIMAS Daktaro disertacija Technologiniai mokslai, mechanikos inžinerija (09T) 2017, Kaunas Disertacija rengta 2013–2017 metais Kauno technologijos universiteto Mechatronikos institute. Mokslinius tyrimus rėmė Lietuvos mokslo taryba. Mokslinis vadovas: Habil. dr. Algimantas Bubulis (Kauno technologijos universitetas, technologiniai mokslai, mechanikos inžinerija, 09T). Interneto svetainės, kurioje skelbiama disertacija, adresas: http://ktu.edu Redagavo: Dovilė Dumbrauskaitė (leidykla “Technologija“) © I. Grybas, 2017 ISBN xxxx-xxxx Leidinio bibliografinė informacija pateikiama
    [Show full text]
  • Design and Implementation of a Small Electric Motor Dynamometer for Mechanical Engineering Undergraduate Laboratory Aaron Farley University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2012 Design and Implementation of a Small Electric Motor Dynamometer for Mechanical Engineering Undergraduate Laboratory Aaron Farley University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Electro-Mechanical Systems Commons Recommended Citation Farley, Aaron, "Design and Implementation of a Small Electric Motor Dynamometer for Mechanical Engineering Undergraduate Laboratory" (2012). Theses and Dissertations. 336. http://scholarworks.uark.edu/etd/336 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. DESIGN AND IMPLEMENTATION OF A SMALL ELECTRIC MOTOR DYNAMOMETER FOR MECHANICAL ENGINEERING UNDERGRADUATE LABORATORY DESIGN AND IMPLEMENTATION OF A SMALL ELECTRIC MOTOR DYNAMOMETER FOR MECHANICAL ENGINEERING UNDERGRADUATE LABORATORY A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering By Aaron Farley University of Arkansas Bachelor of Science in Mechanical Engineering, 2001 May 2012 University of Arkansas ABSTRACT This thesis set out to design and implement a new experiment for use in the second lab of the laboratory curriculum in the Mechanical Engineering Department at the University of Arkansas in Fayetteville, AR. The second of three labs typically consists of data acquisition and the real world measurements of concepts learned in the classes at the freshman and sophomore level. This small electric motor dynamometer was designed to be a table top lab setup allowing students to familiarize themselves with forces, torques, angular velocity and the sensors used to measure those quantities, i.e.
    [Show full text]
  • FAMU-FSU 2012 Solar Car Operations Manual
    FAMU-FSU 2012 Solar Car Operations Manual Senior Design Operations Manual – April 2012 By Patrick Breslend2, Bradford Burke1, Jordan Eldridge2, Tyler Holes1, Valerie Pezzullo1, Greg Proctor2, Shawn Ryster2 1Department of Mechanical Engineering 2Department of Electrical and Computer Engineering Project Sponsor Dr. Chris Edrington, Assistant Professor Department of Electrical and Computer Engineering Department of Mechanical Engineering FAMU-FSU College of Engineering 2525 Pottsdamer St, Tallahassee, FL 32310 Startup / Run procedure: Disclaimer: It is very important that the user of the vehicle not make contact with any but the mentioned electrical components. While the electrical components are all isolated from the user and covered by various insulations, it is still possible to come into contact with potential lethal amounts of current. The designer and builders of this car have taken great measures to ensure this will not happen, but nothing is fool proof. This being said, no changes should be made to the system without training in electrical safety and a thorough understanding of the overall system. The following include the steps that should be undertaken to begin driving the vehicle. Only one person may occupy the vehicle at any given time, hence the reason there is only one seat, however it should be noted that at least three individuals will be required to ensure safest operation of the vehicle. 1. Place blocks or stops in front and behind one of the wheels to ensure the vehicle does not move while interacting with the bottom shell. 2. Un-latch and lift the top carbon fiber shell from the vehicle and secure the top with the mounted poles in the vehicle.
    [Show full text]
  • Dynamic Analysis of a Piezoelectric Ultrasonic Motor with Application to the Design of a Compact High-Precision Positioning Stage
    Department of Precision and Microsystems Engineering Dynamic analysis of a piezoelectric ultrasonic motor With application to the design of a compact high-precision positioning stage Name: Teunis van Dam Report no: ME 11.036 Coach: R. Ellenbroek Professor: prof. ir. R. H. Munnig Schmidt Specialization: Mechatronics Type of report: Masters Thesis Date: Delft, November 22, 2011 2 3 Preface This thesis describes the work I have done at Mapper Lithography B.V. in Delft, as a final project for my masters Precision and Microsystems Engineering at Delft University of Technology, faculty 3mE. This project is part of the process of designing a high-precision linear positioning stage for a wafer scanner using electron beam lithography. The first part of my work is focused on the conceptual design of this stage, in which choosing the actuator type plays a dominant role. The second and largest part is focused on detailed analysis of the dynamic behavior of the selected actuator, a piezoelectric ultrasonic motor, by building a simulation model of the motor and validating this model by experiments. I want to thank my professor, Robert Munnig Schmidt, and my supervisor at Mapper Lithography, Rogier Ellenbroek, for their support and valuable feedback on my work. Furthermore I would like to thank my design leader at Mapper Lithography, Jerry Peijster, and my other colleagues, for granting me this opportunity and for the pleasant cooperation. Teunis van Dam Contents 1 Introduction 6 1.1 General introduction . 6 1.2 Machine description and problem statement . 6 1.3 Overviewofcontents......................................... 7 2 Stage requirements 9 2.1 Functionality .
    [Show full text]
  • Brushless DC Electric Motor
    Please read: A personal appeal from Wikipedia author Dr. Sengai Podhuvan We now accept ₹ (INR) Brushless DC electric motor From Wikipedia, the free encyclopedia Jump to: navigation, search A microprocessor-controlled BLDC motor powering a micro remote-controlled airplane. This external rotor motor weighs 5 grams, consumes approximately 11 watts (15 millihorsepower) and produces thrust of more than twice the weight of the plane. Contents [hide] 1 Brushless versus Brushed motor 2 Controller implementations 3 Variations in construction 4 AC and DC power supplies 5 KM rating 6 Kv rating 7 Applications o 7.1 Transport o 7.2 Heating and ventilation o 7.3 Industrial Engineering . 7.3.1 Motion Control Systems . 7.3.2 Positioning and Actuation Systems o 7.4 Stepper motor o 7.5 Model engineering 8 See also 9 References 10 External links Brushless DC motors (BLDC motors, BL motors) also known as electronically commutated motors (ECMs, EC motors) are electric motors powered by direct-current (DC) electricity and having electronic commutation systems, rather than mechanical commutators and brushes. The current-to-torque and frequency-to-speed relationships of BLDC motors are linear. BLDC motors may be described as stepper motors, with fixed permanent magnets and possibly more poles on the rotor than the stator, or reluctance motors. The latter may be without permanent magnets, just poles that are induced on the rotor then pulled into alignment by timed stator windings. However, the term stepper motor tends to be used for motors that are designed specifically to be operated in a mode where they are frequently stopped with the rotor in a defined angular position; this page describes more general BLDC motor principles, though there is overlap.
    [Show full text]
  • Development of a Linear Ultrasonic Motor with Segmented Electrodes
    Development of a Linear Ultrasonic Motor with Segmented Electrodes by Jacky Ka Ki Lau A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate Department of Mechanical and Industrial Engineering University of Toronto © Copyright by Jacky Ka Ki Lau 2012 Development of a Linear Ultrasonic Motor with Segmented Electrodes Jacky Ka Ki Lau Master of Applied Science Graduate Department of Mechanical and Industrial Engineering University of Toronto 2012 ABSTRACT A novel segmented electrodes linear ultrasonic motor (USM) was developed. Using a planar vibration mode concept to achieve elliptical motion at the USM drive-tip, an attempt to decouple the components of the drive-tip trajectory was made. The proposed design allows greater control of the drive-tip trajectory without altering the excitation voltage. Finite element analyses were conducted on the proposed design to estimate the performance of the USM. The maximum thrust force and speed are estimated to be 46N and 0.5370m/s, respectively. During experimental investigation, the maximum thrust force and speed observed were 36N and 0.223m/s, respectively, at a preload of 70N. Furthermore, the smallest step achievable was 9nm with an 18µs impulse. Nevertheless, the proposed design allowed the speed of the USM to vary while keeping the thrust force relatively constant and allowed the USM to achieve high resolution without a major sacrifice of thrust force. ii Acknowledgements I would like to thank everyone who helped me in to the completion of my thesis and my Master’s program. Special mention goes to the following people and organizations: My supervisor, Professor Ridha Ben Mrad, for his guidance and support throughout my project.
    [Show full text]
  • Electric Vehicle Conversion of a Foldable Motorbike
    Bjarni Freyr Gudmundsson, s042859 Electric Vehicle Conversion of a Foldable Motorbike Design state Synthesis & Special Project, Juni 2010 Bjarni Freyr Gudmundsson, s042859 Electric Vehicle Conversion of a Foldable Motorbike Design state Synthesis & Special Project, Juni 2010 Electric Vehicle Conversion of a Foldable Motorbike,Design state This report was prepared by Bjarni Freyr Gudmundsson, s042859 Supervisors Esben Larsen Department of Electrical Engineering Centre for Electric Technology (CET) Technical University of Denmark Elektrovej building 325 DK-2800 Kgs. Lyngby Denmark www.elektro.dtu.dk/cet Tel: (+45) 45 25 35 00 Fax: (+45) 45 88 61 11 E-mail: [email protected] Release date: 31. August 2010 Category: 2 (confidential) Edition: First Comments: This report is part of the requirements to achieve the Master of Science in Engineering (M.Sc.Eng.) at the Technical University of Denmark. This report represents 20 ECTS points. Rights: c Bjarni Freyr Gudmundsson, 2008 Preface This report is a part of fulfillment requirements for acquiring the course 31910 Synthesis in electrotechnology and a 10 ECTS credit special course. The aim of the project is to get familiar with electric vehicle technology and to gain understanding on what the major electrical components are needed to propel the vehicle in sophisticated way. Furthermore, the author of the paper will use this project to gain the understanding on the behavior of different DC motor types. The author wants to thank Esben Larsen for all the long discussions we had regarding the project and for the interest shown on the subject. Joachim Hjerl, David Koch Mouritzen and Christian Rottbøll at CityRiders are thanked for bringing the project to DTU, providing the opportunity of this project and thank you for being so flexible when I needed the moped for testing and measurements.
    [Show full text]
  • Model 6000 Inchworm Motor Controller Instruction Manual
    MODEL 6000 'nchworm%otor Controller 'nstruction Manual CONTENTS PAGE Chapter 1 - Introduction Chapter 2 - System Overview Chapter 3 - Installation Location 3-1 Connecting Inchworm Motors 3-1 Connecting The Model 6003 Joystick 3-1 Interfacing To Encoders 3-1 Selecting Display Resolution 3-2 Une Voltage Selection 3-2 Line Voltage Conversion 3-2 Chapter 4 - Operation Front Panel 4-1 Model 6003 Joystick 4-2 Model 6005 Handset 4-3 Chapter 5 - Interfacing Level I TTL Open Loop Interface 5-1 Level I Closed Loop Interface 5-4 Level II Closed Loop Interface 5-6 Function Table 5-9 Extended Function Table 5-10 Changes Effecting All 6000 Controllers 5-13 Chapter 6 - Trouleshooting Appendix A - Specifications Appendix B - Hardware Conflguration Chapter 1 - Introduction Burleigh Instruments Inc. thanks you for choosing INITIAL TEST our Model 6000 Inchworm Motor ControUer. It's design has been optimized for the operation of IMPORTANT: Before plugging in the line cord Burleigh's 700 series and LTS/LTO series Inchworm confirm that the rear panel voltage selector position Motors. matches the available line voltage. Incorrect settmg can cause permanent damage to the system. Burleigh Instruments introduced Inchworm Motor systems in the early 1970's. These unique Do NOT connect an Inchworm Motor to the piezoelectric devices produce ultra-high resolution Controller until you have read the Installation linear motion with no backlash or leadscrew errors. section of this manual and followed the instructions They have been found indispensable in a wide range contained therein. This initial test is performed with of applications including fiber optic alignment, disk nothing but the line cord connected to the Controller.
    [Show full text]
  • Boat #8 Technical Report
    5/6/2019 2019 Tech Report - Google Docs University of Rochester Solar Splash Boat #8 Technical Report May 6th, 2019 Team Members Chris Dalke · Andrew Gutierrez · Seth Schaffer · Martin Barocas · Nick Davis Ivan Frantz · Leo Orsini · Owen Goettler · Daniel Wong · Heriniaina Rajaoberison Melanie Armenas · Mark Westman · Daniel Allara Advisors Dr. Ethan Burnham-Fay · Kyle DeManincor · Jim Alkins https://docs.google.com/document/d/1O9zWnMsXp2kttvCnGx9Cloe6BIANx8N5uxl2V2ImnuY/edit# 1/81 5/6/2019 2019 Tech Report - Google Docs University of Rochester, Tech Report ·Page 2 Executive Summary This year, the University of Rochester Solar Splash team focused on improving our boat in two areas. We built a robust, modular telemetry system which records sensor data about the boat’s performance. Data points are displayed live in the boat, transmitted over radio to a shore computer, and stored in a database for later analysis. This system is used to transmit the throttle and controls for the boat, allowing our team to use control algorithms to follow a power budget. On the mechanical systems side, we improved our outboard motor to use a simplified direct drive and interchangeable motor system. Our outboard motor has been modified to accommodate propellers up to 14”. The ability to change motor and propeller on the same outboard assembly gives our team a large amount of flexibility. Each of these changes was implemented in response to events of the previous year. At the end of last year, our team suffered a setback that prevented us from attending competition. During testing, we overheated our motor and were not able to secure a replacement in time for competition.
    [Show full text]
  • Synthesis and Characterization of Zno Finewires for the Conceptual Design of a Mechanical Battery
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Synthesis and characterization of ZnO finewires for the conceptual design of a mechanical battery Ph. D. Thesis written by Oscar Gilberto Súchil Pérez Under the supervision of Francesc Torres and Gabriel Abadal Electronic Circuits and Systems and NOEMS for energy laboratory Bellaterra (Cerdanyola del Vallès), May 2017 Synthesisii and characterization of ZnO finewires for the conceptual design of a me chanical battery The undersigned, Dr, Francesc Torres and Gabriel Abadal, Professors of the Electronic Engineering Department (Engineering School) of the Universitat Autònoma de Barcelona, CERTIFY: That the thesis entitled “Synthesis and characterization of ZnO finewires for the conceptual design of a mechanical battery” has been written by Oscar Gilberto Súchil Pérez under their supervision, in fulfillment of the requirements for the PhD degree of Electronic Engineering. And hereby to acknowledge the above, sign the present. Frances Torres Gabriel Abadal Bellaterra (Cerdanyola del vallès, May 2017) ii Acknowledgments Firstly, a special acknowledgment to my father, who supports me from the beginning for start this journey in the research field.
    [Show full text]
  • The Axial-Flux PMDC Motor
    The Axial-Flux PMDC Motor Sometime in the mid- to late ‘70s, a gangly young man who’d left school at around age 6 had some interesting ideas about how to build an electric motor… something he’d been fascinated with since picking up a children’s science book describing how to build a motor with a cork and a needle. winding coils around them, strapping it all together He tested out this idea by flattening out tin cans, design, and cobbling it into what was essentially a plywoodin what amounted framed go-cart to a unique for a competition “axial flux” motor hosted by the UK’s Battery Electric Vehicle Association in 1983. The entry got the young man on national television, and started him on his way to designing and manufacturing a remarkably powerful, com- motor that was purpose-built for electric vehicles. Thepact, young lightweight man’s andname efficient is Cedric electric Lynch. motor – a His idea was, in fact, built on concepts that go as far back as the late 1800s, with what are essen- intially the axial-flux early 1940s, designs but essentially (shown in theit’s describingillustration to the left). The design was further refined by GE itsthe coils configuration on the armature, of the magnets spinning in around relation with to the the coils of the armature. A radial flux PMDC motor has outside diameter of the case. The air gap between theoutput armature drive shaft. and the The magnets magnets is areparallel fixed with to the the output shaft. the output shaft, but they extend in a narrow disk, outIn an from axial the flux shaft.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Pediatric Mechanical Circulatory Support Applications for Frequency-Leveraged Piezoelectric Hydraulic Pumps Permalink https://escholarship.org/uc/item/34b4t1zg Author Valdovinos, John Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Pediatric Mechanical Circulatory Support Applications for Frequency-Leveraged Piezoelectric Hydraulic Pumps A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biomedical Engineering by John Valdovinos 2014 © Copyright by John Valdovinos 2014 ABSTRACT OF DISSERTATION Pediatric Mechanical Circulatory Support Applications for Frequency-Leveraged Piezoelectric Hydraulic Pumps By John Valdovinos Doctor of Philosophy in Biomedical Engineering University of California, Los Angeles, 2014 Professor Gregory P. Carman, Co-Chair Professor Daniel S. Levi, Co-Chair While the development of ventricular assist devices for the pediatric population has grown and helped these patients in bridge-to-transplantation, the motors used for these devices have remained electromagnetic. Because the physical space requirements for pediatric ventricular assist devices (PVADs) implantation are smaller in children, these motors are susceptible to decreased power output and efficiency as they are scaled down. Piezoelectric actuators, which scale down favorably in terms of power output and efficiency, have yielded novel compact piezoelectric hydraulic pumps in the aerospace industry. The focus of this research is on the development of a ventricular assist driver powered by a miniature piezoelectric hydraulic pump (PHP). This driver is designed to drive a working fluid to an extracorporeal ventricular assist ii device, also called a blood pump, which has been fabricated at UCLA for bridge-to- transplantation mechanical support.
    [Show full text]