The Axial-Flux PMDC Motor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Design of a Permanent Magnet In-Wheel Motor with Dual-Stator and Dual-Field-Excitation Used in Electric Vehicles
energies Article The Design of a Permanent Magnet In-Wheel Motor with Dual-Stator and Dual-Field-Excitation Used in Electric Vehicles Peng Gao *, Yuxi Gu and Xiaoyuan Wang School of Electrical and Information Engineering, Tianjin University, No. 92 Weijin Road, Tianjin 300072, China; [email protected] (Y.G.); [email protected] (X.W.) * Correspondence: [email protected]; Tel.: +86-022-2740-6705 Received: 15 January 2018; Accepted: 8 February 2018; Published: 12 February 2018 Abstract: The in-wheel motor has received more attention owing to its simple structure, high transmission efficiency, flexible control, and easy integration design. It is difficult to achieve high performance with conventional motors due to their dimensions and structure. This paper presents a new dual-stator and dual-field-excitation permanent-magnet in-wheel motor (DDPMIM) that is based on the structure of the conventional in-wheel motor and the structure of both the radial and axial magnetic field motor. The finite element analysis (FEA) model of the DDPMIM is established and compared with that of the conventional in-wheel motor. The results show that the DDPMIM achieves a higher output torque at low speeds and that the flux-weakening control strategy is not needed in the full speed range. Keywords: dual-stator and dual-field-excitation permanent-magnet in-wheel motors (DDPMIM); back electromotive force (EMF); electric vehicles (EVs); in-wheel motors; axial flux motor; radial flux motor 1. Introduction Electric vehicles (EVs) will soon become a common mode of transport. Electric motors used in EVs have to satisfy many requirements: (1) a high power density and a high torque density; (2) a high output torque at low speeds and a high power output at high speeds; (3) an ability to operate within a wide range of speed in a highly efficient manner; (4) high reliability; and (5) low cost [1]. -
3-D FEM Analysis, Prototyping and Tests of an Axial Flux Permanent-Magnet Wind Generator
energies Article 3-D FEM Analysis, Prototyping and Tests of an Axial Flux Permanent-Magnet Wind Generator Joya C. Kappatou 1,*, Georgios D. Zalokostas 2 and Dimitrios A. Spyratos 3 1 Department of Electrical and Computer Engineering, University of Patras, 26500 Patras, Greece 2 Electrical and Computer Engineer, Amazonon 3 Evrytania, 36100 Karpenissi, Greece; [email protected] 3 Electrical and Computer Engineering student, University of Patras, 26500 Patras, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-261-099-6413 Received: 20 June 2017; Accepted: 23 August 2017; Published: 26 August 2017 Abstract: This paper contributes to the research and development of Axial Flux Permanent Magnet Synchronous Machines (AFPMSM); and in particular the design, the construction stages and measurements of a double rotor single internal non-ferromagnetic stator with a trapezoidal-concentrated winding machine for wind power generation applications. The initial dimensions of the machine were calculated using analytical formulas and a model was created and analyzed using the 3D Finite Element Method (FEM). The shape of the magnets of the machine was optimized and presented in a previous paper and a prototype was constructed and tested in the laboratory. In addition, a temperature test of the stator was performed experimentally. Finally, the effect of the different axial widths of the two air gaps on the electrical magnitudes and the field of the machine were investigated using both FEM analysis and experiments. Keywords: Axial flux machine; finite element analysis; permanent-magnet generator; wind power generator 1. Introduction Research on the design and construction of Axial Flux Permanent Magnet Synchronous Machines (AFPMSM) has been attracting increasing scientific interest over the past few years. -
Design and Implementation of a Small Electric Motor Dynamometer for Mechanical Engineering Undergraduate Laboratory Aaron Farley University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2012 Design and Implementation of a Small Electric Motor Dynamometer for Mechanical Engineering Undergraduate Laboratory Aaron Farley University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Electro-Mechanical Systems Commons Recommended Citation Farley, Aaron, "Design and Implementation of a Small Electric Motor Dynamometer for Mechanical Engineering Undergraduate Laboratory" (2012). Theses and Dissertations. 336. http://scholarworks.uark.edu/etd/336 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. DESIGN AND IMPLEMENTATION OF A SMALL ELECTRIC MOTOR DYNAMOMETER FOR MECHANICAL ENGINEERING UNDERGRADUATE LABORATORY DESIGN AND IMPLEMENTATION OF A SMALL ELECTRIC MOTOR DYNAMOMETER FOR MECHANICAL ENGINEERING UNDERGRADUATE LABORATORY A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering By Aaron Farley University of Arkansas Bachelor of Science in Mechanical Engineering, 2001 May 2012 University of Arkansas ABSTRACT This thesis set out to design and implement a new experiment for use in the second lab of the laboratory curriculum in the Mechanical Engineering Department at the University of Arkansas in Fayetteville, AR. The second of three labs typically consists of data acquisition and the real world measurements of concepts learned in the classes at the freshman and sophomore level. This small electric motor dynamometer was designed to be a table top lab setup allowing students to familiarize themselves with forces, torques, angular velocity and the sensors used to measure those quantities, i.e. -
FAMU-FSU 2012 Solar Car Operations Manual
FAMU-FSU 2012 Solar Car Operations Manual Senior Design Operations Manual – April 2012 By Patrick Breslend2, Bradford Burke1, Jordan Eldridge2, Tyler Holes1, Valerie Pezzullo1, Greg Proctor2, Shawn Ryster2 1Department of Mechanical Engineering 2Department of Electrical and Computer Engineering Project Sponsor Dr. Chris Edrington, Assistant Professor Department of Electrical and Computer Engineering Department of Mechanical Engineering FAMU-FSU College of Engineering 2525 Pottsdamer St, Tallahassee, FL 32310 Startup / Run procedure: Disclaimer: It is very important that the user of the vehicle not make contact with any but the mentioned electrical components. While the electrical components are all isolated from the user and covered by various insulations, it is still possible to come into contact with potential lethal amounts of current. The designer and builders of this car have taken great measures to ensure this will not happen, but nothing is fool proof. This being said, no changes should be made to the system without training in electrical safety and a thorough understanding of the overall system. The following include the steps that should be undertaken to begin driving the vehicle. Only one person may occupy the vehicle at any given time, hence the reason there is only one seat, however it should be noted that at least three individuals will be required to ensure safest operation of the vehicle. 1. Place blocks or stops in front and behind one of the wheels to ensure the vehicle does not move while interacting with the bottom shell. 2. Un-latch and lift the top carbon fiber shell from the vehicle and secure the top with the mounted poles in the vehicle. -
And Radial-Flux Out-Runner Vernier Permanent Magnet Motor /Author
MITSUBISHI ELECTRIC RESEARCH LABORATORIES https://www.merl.com High-Torque Direct-Drive Machine with Combined Axial- and Radial-flux Out-runner Vernier Permanent Magnet Motor Zhou, Lei; Guo, Feng; Wang, Hongyu; Wang, Bingnan TR2021-050 May 18, 2021 Abstract This paper presents the design, modeling, and simulation for a novel type of high-torque motor, targeting various direct-drive applications, such as robotic actuator, precision motion rotatry stages, and in-wheel drive for electrical vehicles. The key idea of the motor design is to use a combination of (a) combined axial- and radial-flux electric machine and (b) Vernier permanent magnet (VPM) motor. Such combination effectively increases the torque genera- tion capability for the proposed motor, and makes it attractive for direct-drive applications. Analytical model for the motor’s performance is derived and is validated using finite element method (FEM), and is used for optimizing the motor design parameters. Motor’s losses and efficiency are evaluated by finite element simulations for various magnetic material selections. The mechanical design for the motor is also discussed. The simulation result of the proposed motor demonstrates a 1.5x torque improvement compared with a baseline off-she-shelf direct- drive machine of the same size. The comparison shows that the proposed design is promising for the next-generation high-torque direct-drive motors. International Electric Machine & Drives Conference (IEMDC) c 2021 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. -
Dynamic DC-Link Voltage Adjustment for Electric Vehicles Considering the Cross Saturation Effects
energies Article Dynamic DC-link Voltage Adjustment for Electric Vehicles Considering the Cross Saturation Effects Huimin Li, Shoudao Huang, Derong Luo *, Jian Gao and Peng Fan College of Electrical and Information Engineering, Hunan University, Changsha 410082, China; [email protected] (H.L.); [email protected] (S.H.); [email protected] (J.G.); [email protected] (P.F.) * Correspondence: [email protected]; Tel.: +86-0731-8882-2461 Received: 4 July 2018; Accepted: 3 August 2018; Published: 7 August 2018 Abstract: The demands of remarkable reliability and high power density of traction systems are becoming more and more rigorous. The conflicting requirements imposed on the control strategy are higher accuracy and higher efficiency over the whole speed range. However, parameter variations caused by the cross coupling and magnetic saturation effect (omitted from the cross saturation effects in the following) are usually neglected in conventional control strategies, which could reduce the control precision. In order to fully consider the influence of parameter changes on the motor control and derive an approach that could realize the maximum efficiency during the whole speed range, this paper proposes a dynamic DC-link voltage adjustment strategy considering the cross coupling and magnetic saturation effects. The strategy can be categorized into three parts. Firstly, the torque request is transformed to the optimal current reference signal. Secondly, the differences between the setpoint and the real-time feedback signals of torque and voltage can be applied in the linearized function in the did,q coordinate. The solution guides the current vector into the optimal direction under the current and voltage limits to ensure the safety and reliability of the motor. -
Review of Generator Systems for Direct-Drive Wind Turbines
Review of Generator Systems for Direct-Drive Wind Turbines D. Bang, H. Polinder, G. Shrestha, J.A. Ferreira Electrical Power Processing / DUWIND Delft University of Technology Mekelweg 4, 2628 CD Delft The Netherlands Phone: +31 (0)15 27 85791, Fax: +31 (0)15 27 82968 [email protected], [email protected], [email protected], [email protected] Abstract- The objective of this paper is to review direct-drive and geared generator systems and to identify suitable generator concepts for direct-drive wind turbines. The comparison of different generator systems in literature is discussed with the criteria based on the energy yield, cost, and weight. Different promising permanent-magnet (PM) machines proposed in literature are also discussed to find suitable generator type, because direct-drive PM machines are more superior in terms of the energy yield, reliability and maintenance problem. Finally, suitable concepts to overcome the disadvantages of direct-drive are suggested considering both electromagnetic and mechanical structure. I. INTRODUCTION Various wind turbine concepts have been developed and built to maximize the energy harnessed, to minimize the cost, and to improve the power quality during the last two decades. Such turbine concepts can be classified with a view to the rotational speed, the power regulation, and the generator system. When considering the construction of the generator system, the turbines can be classified into the direct-drive and the geared concepts. When focusing on the generator type, the generator system can be classified into the electrically excited (EE) machine and the permanent magnet (PM) machine. The comparisons of different generator systems for wind turbines have been proposed in a number of literatures. -
Design of a PCB Statorcoreless Axial Flux Permanent Magnet
414 Wang et al. / Front Inform Technol Electron Eng 2019 20(3):414-424 Frontiers of Information Technology & Electronic Engineering www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com ISSN 2095-9184 (print); ISSN 2095-9230 (online) E-mail: [email protected] Design of a PCB stator coreless axial flux permanent magnet * synchronous motor based on a novel topology Halbach array Xiao-yuan WANG, Xiang LI†‡, Chun-peng LI, Si-jia XU, Le-tao LING College of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China †E-mail: [email protected] Received June 2, 2017; Revision accepted Sept. 13, 2017; Crosschecked Mar. 14, 2019 Abstract: A novel topology Halbach permanent magnet array is proposed and applied to the design of a printed circuit board (PCB) axial flux permanent magnet (AFPM) motor. Compared with the traditional coreless AFPM motor, this novel topology for a Halbach permanent magnet array PCB stator AFPM motor has larger air-gap magnetic flux density and air-gap flux per pole. The magnetic flux leakage is effectively reduced, and the air-gap magnetic density is close to the sine wave. Results of the finite element analysis and prototype experiments verify the feasibility and effectiveness of the novel Halbach permanent magnet array PCB stator motor. A reference basis and practical value for the design of the PCB AFPM motor are provided. Key words: Axial flux permanent magnet synchronous motor; Printed circuit board; Halbach permanent magnet array; Finite element method https://doi.org/10.1631/FITEE.1700345 CLC number: TM351 1 Introduction 2011); thus, the motor servo is good and conducive for batch production (Wu, 2012). -
Brushless DC Electric Motor
Please read: A personal appeal from Wikipedia author Dr. Sengai Podhuvan We now accept ₹ (INR) Brushless DC electric motor From Wikipedia, the free encyclopedia Jump to: navigation, search A microprocessor-controlled BLDC motor powering a micro remote-controlled airplane. This external rotor motor weighs 5 grams, consumes approximately 11 watts (15 millihorsepower) and produces thrust of more than twice the weight of the plane. Contents [hide] 1 Brushless versus Brushed motor 2 Controller implementations 3 Variations in construction 4 AC and DC power supplies 5 KM rating 6 Kv rating 7 Applications o 7.1 Transport o 7.2 Heating and ventilation o 7.3 Industrial Engineering . 7.3.1 Motion Control Systems . 7.3.2 Positioning and Actuation Systems o 7.4 Stepper motor o 7.5 Model engineering 8 See also 9 References 10 External links Brushless DC motors (BLDC motors, BL motors) also known as electronically commutated motors (ECMs, EC motors) are electric motors powered by direct-current (DC) electricity and having electronic commutation systems, rather than mechanical commutators and brushes. The current-to-torque and frequency-to-speed relationships of BLDC motors are linear. BLDC motors may be described as stepper motors, with fixed permanent magnets and possibly more poles on the rotor than the stator, or reluctance motors. The latter may be without permanent magnets, just poles that are induced on the rotor then pulled into alignment by timed stator windings. However, the term stepper motor tends to be used for motors that are designed specifically to be operated in a mode where they are frequently stopped with the rotor in a defined angular position; this page describes more general BLDC motor principles, though there is overlap. -
Review of Axial Flux Induction Motor for Automotive Applications F
Review of Axial Flux Induction Motor for Automotive Applications F. C. Mushid and D. G. Dorrell Abstract -- Hybrid and electric vehicles have been the focus axial-flux machine. of many academic and industrial studies to reduce transport However, the working principal of both axial and radial flux pollution; they are now established products. In hybrid and machines is obviously the same. They may be characterized electric vehicles, the drive motor should have high torque by their conductor geometry and field orientation as shown in density, high power density, high efficiency, strong physical structure and variable speed range. An axial flux induction Fig. 1: the radial-field machine, is where the airgap flux is motor is an interesting solution, where the motor is a double radial and the conductors are axial; and axial-field machine, sided axial flux machine. This can significantly increase torque is where the airgap flux is axial and the conductors are radial. density. In this paper a review of the axial flux motor for Axial flux are more commonly brushless permanent magnet automotive applications, and the different possible topologies for machines. [4] compares the advantages of the axial flux the axial field motor, are presented. permanent magnet and the induction motor for radial flux machines. It was discussed that due to limited rare-earth Index Terms-- Axial flux induction motor, radial flux machine, hybrid and electric vehicles, single and double side magnet material resources, an axial flux induction machine rotor. could be a better choice for automotive applications; the use of high-power variable-speed induction motor drives have I. -
Programme Détaillé ISEF 2019
ISEF 2019 program Thursday 29 August 2019 09:45 — 10:15 Invited Lecture IL1 : Corona resistant enameled wires as solution for electrical motor winding systems supplied by high du/dt inverter voltage: An insulation life-time estimation Room : Auditorium 300 10:15 — 10:45 Invited Lecture IL2 : MEMS : Field Models and Optimal Design Room : Auditorium 300 11:15 — 12:45 Oral Session O1-A : Field theory and advanced computation in electromagnetism Room : Auditorium 300 1. "Unstructured - PEEC Method with the use of Surface Impedance Condition" Meunier Gérard 1, Phan Quang Anh 1, Chadebec Olivier 1, Guichon Jean Michel 1, Bannwarth Bertrand 1 1 - Laboratoire de Génie Electrique de Grenoble (France) 2. "Wideband Performance Analysis of the C-FDTD Approach in the Discretization Impoverishment of a Dielectric Curved Surface" Fortes Lucas 1, Goncalves Sandro 1 1 - Centro Federal de Educação Tecnológica de Minas Gerais (Brazil) 3. "Meshless Local Radial Point Interpolation Method for Electromagnetic Devices Modeling" Coppoli Eduardo Henrique 1, Ramdane Brahim 2, Marechal Yves 3, Afonso Márcio Matias 1 1 - Centro Federal de Educação Tecnológica de Minas Gerais (Brazil), 2 - Univ. de Grenoble Alpes, G2Elab/Ins NEEL (France), 3 - Univ. de Grenoble Alpes, G2Elab/Ins NEEL (France) 4. "Introduction of the Bicomplex Analysis in the Finite Element Method Applied to Electromagnetic Far-Field Calculations" Reum Thomas 1, Toepfer Hannes 1 1 - Technische Universität Ilmenau (Germany) 5. "Comparison of Methods for Thread Parallelization in 3-D Hybrid Parallel Finite Element Method" Yamaguchi Tadashi 1, Kawase Yoshihiro 1, Nagase Atsuyoshi 1 1 - Gifu University (Japan) Oral Session O1-B : Permanent magnet motors - calculation and design Room : S105 1. -
LARGE SCALE SESSIONS Plan with Mix 100 Km/H Speed, Which Will Be the First Step of HTS Maglev Engineering
design. Besides, a low-mid speed HTS Maglev test line is being on the LARGE SCALE SESSIONS plan with mix 100 km/h speed, which will be the first step of HTS Maglev engineering. This work is supported by the National High Technology Research and Development Program of China (2007AA03Z210, 2007AA03Z207) and MONDAY, AUGUST 18, 2008 National Natural Science Foundation in China (50677057, 50777053). 11:00am MONDAY MORNING ORAL SESSIONS 1LA03 - Relaxation transition due to different cooling processes in a 10:30am - 12:30pm superconducting levitation system X.Y.Zhang, Y.H.Zhou, J.Zhou, Lanzhou University Relaxation of levitation force in a high-temperature superconducting levitation system is well known to be unavoidable based on the flux 1LA - Maglev, Bearings and Flywheels – I 10:30am - 12:15pm creep phenomenon. In this work, an updated high-temperature superconductor maglev measurement system was used to measure the 10:30am relaxations of levitation force and lateral force due to different cooling 1LA01 - Theoretical Hints for Optimizing Force and Stability in processes simultaneously. The effects of the cooling processes on the Actual Maglev Devices relaxations in both the levitation force and lateral force are remarkably N.Del-Valle, A.Sanchez, C.Navau, Universitat Autonoma Barcelona; observed in the present experiment, and transition phenomena are also D.X.Chen, ICREA and Universitat Autonoma Barcelona found in the relaxation and the force behaviors (i.e., either attraction or The achievement of high-quality high-temperature bulk superconductors repulsion) to both the levitation force and the lateral force. An updated has created much interest in maglev technology not based on magnets frozen-image is used to calculate the relaxations in the levitation force made of superconducting filaments but instead on the use of bulk and lateral force due to different cooling height, the results agree with material as levitating agents.