<<

Systematics & Evolution 44 (2013) 261–347 brill.com/ise

Male terminalia of : morphological diversity in an otherwise monotonous taxon

István Mikóa,*, Lubomir Masnerb, Eva Johannesc, Matthew J. Yoderd and Andrew R. Deansa aDepartment of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA bAgriculture and Agri-Food Canada, Ottawa, ON, Canada K1A 0C6 cNCSU-NSCORT, Department of Plant Biology, 2115 Gardner Hall Box 7612, North Carolina State University Raleigh, NC 27695, USA dIllinois Natural History Survey, 1816 South Oak Street, MC 652, Champaign, IL 61820, USA *Corresponding author, e-mail: [email protected] Published 25 October 2013

Abstract The skeletomuscular system of male terminalia in Evaniomorpha () is described and the functional morphology of male genitalia is discussed. Confocal laser scanning microscopy is the primary method used for illustrating anatomical phenotypes, and a domain-specific anatomy ontology is employed to more explicitly describe anatomical structures. A comprehensive data set of ceraphronoid male genitalia is analyzed, yielding the first phylogeny of the superfamily. One hundred and one taxa, including three outgroups, are scored for 48 characters. Ceraphronoidea are recovered as sister to the remaining Evaniomorpha in the implied weighting analyses. Numerous character states suggest that Ceraphronoidea is a relatively basal apocritan lineage. Ceraphronoidea, , and Megaspilinae are each retrieved as monophyletic in all analyses. is not recovered as monophyletic. Lagynodinae is monophy- letic in the implied weighting analyses with strong support and is a polytomy in the equal weighting analy- sis. Lagynodinae shares numerous plesiomorphies with both Megaspilinae and Ceraphronidae. Relationships among genera are weakly corroborated. Masner is sister of Ceraphronidae. Trassedia is nested within Ceraphronidae based on the present analysis. Because of this and numerous features shared between it and Ceraphron we transfer Trassedia from Megaspilidae to Ceraphronidae. forms a single monophyletic clade, with modest support, together with some species. This result challenges the utility of such traditional diagnostic characters as ocellar arrangement and shape of the male flagel- lomeres. Aphanogmus is monophyletic in the implied weighting, but remains a polytomy with Ceraphron in the equal weighting analysis. Gnathoceraphron is always nested within a well-supported Aphanogmus clade. Cyoceraphron and Elysoceraphron are nested within Ceraphron and Aphanogmus, respectively. The male genitalia prove to be a substantial source of phylogenetically relevant information. Our results indi- cate that a reclassification of Ceraphronoidea both at the family and generic level is necessary but that more data are required.

Keywords Cladistic analysis; CLSM; conjunctiva; Figshare; fusion

© Koninklijke Brill NV, Leiden, 2013 DOI 10.1163/1876312X-04402002 Downloaded from Brill.com10/07/2021 09:32:22AM via free access

262 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Introduction Hymenoptera, which includes , , , and , is one of the four most species-rich insect orders, with more than 145 000 known species (Huber 2009) and perhaps more than 1 million species remaining to be described (Sharkey 2007). The evolutionary history of Hymenoptera has yet to be resolved, though recent efforts have edged closer towards a robust estimate (Vilhelmsen et al. 2010; Heraty et al. 2011). The emerging evolutionary topology reveals a highly supported basal grade of herbivo- rous hymenopterans (sawflies and woodwasps, known as “Symphyta”), leading to an extraordinarily diverse and notorious rapid radiation of (Whitfield & Kjer 2008). Most apocritan superfamilies are robustly monophyletic, but the relationships between them are weakly resolved. Perhaps the most uncertain is the position of the small hyperparasitoid lineage, Ceraphronoidea (Sharanowski et al. 2010, Sharkey et al. 2012), a putatively basal apocritan (Vilhelmsen et al. 2010). Ceraphronoidea was recently cataloged by Johnson & Musetti (2004) and currently includes four families: Ceraphronidae, Megaspilidae, and the fossil groups Stigmaphronidae and Radiophronidae. These four families include 27 valid genera (plus 28 generic concepts now considered junior synonyms) and 613 valid species (plus 235 species-level concepts now considered junior synonyms). Ceraphronoidea is one of the smallest of the major apocritan clades, yet they are the fourth most com- monly collected hymenopterans (Martínez de Murgía et al. 2001; Schmitt 2004). Most ceraphronoids are of entomophagous that develop in weakly concealed environments, inside cocoons or puparia or hosts that are prepupae (Haviland 1920; Withycombe 1924; Kamal 1939), a lifestyle that is probably the ground plan biology for the clade. Many of their hosts are primary parasitoids or predators of economically important insects (e.g., predators of the coffee berry borer (Evans et al. 2005), spider mite predators (Diptera: Cecidomyiidae) (Oatman 1985), and parasitoids of lepidopteran pests on oil palm (Polaszek & Dessart 1996). Despite their abundance and economic importance, only one systematist, Paul Dessart (active 1962–2001, deceased 2001), has worked on the group in modern times, and his core revisionary hypotheses have never been tested phylogenetically. It is widely accepted that Apocrita is monophyletic, with Orussoidea as its sister lineage (Rasnitsyn 1988, 2002; Ronquist et al. 1999; Vilhelmsen 2003; Schulmeister 2003a; Sharkey 2007; Heraty et al. 2011). However, our knowledge of the phylogeny of the suborder remains incomplete, and the relationships between putatively basal apocritans (Ceraphronoidea, , and Megalyroidea, together referred to as Evaniomorpha) remain elusive (Heraty et al. 2011). The importance of Evaniomorpha for resolving the phylogeny of Hymenoptera is broadly recognized, and exemplars are usually involved in analyses attempting to resolve higher-level phyloge- nies (Shcherbakov 1981; Gibson 1985, 1999; Heraty et al. 1994; Vilhelmsen 1996; 2000a,b, 2003; Schulmeister 2003b). Unfortunately, Ceraphronoidea has been excluded from most of these analyses and in some morphology-based analyses that did include ceraphronoid exemplars, character states were misinterpreted, probably due to their minute size. Numerous observations, however, indicate, that unlike other

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 263

apocritans some Ceraphronoidea share putatively plesiomorphic character states with “Symphyta”, including: (1) presence of a propleural arm-postoccipital muscle, shared with some (Vilhelmsen et al. 2010), (2) presence of a metanoto- metacoxal muscle, shared with most non-apocritan Hymenoptera (Vilhelmsen et al. 2010), (3) presence of a posterior apical spur on the protibia, shared with most non- apocritan Hymenoptera (Rasnitsyn 1988), (4) presence of a median mesoscutal sulcus that corresponds to an internal ridge, shared with most non-apocritan Hymenop­ tera and with basal Apocritan lineages (Megalyroidea, Stephanoidea) (Gibson 1985), (5) presence of a mesonotal and mesofurcal depressor of the mesotrochanter with this muscle inserting distinctly ventrally of the site of insertion of the mesonotal depressor on the mesotrochanter (pers. obs.). This latter state of the mesotrochanteral extracoxal depressor complex was considered by Gibson (1999) to represent the hypothetical ancestor of Apocrita, though he did not observe the ceraphronoid furcal muscle in his studies. The collective phenome of ceraphronoid wasps is not only relatively monotonous (i.e., lacking distinct apomorphies) compared to other microhymenoptera (e.g., Chalcidoidea, ), but the few possibly suitable morphological variables (e.g., body shape, sculpture) are often affected by allometry (Fig. 1). Male genitalia, however, provide a source of discrete and size-independent characters. The utility of male genitalia in species delimitation was recognized relatively early and from the mid

Fig. 1. Bright field images of undescribed species ofCeraphron showing the body size variability and related allometric changes. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

264 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

20th century became the key element in species diagnoses (majority of Paul Dessart’s publications since 1963; Teodorescu 1967; Takada 1973). Male genitalia characters are certainly informative for higher level classification of basal Hymenoptera (Schulmeister 2003b) and have been successfully applied in generic level phylogenetic studies within Apocrita (Rozen 1951; Andena et al. 2007; Owen et al. 2007; Brajković et al. 2010; Žikić et al. 2011). While ceraphronoid male genitalia serve as an important source of species diagnostic characters their phylogenetic signal has never been tested. Here we provide the first phylogenetic analysis of Ceraphronoidea, based exclusively on 48 morphological characters related to the skeletomuscular system of the male terminalia.

Materials and Methods Depositories and locality data of specimens examined in the present study are docu- mented in Appendix C. Resulting anatomical phenotype descriptions were based on observations made dur- ing dissections under stereo (Olympus SZX16 with SDFPL APO 26PF objective, 2306) and compound (Olympus BX51 with LMPLFLN506 objective, 5006) micro- scopes. Wet specimens in a glycerin droplet and critical point dried specimens were both dissected on Blu-Tack (Bostik Findley, Wauwatosa, WI, USA) using Super Personna razor blades (American Safety Razor, Cedar Knolls, NJ, USA) and #2 insect pins. For the better visualization of skeletal structures some specimens were macerated in 20% KOH for one week (Figs 10, 11, 25, 57). Confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and bright field digital imaging were used to visualize anatomical structures. Bright field images were made using an Olympus CX41 compound microscope and DP71 digital camera. SEM micrographs were made using a Hitachi S-3200 Scanning Electron Microscope (wd = 23.5, av = 5kV). Specimens were critical point dried and coated with palladium prior to examination. CLSM images were made on glycerin-stored speci- mens between 1.5 mm thick, 24 × 50 mm cover glasses with a Leica LSM 710 laser scanning confocal microscope using 488 nm laser for excitation of the sample. We collected the autofluorescence of insect anatomical structures between 500 and 700 nm with two channels (500–580; pseudocolor green and 580–700 pseudocolor red) using 106 and 206 Plan Achromat objectives. Volume rendered images and media files were generated by Imaris Bitplane (Bitplane, Zürich, Switzerland) software. Media files, SEM micrographs and bright field images are available from figshare.com (Appendix A). We applied a dissection-based morphological approach for the description of com- plex anatomical systems because section based techniques (micro-CT or histological sections) would have limited the breadth of our taxon sampling. The appropriate visu- alization of very small anatomical structures (the male genitalia are 100–400 μm in most Ceraphronoidea) and the textualization of the highly complex and diverse skel- etal systems were the two most challenging components of our study. Imaging dis- sected specimens with bright field digital imaging techniques results in the loss of the

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 265

ability to see anatomical structures in three dimensions and a very low tissue contrast (i.e., the ability to differentiate muscles and skeletal structures). By applying CLSM we were able to eliminate these complications. The 3D reconstructions of CLSM data have very high tissue specific contrast due to differences in the wavelength of emitted fluorescence light by soft and skeletal structures (Deans et al. 2012) and CLSM volume rendered media files let us to share our observations in 3D with a reader. Cladistic analyses were carried out with TNT 1.1 (Goloboff et al. 2008). Space for 1000 trees was reserved in memory. Traditional searches in equal-weighting analyses and implied-weighting analyses (Goloboff 1993) with the concavity constantk set in turn to 3, 5, 10 and 25 were run to test the stability of clades under different weighting conditions. Analyses were run with collapsing rules set to maximum length = 0. One thousand replications with 1000 trees saved per replication were run, followed by a round of branch breaking on the optimal trees. Jackknife support values were calcu- lated with 10000 pseudoreplications. Morphological terminology follows Schulmeister (2001, 2003b), Snodgrass (1941) and Bohart and Menke (1976). The integumentary part of the external male genitalia, similar to other areas of the insect cuticle, is composed of sclerites (more rigid, usually well tanned areas with thick exocuticle) and conjunctivae (less flexible, usually less tanned areas with thin exocuticle) whose number and spatial distribution change dur- ing the course of evolution. The statements “sclerites fused” and “sclerite subdivided” are widely used to refer to processes during which the usually narrow and elongate conjunctivae separating sclerites disappear or appear during the course of evolution. Unfortunately this phrasing presents two major problems: 1. The phenotypic concepts “fused” and “separated” are relational, based on com- parisons with the phenotypes of other taxa and therefore can be decoded only by comparisons with the phenotypes of other taxa. This predicament limits the accessibility of character descriptions to the non-expert community. 2. If the above mentioned phenotypic concepts are applied in descriptions sup- ported by anatomical ontologies, i.e., semantic phenotype annotations (Deans et al. 2012; Mullins et al. 2012), where concepts are explicitly defined by struc- tural relationships (e.g., by their bordering sclerites), “fused” and “separated” actually refer to anatomical structures that do not exist. For example, the descriptors that “the parossiculus is delimited medially from the other parossiculus and laterally from the gonostipes by conjunctivae” are necessary compo- nents of its differentia (what distinguishes this sclerite from other sclerites). In the statement “the parossiculi are fused laterally with the gonostipites in Ceraphronidae and fused medially with each other and laterally with the gonostipes in most Dendrocerus species” qualities are provided for anatomical structures that lack the necessary condi- tions and therefore do not exist in these wasps. We therefore chose a more objective approach to describe what was observed rather than what is hypothesized— “medioventral conjunctiva of the male genitalia (separating parossiculi) present or absent”. We have also mapped all anatomical terms used to anatomical concepts in the Hymenoptera Anatomy Ontology (Appendix B).

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

266 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Character list The scorings of the characters defined here are listed in a character matrix in Appendix D. This matrix is available in .tnt format at http://dx.doi.org/10.684/mg. figshare.790672 1. Cercal plate: 0, present (cp: Fig. 2B); 1, absent (Fig. 18).

Fig. 2. SEM micrographs and CLSM volume rendered images of the apical abdominal sclerites of Evaniomorpha. A, Megaspilus armatus, T9 and T10, dorsal view; B, Orthogonalys pulchella, S9, ventral view; C, Ceraphron sp. 5, ventral view (see also http://dx.doi.org/10.6084/m9.figshare.100557); D, Trassedia luapi, lateral view (see also http://dx.doi.org/10.6084/m9.figshare.95699). This figure is pub- lished in colour in the online edition of this journal, which can be accessed via http://booksandjournals .brillonline.com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 267

A cercal plate is present in Xyela, Orthogonalys, Pristaulacus, Megalyroidea and Megischus. The cercus is located on a posterior lobe of T9 in Gasteruptidae (crc: Fig. 18) and Ceraphronoidea (Fig. 2A) and no cercus is present in . This character is modified after character 353 of Schulmeister (2003b). 2. T10: 0, present (Fig. 2A); 1, absent (Figs 3B, 18) T10 is surrounded laterally by the posteriorly extended lateral part of the T9, which bears the cerci and is connected to it via a pair of rodlike T9-T10 muscles (Figs 2C, D). T10 is present in Xyela among the outgroup taxa. The relative position of T10 in Ceraphronoidea is similar to that of Orussus (T10: fig. 15D in Schulmeister 2003b; XT: plate IV in Snodgrass 1941). Unfortunately we were not able to study the muscu- lature of the male terminalia of Orussus and hence can only suggest that T10 of Ceraphronoidea is structurally equivalent to the abdominal tergum 10 of Orussus. This character is modified after character 352 of Schulmeister (2003b). 3. Anterior margin shape of S9: 0, convex (Figs 2B and 3A); 1, concave (Fig. 3C,D) The anterior margin of S9 is concave in Ceraphronidae and Trassedia and convex in all other taxa examined. The shape of the proximal margin of S9 corresponds to the site of origin of the mediolateral S9-cupulal muscle. The anterior margin is convex if the muscle arises medially from the sternite and concave if it arises from the anterolateral edge. In most taxa, the site of origin of the muscle corresponds with a distinct spiculum (Figs 2B and 3A), but the spiculum is absent from Masner (Fig. 4A). This character is modified after character 347 from Schulmeister (2003b). 4. Row of short setae delimiting apical, cercus bearing area of abdominal tergum 9: 0, absent (Figs 2A, 3B and 18); 1, present (rss: Figs 2C,D and 4C) In Megaspilidae the cercus is uniformly setose whereas in Ceraphronidae a row of shorter setae delimits a posterior area from which 1 or 2 longer setae arise. 5. Proximal lobe of vas deferens: 0, absent (Fig. 5B); 1, present (pvd: Fig. 5A) A proximal lobe emptying into the lumen of the vas deferens is present in most Ceraphronoidea and numerous outgroup taxa. Based on its shape and location, the lobe might be an accessory gland. In Megalyra, Pseudofoenus, Megaspilus and Conostigmus sp. 23 the lobe is absent. The distal part of the vas deferens, just proximally of the vesicula seminalis, is enlarged relative to the more distal and more proximal areas in Megaspilus and Conostigmus sp. 23 (Fig. 5B). This enlarged area of the duct might also have an accessory gland function. Male accessory gland structures are great sources of species diagnostic and phylogenetic characters in some Hymenoptera (Schulmeister 2003b; Ferreira et al. 2004; Mikheyev 2004). The shape of the vesicula seminalis and the putative accessory glands is variable in different ceraphronoid taxa, and might be useful for species delimitation or even for phylogenetic analyses. Unfortunately, how- ever, the internal male genitalia is often damaged during the dehydration and dissec- tion of the , and characters other than the presence of a proximal lobe, cannot be accurately scored in most taxa.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

268 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Fig. 3. CLSM volume rendered images and bright field images of the male terminalia of ceraphronoidea. A, Megaspilus armatus, ventrolateral view (see also http://dx.doi.org/10.6084/m9.figshare.95706); B, Megaspilus armatus, dorsolateral view (see also http://dx.doi.org/10.6084/m9.figshare.95704); C, Ceraphron testaceipes, ventral view; D, Ceraphron testaceipes, lateral view. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline .com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 269

Fig. 4. CLSM volume rendered images and SEM micrographs of the male and female terminalia of Ceraphronidae. A, Masner lubomirus, S9, dorsal view (see also http://dx.doi.org/10.6084/m9 .figshare.95701); B, Trassedia sp., male terminalia, ventral view (see also http://dx.doi.org/10.6084/m9 .figshare.95768); C,Cyoceraphron sp., female terminalia, lateral view; D, Masner lubomirus, male genitalia, ventral view (see also http://dx.doi.org/10.6084/m9.figshare.95683). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/ content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

270 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Fig. 5. Brightfield images and CLSM volume rendered images of the male genitalia in Evaniomorpha. A, Internal male genitalia of Conostigmus sp., ventral view; B, Male genitalia of Conostigmus sp. 23, ventral view; C, Male genitalia of Pseudofoenus sp., dorsal view (see also http://dx.doi.org/10.6084/m9 .figshare.95694); D, Male genitalia of Pseudofoenus sp., ventrolateral view (see also http://dx.doi .org/10.6084/m9.figshare.95705); on Figures C and D the left part of the gonostyle/volsella complex is removed. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 271

6. Cupula continuity: 0, continuous dorsally (Fig. 7A); 1, not continuous dorsally (c: Fig. 5C) The cupula is a continuous ring in most taxa examined but is dorsally incomplete in Pseudofoenus and Gasteruption. In Pseudofoenus, the cupula ventrally is also interrupted by a conjunctiva and thus is composed of two crescent-shaped sclerites located ventro- laterally on the male genitalia. The presence of an incomplete cupula might be related to the opening of the male genitalia (see character 48), because unlike in other taxa, where the cupula is relatively rigid, in it is bent medially when the male genitalia is opened. This character is modified after character 299 of Schulmeister (2003b). 7. Shape of ventral part of cupula: 0, Cupula ventromedially extended more proximally than dorsomedially (c: Figs 3C,D, 4D, 7B and 8B); 1, Cupula ventromedially not extended more proximally than dorsomedially (c: Fig. 6A,C) The ventral part of the cupula is strongly extended proximomedially in Ceraphron, Cyoceraphron, Trassedia and Masner, which results in the most proximal point of the ventral part of the cupula being distinctly more proximal than the most proximal point of the dorsal part of the cupula. 8. Proximodorsal notch of cupula: 0, present (pvn: Figs 8C and 15C); 1, absent (Figs 6A, 7A and 9A) The proximodorsal notch separating the site of origins of the dorsomedial cupulo- gonostyle/volsella complex muscles is present in numerous Conostigmus species and in Trichosteresis. Although the proximodorsal margin is concave medially in numerous other taxa (e.g., Megalyra and Orthogonalys), the medial concavity never separates the sites of origin of the dorsomedial cupulo-gonostyle/volsella complex muscles, which extend medially along the proximal margin of the concave area. 9. Dorsal submedian impression of cupula: 0, present (dsi: Figs 7A and 8A,C); 1, absent (Figs 6A and 9A) The dorsal submedian impression is present in most Ceraphronidae. The impression might correspond to the presence of the dorsolateral cupulo-gonostyle/volsella com- plex muscle. 10. Gonostyle/volsella complex dorsal continuity: 0, continuous, dorsomedian con- junctiva of gonostyle/volsella complex incomplete, not reaching proximal and distal margins of the complex (gvc: Fig. 7A); 1, discontinuous, dorsomedian conjunctiva of gonostyle/volsella complex complete, extending between proximal and distal margins of the complex (gvc: Fig. 9A) The gonostyle is discontinuous along the dorsomedian conjunctiva in most outgroup taxa and is continuous proximodorsally in Ceraphronoidea except in Dendrocerus wol- lastoni where it is continuous distodorsally (Fig. 16A). The character is not applicable in Evanioidea where the aedeagus is continuous proximodorsally with the gonostyle (Fig. 5C). This character is modified after character 310 from Schulmeister (2003b).

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

272 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Fig. 6. CLSM volume rendered images and SEM micrograph showing the male genitalia of Evaniomorpha. A, Dendrocerus ramicornis, dorsal view (see also http://dx.doi.org/10.6084/m9.figshare.95691); B,Hyptia sp., ventral view; C, Dendrocerus ramicornis, ventral view (see also http://dx.doi.org/10.6084/m9 .figshare.95703). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 273

Fig. 7. CLSM volume rendered images and SEM micrograph showing the male genitalia of Ceraphronidae. A, Ceraphron testaceipes, dorsal view; B, Trassedia sp., ventral view (see also http://dx.doi.org/10.6084/ m9.figshare.95686); C,Aphanogmus sp. 3, dorsal view (see also http://dx.doi.org/10.6084/m9 .figshare.95687); D, Aphanogmus sp. 3, ventral view (see also http://dx.doi.org/10.6084/m9 .figshare.95682). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

274 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Fig. 8. CLSM volume rendered images showing the male genitalia of Ceraphronoidae. A, Ceraphron sp. 8, dorsal view (see also http://dx.doi.org/10.6084/m9.figshare.95690); B, Ceraphron sp. 8, ventral view (see also http://dx.doi.org/10.6084/m9.figshare.95689); C, Conostigmus sp. 22, dorsal view (see also http://dx.doi.org/10.6084/m9.figshare.95685); D, Conostigmus sp. 22, ventral view (see also http://dx .doi.org/10.6084/m9.figshare.95707). This figure is published in colour in the online edition of this jour- nal, which can be accessed via http://booksandjournals.brillonline.com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 275

Fig. 9. CLSM volume rendered images and SEM micrograph showing the male genitalia of Evaniomorpha. A, Orthogonalys pulchella, dorsal view (see also http://dx.doi.org/10.6084/m9.figshare.95769); B, Orthogonalys pulchella, ventral view (see also http://dx.doi.org/10.6084/m9.figshare.95770); C, Trichosteresis glabra, dorsal view; D, Trichosteresis glabra, ventral view (see also http://dx.doi.org/10.6084/ m9.figshare.95771). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

276 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

11. Shape of proximoventral margin of gonostyle/volsella complex: 0, straight, not pointed proximally (Figs 6C, 8D and 9D); 1, convex, pointed proximally (Figs 4D, 7B, 8B, 10B,D and 11C) The proximoventral margin of the gonostyle/volsella complex is pointed proximally in Lagynodinae and Ceraphronidae and in numerous outgroup taxa, whereas in other ceraphronoid taxa and in Megischus and Pseudofoenus it is straight, not pointed proximally. This character is modified after character 303 from Schulmeister (2003b). 12. Apex gonostipitis: 0, present (apg: Figs 11C and 12B); 1, absent (Figs 4D and 6C) The apex gonostipitis is present in outgroup taxa and in Lagynodinae. The apex gon- ostipitis is present only in those taxa where the parossiculus is present (character 13) and the gonostyle/volsella complex is continuous medially (character 17). 13. Parossiculus (parossiculus and gonostipes fusion): 0, present (parossiculus sepa- rated from gonostipes; pss: Figs 6B and 8D); 1, absent (parossiculus fused with gon- ostipes; Figs 4D and 6C) The parossiculus is absent (fused with the gonostipes) from Megischus, Pseudofoenus and numerous Ceraphronoidea. The site of “fusion” between the parossiculus and the gonostipes might be marked by the submedian notch on the distoventral margin of gonostyle/volsella complex (see character 21). This character is modified after character 328 of Schulmeister (2003b). 14. Parossiculal setae number: 0, 1 (prs: Fig. 4D); 1, 2 (prs: Figs 6C and 9D); 2, more than 2 (prs: Fig. 9D) This character is not applicable if the parossiculus is evenly covered with dense setae (Megalyroidea). The number of setae and the presence of corresponding distal projec- tions of the parossiculus vary within in Ceraphronoidea. Only one parossiculal seta is present in Ceraphronidae, whereas in Megaspilidae the number of setae is usually 2. 15. Submedian conjunctiva on the distoventral margin of gonostyle/volsella complex: 0, absent (Figs 4D, 7B and 8B); 1, present (sdv: Figs: 6C, 13A and 5D) The submedian conjunctiva on the distoventral margin of the gonostyle/volsella com- plex separates a median area from the ventral part of the complex, which serves as the site of origin of the medial gonostyle/volsella complex-volsella muscle. The median area delimited laterally by the conjunctiva might be homologous with the parossiculus based of the site of origin of the muscle and the conjunctiva might mark the “site of fusion” of the parossiculus with the gonostipes. The conjunctiva is present in Pseudofoenus, Megischus and in most Megaspilidae. There is a submedian notch that laterally separates the area that contains the parossiculal setae and the gonostyle/vol- sella complex-gonossiculus articulation in Ceraphronidae (pn: Fig. 4D). There is no conjunctiva in the notch and it does not separate the site of origin of the medial gono- style/volsella complex-volsella muscle, and thus might not mark the “site of fusion” of the parossiculus and volsella, but rather evolved for some other reason. In Pseudofoenus, a second, proximoventral conjunctiva also delimits the median area from the proximal region of the gonostyle/volsella complex (Fig. 5D).

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

PG3298 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 277

Uncorrected Proofs

Fig. 10. CLSM volume rendered images showing the male genitalia of Ceraphronoidea. A, Aetholagynodes stupendus, dorsal view (see also http://dx.doi.org/10.6084/m9.figshare.95709); B,Aetholagynodes stupen- dus, ventral view (see also http://dx.doi.org/10.6084/m9.figshare.95678); C, Aphanogmus sp. 14, dorsal view (see also http://dx.doi.org/10.6084/m9.figshare.95677); D, Aphanogmus sp. 10, ventral view (see also http://dx.doi.org/10.6084/m9.figshare.95676). This figure is published in colour in the online edi- tion of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

PG3298 278 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Fig. 11. CLSM volume rendered images and SEM micrographs showing the male genitalia of Hymenoptera. A, Xyela sp., dorsal view (see also http://dx.doi.org/10.6084/m9.figshare.95700); B, Xyela sp., ventral view (see also http://dx.doi.org/10.6084/m9.figshare.95695); C,Lagynodes crassicornis, ventral view; D, Lagynodes crassicornis, dorsolateral view. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 279

16. Medioventral conjunctiva of the gonostyle/volsella complex (fusion of parossiculi): 0, absent (parossiculi fused; Figs 6C and 13A): 1, present (parossiculi independent or fused proximally; mvc: Figs 8D and 9D) The medioventral conjunctiva of the gonostyle/volsella complex is present in outgroup taxa, in Ceraphronidae, and in numerous Megaspilidae. The conjunctiva is absent from most Dendrocerus and three Conostigmus species. This character is modified after character 332 of Schulmeister (2003b). 17. Gonostyle/volsella complex continuity proximoventrally: 0, continuous proxi- moventrally, medioventral conjunctiva extending to proximal margin of gonostyle/ volsella complex (Figs 6C, 13A and 16B,C); 1, discontinuous, medioventral conjunc- tiva not extending to proximal margin of gonostyle/volsella complex (Figs 4D, 6B, 8D, 10B, 11B,C and 12B) The gonostyle/volsella complex is continuous proximoventrally in all Megaspilinae and discontinuous in other taxa examined. In those megaspilid taxa where the parossiculus is present, the complex is continuous along a narrow area ventrally of the complex. This area might be homologous with the “fused” apices gonostipitis based on the site of origin of the distoventral gonostyle/volsella complex-penisvalva muscle. 18. Orientation of medioventral area of gonostyle/volsella complex: 0, vertical (Figs 6B, 13C and 14B); 1, horizontal (Figs 4D, 6C, 7B,D, 8B,D and 9B) The medioventral area of the gonostyle/volsella complex is inflected vertically (oriented distodorsally) along the medioventral conjunctiva in some Aphanogmus species and in Gnathoceraphron. The vertical orientation of the medioventral area of the gonoforceps is most probably related to the movement of the ventrolaterally oriented gonossiculus (see character 21). This character is modified after character 329 of Schulmeister (2003b). 19. Cuspis: 0, present (cus: Figs 5D, 6B, 11B, 13C); 1, absent (Figs 4D, 6C, 7B,D, 8B) The volsella is generally known to have a clasper function in Hymenoptera (Schulmeister 2003b; Snodgrass 1941; Allard et al. 2002). The volsellal “forceps” is composed of the cuspis, the distomedial projection of the parossiculus, and the usually elongated gonos- siculus. In Ceraphronoidea (and numerous other prototrupomorph taxa; personal observation), the cuspis is absent and thus the volsella has seemingly lost its clasper function. A distolateral projection that corresponds with the parossiculal setae is pre- sent in some Ceraphronoidea, but it seemingly never acts together with the gonossicu- lus as forceps. This character is not applicable in Megalyroidea, where the gonossiculus is absent. A lateral projection located distolaterally on the volsella in Dinapsis (Figs 12A,B,D) might be homologous with the cuspis; however, because the gonos- siculus is absent, this projection certainly does not have a “forceps” function. 20. Distivolsellar apodeme: 0, absent; 1, present (dva: Fig. 14D) The distivolsellar apodeme serves as the site of insertion of the lateral and median gonostyle/volsella complex-volsellal muscles. The apodeme is present in those taxa where the muscle inserts on the parossiculus, e.g., in Orthogonalys, Xyela and Megischus.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

280 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Fig. 12. CLSM volume rendered images showing the male genitalia of Dinapsis nr. oculohirta. A, median view (see also http://dx.doi.org/10.6084/m9.figshare.95688); B, ventral view (see also http://dx.doi .org/10.6084/m9.figshare.95679); C, lateral view (see also http://dx.doi.org/10.6084/m9.figshare.95696); D, dorsal view (see also http://dx.doi.org/10.6084/m9.figshare.95674). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/ content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 281

21. Position of gonossiculus vs. distal region of aedeagus: 0, gonossiculus parallel with and adjacent to distal aedeagus (gs: Figs 3A,B and 6A,C); 1, gonossiculus oriented dif- ferently and not adjacent to distal aedeagus (gs: Figs 13D and 14B) Because the cuspis is absent from Ceraphronoidea (see character 26), the volsella has lost the forceps function present in most basal Hymenoptera and the majority of basal Apocritan taxa (Snodgrass 1941 Schulmeister 2003b; see also character 19). The cer- aphronoid gonossiculus is usually flattened, and lays parallel with and adjacent to the distal aedeagus in the majority of ceraphronoid taxa. In these taxa, the gonossiculo- gonostyle articulation is located more ventrally than the site of origin of the gonostyle/ volsella complex-volsella muscles, which inserts on the dorsalmost digital spine (ddgtt: Fig. 15C). The sclerite presumably pivots dorsomedially when the muscles are con- tracted. Because the gonossiculus is parallel and adjacent to the distal end of the aedea- gus, it might press the latter to the distodorsal margin of the gonostyle/volsella complex. In numerous taxa, the apical part of the gonossiculus hooks on the distodorsal margin of the gonostyle/volsella complex (gss: Fig. 6A) or on the median margin of the harpe (Fig. 8A), which possibly stabilizes the dorsally slanted position of the aedeagus. Notches accommodating the gonossiculus on these structures are quite often present in different ceraphronoid taxa (ddn: Fig. 11D, pnh: Fig. 43). In numerous taxa, the gonossiculi surround the distal end of the aedeagus in the dorsally slanted position and might also be involved in an opening/closure mechanism of the phallotrema (gss: Figs 3B, 4D, 6A,C, 7A and 8A). The penisvalvo-gonossiculal muscle inserts ventrome- dially on the gonossiculus, and hence most probably is antagonistic of the gonostyle/ volsella complex-volsella muscles and pivots the sclerite ventrolaterally. In those Ceraphronoidea species where the medioventral area of the gonoforceps is vertical (numerous Aphanogmus species and Gnathoceraphron; see character 18), the gonossiculus is sickle shaped, does not lay parallel and is not adjacent to the distal aedeagus. The gonostyle/volsella complex-gonossiculus articulation is more dorsal than the site of origin of the gonostyle/volsella complex-volsella muscles and the sclerite therefore most likely pivots lateroventrally when the muscles are contracted. Beside its importance for the attachment of the male specimen to the female during copulation, the volsella might be involved also in the infliction of copulatory wounds in Hymenoptera (Kamimura 2008). The above described, sickle-shaped (only one digital spine present) and ventrally oriented gonossiculus might be involved in damaging the female copulatory tract and preventing her from remating with subsequent males. Although numerous proctotrupomorph taxa share the presence of digital spines (dgt, ddgt: 4D, 7A, 15C) on the flattened gonossiculus with Ceraphronoidea, the teeth are structurally different. In Platygastroidea, Chalcidoidea, and the digital spines are spurs that usually are more heavily sclerotised than the rest of the gonossiculus, whereas in Ceraphronoidea they are spines that are similar in sclerotiza- tion as the proximal gonossiculal areas. 22. Curvature of penisvalva proximal region: 0, straight; 1, curved ventrally (plv: Figs 6A and 13A); 2, curved dorsally (plv: Fig. 4D) The proximal part of the penisvalva is curved ventrally in most Ceraphronoidea, but curved dorsally in Ceraphron, Cyoceraphron, Masner and Trassedia, as well as in most

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

282 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Fig. 13. CLSM volume rendered images and SEM micrographs showing the male genitalia of Evaniomorpha. A, Dendrocerus koyamai, ventral view (see also http://dx.doi.org/10.6084/m9 .figshare.95708); B, Conostigmus abdominalis, ventral view (see also http://dx.doi.org/10.6084/m9 .figshare.95692); C, Hyptia sp., ventral view (genitalia is opened along its median midline exposing inter- nal components); D, Aphanogmus fasciipennis, median view (see also http://dx.doi.org/10.6084/m9 .figshare.95681). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 283

outgroup taxa. The proximal end of the penisvalva serves as the site of origin of the penisvalvo-gonossiculal muscle in Ceraphronoidea, and consequently the direction of the curvature might be related to the movement of the gonossiculus. 23. Dorsomedian apodeme of the aedeagus: 0, absent (Fig. 4D, 6A, 13A); 1, present (dae in Figs 5C, 13C) The apodeme is present in Megalyroidea, Evanioidea, Megischus and Orthogonalys, and is absent from Xyela and Ceraphronoidea. 24. Continuity of dorsomedian apodeme of the aedeagus and gonostyle: 0, continuous (dae in Fig. 5C); 1, not continuous The dorsomedian apodeme of the aedeagus is continuous with the proximodorsal mar- gin part of the gonostyle in Evanioidea and in Orthogonalys while independent in Megischus and Megalyroidea. 25. Dorsal apodeme of the penisvalva: 0, absent (Fig. 15A); 1, present (dap: Fig. 14C) The dorsal apodeme of the penisvalva is present in some Megaspilidae and numerous Aphanogmus species. The distodorsal gonostyle/volsella complex-penisvalval muscle inserts on the apex of the apodeme. Because the site of origin of the penisvalvo- gonossiculal muscle extends dorsally along the apodeme, the presence of the apodeme might be correlated to the moving mechanism of the gonossiculus. 26. Ventromedian apodeme of the aedeagus: 0, present (vaa: Fig. 15A); 1, absent (Fig. 14C) The ventromedian apodeme of the aedeagus is present in someAphanogmus species and in Gasteruption. The cupulo-gonostyle/volsella complex muscles might be involved in male genitalia opening (see character 48). However, these muscles are absent from Gasteruptiidae and opening of the male genitalia might be facilitated by the ventrally pivoting aedeagus (Fig. 18) during the contraction of the ventral gonostyle/volsella complex-penisvalval muscles. The ventromedian apodeme is seemingly involved in this procedure in Gasteruption. The function of the apodeme is questionable in Aphanogmus, but certainly has evolved for a different reason because Ceraphronoidea are not able to open/close the male genitalia. Another smaller rod like apodeme is present in numer- ous Ceraphronoidea, which arises distoventrally from the aedeagus and is continuous with the ventromedian conjunctiva of the gonostyle/volsella complex (vra: Fig. 14C). This rod like apodeme is variously sclerotized and seemingly often broken off from the aedeagus during dissection; therefore, the presence of this apodeme was not included in the present analysis. This rod-like apodeme might be homologous with the median sclerotized style present in and Siricidae (Schulmeister 2003b). 27. Phallotrema location: 0, proximoventrally on aedeagus (Figs 6B and 13C); 1, dis- todorsally on aedeagus (Figs 3B and 16C) The phallotrema is located ventrally in all outgroup taxa and distodorsally in Ceraphronoidea. The distal end of the aedeagus surrounds the phallotrema in Megaspilidae and in numerous Aphanogmus species, whereas the phallotrema is more distal than the dorsal end of the sclerotized part of the aedeagus in Ceraphron, Masner

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

284 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Fig. 14. CLSM volume rendered images and SEM micrographs showing the male genitalia of Evaniomorpha. A, Aphanogmus sp. 13, ventral view; B, Aphanomgus sp. 13, distal view; C, Aphanogmus sp. 20, aedeagus, median view (see also http://dx.doi.org/10.6084/m9.figshare.95697); D,Orthogonalys pul- chella, median view (see also http://dx.doi.org/10.6084/m9.figshare.95772). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline .com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 285

Fig. 15. CLSM volume rendered images and brightfield image showing the male genitalia and S9 of Ceraphronoidea. A, Aphanogmus sp. 27, aedeagus, median view (see also http://dx.doi.org/10.6084/m9 .figshare.95675); B, Lagynodes crassicornis, S9, dorsal view; C, Conostigmus sp. 31, male genitalia, dorsal view (see also http://dx.doi.org/10.6084/m9.figshare.95680); D, Conostigmus sp. 31, male genitalia, ven- tral view (see also http://dx.doi.org/10.6084/m9.figshare.95684). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/ content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

286 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Fig. 16. CLSM volume rendered images showing the male genitalia of Megaspilidae. A, Dendrocerus wol- lastoni, dorsal view (see also http://dx.doi.org/10.6084/m9.figshare.95698); B, Dendrocerus rectangularis, ventral view (see also http://dx.doi.org/10.6084/m9.figshare.95773); C, Dendrocerus floridanus, ventral view (see also http://dx.doi.org/10.6084/m9.figshare.95673); D,Conostigmus crassicornis, median view (see also http://dx.doi.org/10.6084/m9.figshare.95775). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/ content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 287

and Trassedia. The gonossiculi therefore are pressed to the aedeagus in the former taxa and to the phallotrema in the latter group (see character 20). This character is modified after character 324 of Schulmeister (2003b). 28. Harpe: 0, absent (Figs 4D, 5C, 9C,D, 10A,B, 12A–D, 16A and 18): 1, present (hrp: Figs 3A,B, 4B,D and 6A) A harpe is present in a majority of Ceraphronoidea and in Trigonaloidea among the apocritan taxa examined. Schulmeister (2003b) considered the absence of a harpe as one of the synapomorphies of Vespina and concluded that the distally delimited scler- ite on the gonostyle of some taxa, including Trigonaloidea, is most probably not homologous with the harpe of basal Hymenoptera due to the lack of muscle attach- ment sites. The distal sclerite of the gonostyle/volsella complex is, however, connected to the complex via muscles in both Ceraphronoidea and Trigonaloidea (Fig. 9A,B). The harpe is absent from Trichosteresis glabra (Fig. 9C,D), Dendrocerus wollastoni (Fig. 16A) and Aetholagynodes stupendus (Fig. 10A,B) among the examined ceraphro- noid taxa. This character is modified after character 287 from Schulmeister (2003b). 29. Proximomedial apodeme of the harpe: 0, present (pah: Figs 13A and 17B–D); 1, absent (Fig. 4D) The proximomedial apodeme is present in Megaspilidae andTrassedia and absent from Ceraphronidae (see character 47). 30. Distolateral projection of harpe: 0, present (dph: Fig. 10D); 1, absent (Figs 7A,C, 8A and 10C) The distolateral projection is present on the dorsoventrally flattened harpe of Aphanogmus sp. 10–12 and in A. dyctinna. 31. T9-T10 muscle: 0, present (T9-T10: Fig. 2C,D); 1, absent The T9-T10 muscle connects abdominal tergum 9 with abdominal tergum 10 in Ceraphronoidea and in Xyela. 32. Mediolateral S9-cupulal muscle site of origin: 0, medially from anterior margin of S9 (S9-cml: Figs 4A and 15B); 1, laterally from anterolateral corner of S9 (S9-cml: Figs 3C,D and 4B) The mediolateral S9-cupulal muscle arises medially from the anterior margin of S9 in all outgroup taxa, Megaspilidae and Masner, and from the anterolateral corner of S9 in other Ceraphronidae except Masner. Protraction and retraction of the male genitalia occurs very often in Hymenoptera and almost certainly is the reason for the protection of the anatomical system. Based on their site of attachment, the mediolateral S9-cupulal muscles protract, whereas the lateral S9-cupulal muscles retract the male genitalia. In Megaspilidae, similarly to numerous other Hymenoptera (Snodgrass 1941; Schul­ meister 2001, 2003b), the mediolateral S9-cupulal muscles arise medially from the anterior margin of S9, whereas the lateral S9-cupulal muscles arise laterally from the posterior region of S9. The posterior margin of S9 is usually strongly projected anteri- orly into a median projection, the spiculum, increasing the distance between the sites of origin of the S9-cupulal muscles and allowing a longer anteroposterior movement of

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

288 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Fig. 17. CLSM volume rendered images showing the male genitalia of Megaspilidae. A, Conostigmus triangularis, ventral view (see also http://dx.doi.org/10.6084/m9.figshare.95672); B, Conostigmus triangu- laris, dorsal view (see also http://dx.doi.org/10.6084/m9.figshare.95671); C, Conostigmus crassicornis, harpe, median view (see also http://dx.doi.org/10.6084/m9.figshare.95776); D, Conostigmus crassicornis, harpe, lateral view (see also http://dx.doi.org/10.6084/m9.figshare.95777). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline. com/content/1876312x.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 289

the male genitalia. The anterior margin of S9 is concave in all Ceraphronidae except Masner and the mediolateral muscle arises from the anterolateral edge of the sternum, which projects slightly anteriorly. Often in this group, the proximoventral margin of the cupula is projected proximomedially. Projections that correspond to sites of origins of muscles on two sclerites that move antagonistically relative to each other because of action of the muscles, increase the distance between muscle attachment points and, therefore, might play a crucial role in complete movement. The key element to protract and retract the male genitalia is the anteromedially projected proximal margin in Megaspilidae (and in numerous other Hymenoptera), and the anteromedially pro- jected cupula in numerous Ceraphronidae. Although the two S9-cupulal muscles gov- ern the movement of the male genitalia relative to the metasoma, it is most probable that other mechanisms are also involved in at least the retraction of the male genitalia in Ceraphronoidea. In numerous museum specimens the male genitalia is distinctly more retracted than what might be possible if only the retractor muscle is involved in the retraction (Fig. 3C,D). Another possibility is that change of the hydrostatic pres- sure in the metasoma affects male genitalia retracting forces. Austin (1983) hypothe- sized that the change of hydrostatic pressure plays a crucial role in movement of the ovipositor system in and out of the metasoma in Scelionidae (Hymenoptera: Platygastroidea). The Ceraphronoidea metasoma has the main requirement for the hydrostatic pressure hypothesis of Austin because, similarly to Platygastroidea, it lacks spiracles (Vera & Kumar 1972, pers. obs.). 33. Site of insertion of lateral S9-cupulal muscle: 0, medially on the ventral part of cupula (S9-cl: Figs 3C,D and 4B); 1, submedially on the ventral part of cupula (S9-cl: Figs 6B and 9B) In Evanioidea, Orthogonalys and Megalyra the muscle inserts submedially on the ven- tral part of the cupula, whereas in Dinapsis, Xyela, Megischus and Ceraphronoidea it inserts medially on the proximal margin of the cupula. The cupulal site of attachment of the muscle sometimes corresponds to the gonocondyle. This character is modified after character 267 of Schulmeister (2003b). 34. Dorsolateral cupulo-gonostyle/volsella complex muscle: 0, absent (Figs 6A and 15C,D); 1, present (c-gsdl: Figs 7C, 8A, 12D and 14D) Two cupulo-gonostyle/volsella complex muscles exist in Megaspilidae, whereas three exist in Ceraphronidae. The more dorsally located muscle is structurally equivalent with the dorsomedian cupulo-gonostyle/volsella complex muscle of non-apocritan Hymenoptera (muscle g of Schulmeister 2001) based on the dorsomedian position of the insertion site of the muscle on the gonostyle/volsella complex. The more laterally located muscle of Megaspilidae is structurally equivalent with the ventrolateral cupulo- gonostyle/volsella complex muscle of basal Hymenoptera (muscle e Schulmeister 2001) based on its site of insertion medially on the proximoventral margin of the gonostyle/volsella complex (on apex gonostipitis if the structure is present). In Ceraphronidae, three muscles originate from the cupula and insert on the proximal margin of the gonostyle/volsella complex. The dorsal muscle is equivalent with the dorsomedial cupulo-gonostyle/volsella complex, whereas the lateroventral muscle is

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

290 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 equivalent with the ventrolateral cupulo-gonostyle/volsella complex muscle of basal Hymenoptera. The third muscle arises just laterally of the dorsomedian cupulo- gonostyle/volsella complex muscle, and therefore might be homologous with the dor- solateral cupulo-gonostyle/volsella complex muscle of basal Hymenoptera (muscle f in Schulmeister 2001). This muscle is absent fromPseudofoenus and Gasteruption where the cupula is discontinuous dorsally. This character is modified after characters 273 of Schulmeister (2003b). 35. Ventromedial cupulo-gonostyle/volsella complex muscle: 0, absent (Figs 6C, 8B, 10B, 12B, 13B and 15D); 1, present (cgs-vl: Fig. 11B) This muscle is present in Megischus and Xyela and absent from other taxa examined. This character is modified after character 271 of Schulmeister (2003b). 36. Lateral gonostyle/volsella complex-penisvalval muscle: 0, absent (Figs 6A,C, 7BC, 8D, 9D, 10B,D and 15C,D); 1, present (gs-pvl: Figs 5C, 11A and 12C) The lateral gonostyle-penisvalval muscle is absent from Ceraphronoidea and present in most outgroup taxa. This character is modified after character 279 of Schulmeister (2003b). 37. Site of origin of gonostyle/volsella complex-volsellal muscles: 0, not extending distodorsally on gonostyle/volsella complex (Figs 10A, 11A and 15C, gs-vl: 8C, 15C and 17B); 1, extending distodorsally on gonostyle/volsella complex (gs-vl: Figs 6A, 7C, 8A and 16A) This muscle arises proximally from the gonostyle/volsella complex in mostConostigmus , Megaspilus and Lagynodinae, and distodorsally on the complex in Ceraphronidae, Trassedia and Dendrocerus. 38. Penisvalvo-gonossiculal muscle: 0, absent; 1, present (pv-gss: 6A, 7C, 8C, 13D, 14C and 15A,C,D) This muscle originates proximally from the penisvalva and inserts medially on the gonossiculus, and shares the site of origin with the gonostyle/volsella complex- gonossiculus muscle if the latter is present. Based on its site of origin, the muscle could be homologous with the penisvalvo-phallotremal muscles (muscles nb, nd in Schulmeister 2003b), which are involved in the opening/closure of the ejaculatory duct. In Ceraphronoidea, the phallotrema is located distodorsally on the aedeagus and is possibly opened/closed by the gonossiculus, at least in taxa with the gonossiculus adjacent with the distal aedeagus (see character 29). The penisvalvo-phallotremal mus- cles are present in Orthogonalys and Xyela, absent from Megalyroidea, and was not observed in other outgroup taxa. The presence of the penisvalvo-gonossiculal muscle is a possible synapomorphy for Ceraphronoidea. This character is modified after character 281 of Schulmeister (2003b). 39. Gonostyle/volsella complex-parossiculal muscle: 0, present (gs-ps: Figs 9A, 11B and 12A–D); 1, absent This muscle is present in those outgroup taxa where the parossiculus is present (i.e., Xyela, Evaniidae, Pristaulacus, Megalyroidea and Orthogonalys), but absent from other taxa examined. This character is modified after character 283 of Schulmeister (2003b). Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 291

40. Site of insertion of gonostyle/volsella complex-volsellal muscles: 0, distivolsellar apodeme (proximal gonostyle/volsella complex-parossiculal muscle present; dva: Fig. 14D); 1, gonossiculus (gonostyle/volsella complex-gonossiculal muscle; gss: Figs 8C and 15C) This muscle inserts exclusively on the gonossiculus and shares a common tendon in Ceraphronoidea and Evanioidea. In Xyela, Orthogonalys and Megischus, the muscle inserts on the distivolsellar apodeme (dva: Fig. 14D). This character is not applicable for Megalyroidea, in which the gonossiculus is absent and the muscle inserts on the single sclerite (Fig. 12B) representing the volsella. This character is modified after character 284 of Schulmeister (2003b). 41. Number of gonostyle/volsella complex-volsella muscles: 0, 2 (imvl, gs-vl: Figs 5D, 6C, 9B, 11B, 13B, 15D and 16B); 1, 1 (gs-vl: Figs 7D, 8B and 10D) Two muscle bands, the lateral and median gonostyle/volsella complex-volsella muscles, are present in most taxa examined. One band arises ventrolaterally from the complex and one ventromedially from the complex (from the parossiculus if it is separated from the gonostipes or from the area that is separated by the submedian conjunctiva on the distoventral margin of gonostyle/volsella complex (see character 15). Only one band is present in Ceraphronidae and Trassedia. This character is not applicable in Megalyroidea, in which the gonossiculus is absent. 42. Gonostyle/volsella complex-gonossiculus muscle: 0, absent (Figs 7B,D, 8B,D, 9D, 10B,D, 15D and 17A); 1, present (imvm: Figs 5D, 6C, 11B and 16B,C) This muscle is present in Xyela, Evanioidea, Orthogonalys and in some Dendrocerus spe- cies, though it was absent or not observed (questionable) from other taxa examined. The muscle arises medially from along the proximal margin of the gonostyle/volsella complex in Dendrocerus and shares a common site of insertion on the gonossiculus with the penisvalvo-gonossiculal muscle. This character is not applicable if the gonos- siculus is absent (Megalyroidea). This character is modified after character 285 of Schulmeister (2003b). 43. Parossiculo-penisvalval muscle: 0, absent (Figs 6A,C, 7B, 8A,C, 9A, 10A, 10B,D, 11A, 15C,D, 16A–C and 17B); 1, present (pss-pv: Figs 9B and 11B) This muscle is present in Xyela and Orthogonalys but absent from other taxa examined. 44. Proximal gonostipes/volsella complex-harpal muscle: 0, absent (Figs 5C,D and 12B–D); 1, present (gs-hrp: Figs 6A,C, 7B, 8A,C, 9A, 10A,B,D, 11A, 15C,D, 16A–C and 17B) Two gonostyle/volsella complex muscles insert on the proximomedial margin of the harpe in Ceraphronoidea similar to some basal Hymenoptera. The proximal muscle always arises from the gonostipes/volsella complex, whereas the distal muscle is usu- ally divided and partly or exclusively arises from the lateral wall of the harpe. Three muscles insert on the harpe in Xyela—the apical gonostipes/volsella complex-harpal muscle arises from along the distal margin of the gonostyle and inserts on the lateral wall of the harpe (gs-hra: Fig. 11A,B), whereas two other muscles, the distal and proxi- mal gonostipes/volsella complex-harpal muscles (gs-hrp, gs-hrd: Fig. 11A,B) arise proximally of the distal margin of the gonostyle and insert on the proximomedial Downloaded from Brill.com10/07/2021 09:32:22AM via free access

292 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 margin of the harpe. Based on their relative location on the gonostyle/volsella complex and their site of insertion on the harpe, the distal muscle of Ceraphronoidea is struc- turally equivalent with the distal gonostipes/volsella complex-harpal muscle and the proximal muscle to the proximal gonostipes/volsella complex-harpal muscle of Xyela. The apical gonostipes/volsella complex-harpal muscle is absent from Ceraphronoidea, whereas the proximal gonostipes/volsella complex-harpal muscle is present in all Ceraphro­noidea having a harpe, except for Trichosteresis, where no gonostipes/volsella complex-harpal muscles were observed. Among those taxa where the harpe is missing, one muscle, which is possibly homologous with the proximal gonostipes/volsella complex-harpal muscle, is present in Aetholagynodes and in Dendrocerus wollastoni (Figs 10A,B and 16A (gs-hrp). The muscle inserts on the medial wall of the distal region of the gonoforceps in Aetholagynodes and might move it laterally when contracted (Fig. 10A,B). Although the primary function of the muscle is to move the harpe in different directions, it might also be important for “anchoring” it in those Ceraphronoidea taxa where at least some bands of the distal gonostipes/volsella complex-harpal muscle extends between the proximomedian and proximolateral margins of the harpe. Two muscles are inserted on the harpe in Orthogonalys. The smaller proximal gonostipes/volsella complex-harpal muscle arises from the dorsomedian margin of the gonostyle/volsella complex and inserts on the median wall of the harpe. The larger muscle (gs-hr?: Fig. 9A,B) arises proximolaterally from the gonostyle/volsella complex and inserts partly on the proximedian edge of the ventral part of the complex and partly on the conjunctiva between the harpe and the gonostyle. This character is modified after character 287 of Schulmeister (2003b). 45. Proximal gonostipes/volsella complex-harpal muscle site of origin: 0, proximally from the gonostyle/volsella complex (gs-hrp: Figs 8C, 11A, 15C,D and 17B–D); 1, distodorsally from the gonostyle/volsella complex (gs-hrp: Figs 6A,C, 7C, 8A and 16A–C) This muscle always arises distodorsally in Ceraphronidae and in most Dendrocerus, whereas in Conostigmus, Megaspilus and in Lagynodinae it arises proximally from the gonostyle/volsella complex. The site of origin of the proximal gonostipes/volsella com- plex-harpal muscle possibly functions in movement of the harpe or stabilizes it when the distal gonostyle/volsella complex muscle is contracted. It moves the harpe laterally if the muscle arises from the distal part of the gonostyle/volsella complex, whereas it moves the harpe ventrally if it arises proximodorsally. 46. Distal gonostipes/volsella complex-harpal muscle: 0, present (gs-hrd: Figs 6C, 7B, 8A,C,D, 10A,B,D, 11A,B, 15C,D, 16A–C and 17B; gs-hr?: 9A, 9B); 1, absent (Figs 5C,D, 9D, 10A,B and 12B–12D) The distal gonostipes/volsella complex-harpal muscle is present in all Ceraphronoidea except for taxa lacking a harpe. A small muscle band is present in Orthogonalys and this might be homologous with the distal gonostipes/volsella complex-harpal muscle based on the site of origin (see character 44). The muscle is absent from the rest of outgroup taxa examined except Xyela.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 293

This character is modified after character 288 of Schulmeister (2003b). 47. Site of origin of distal gonostipes/volsella complex-harpal muscle: 0, from gono- style/volsella complex (gs-hrd: Fig. 11A,B); 1, at least partly from proximolateral mar- gin part of harpe (gs-hrd: Figs 8D and 17A,B); 2, exclusively from harpe (gs-hrd: Figs 7C, 8A, 10D and 13D) The distal gonostipes/volsella complex-harpal muscle arises exclusively from the gono- style/volsella complex in Xyela, partly from the complex and from the lateral wall of the harpe in Megaspilidae, and in Ceraphronidae attaches exclusively on the harpe, extend- ing between its median and lateral walls. In Megaspilidae and Trassedia the proximo- medial part of the harpe is extended proximally to form the proximomedial apodeme of the harpe (Figs 85, 86, see character 29), which serves as the site of insertion of the muscle. When the muscle bands extending between the median and lateral margins of the harpe contract, the harpe is possibly bent medially, which moves its distal part towards the midline, i.e. they “adduct” the gonoforceps (the proximal gonostipes/vol- sella complex-harpal muscles might play an important role in anchoring the proximal end of the apodeme when the distal muscle is contracted; see character 44). The con- traction of the bands connecting the harpe with the gonostyle might be involved in the adduction or dorso-ventral movement of the harpe. We do not know what the func- tion of the muscle attached exclusively on the harpe might be in Ceraphronidae. The most striking modification of the site of origin is found in Conostigmus triangularis, in which the muscle extends along almost the entire proximal margin of the gonostyle/ volsella complex (Fig. 17A,B). This modification might be related to the extremely well developed, bilobed harpe. This character is not applicable if the muscle does not attach to the gonostyle/volsella complex. 48. Ability to open and close the male genitalia: 0, present (Fig. 18); 1, absent Schulmeister (2003b) reported that the two halves of the male genitalia can be folded towards each other in Orussus, Stephanoidea and . The ability to open and fold the male genitalia is present in Evanioidea and Megischus among the examined taxa. The ability to open and close the male genitalia might be related to the absence of a harpe. Adjusting the apical regions of the male genitalia might be important during copulation. In those taxa having a harpe, this function is facilitated by the gonostipes/ volsella complex-harpal muscle. In those taxa lacking a harpe, the apical geometry of the male genitalia might be regulated by the opening and closure of the entire gono- style/volsella complex.

Results and Discussion The relationships among putatively basal apocritans (Evaniomorpha: Ceraphronoidea, Evanioidea, Trigonalidae and Megalyroidea) remain uncertain (Vilhelmsen et al. 2010, Heraty et al. 2011). Compared to other microhymenoptera (e.g., Platygastroidea, Chalcidoidea), the male genitalia of Ceraphronoidea is a complicated structure, composed of four to ten sclerites (cupula, two gonostipites, two parossiculi, two

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

294 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Fig. 18. SEM micrographs showing the male terminalia of Gasteruption sp., distal view. gonossiculi, two harpes, and the penisvalvae) with 12–14 muscles. The diversity in shape and pilosity of different male genitalia components (especially the apical harpe), as well as the orientation and thickness of muscles, provide characters for species delimitation (e.g., for Conostigmus compare Fig. 15C,D with Fig. 17A, B, and for Aphanogmus compare Fig. 10D with Fig. 14A). The presence or absence of muscles,

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 295

conjunctivae or sclerites are also informative for higher level classification within Ceraphronoidea and even for the placement of the superfamily within Hymenoptera. Based on our analyses, Ceraphronoidea is monophyletic with strong support and its position is unresolved (Fig. 19), or it is the sister to other evaniomorph taxa (Fig. 20). Ceraphronoidea share numerous plesiomorphic character states with Xyela (Xyeloidea: ) that are either absent from other Evaniomorpha or are present only Trigonaloidea (sister to other non-Ceraphronoidea Evaniomorpha in the implied weighting analyses), including presence of a harpe and its muscles (ch. 28:1, 44:1 and 46:0), presence of the penisvalvo-phallotremal muscle (ch. 38:1), absence of the dorso- median apodeme of the aedeagus (ch. 23:0), and the presence of T10 (ch. 2:1). Evaniomorph outgroup taxa were retrieved as monophyletic only in the implied weighting analyses with moderate jackknife support. Schulmeister (2003b) concluded that the absence of a harpe is a synapomorphy for Vespina (Orussoidea + Apocrita) because even if there is a harpe-like apical sclerite there is no associated musculature. Our study reveals that a musculated harpe is pre- sent in Ceraphronoidea and Trigonaloidea. However, in Trigonaloidea, the arrange- ment of the harpal muscles is significantly different from that of Ceraphronoidea and lower Hymenoptera, thus hindering our ability to deduce primary statements of homology. As was mentioned in the introduction, numerous other, sometimes rela- tively complex character systems (i.e. mesotrochanteral depressor muscles; Gibson 1999), are shared by Ceraphronoidea and basal Hymenoptera. Although the clades of outgroup taxa are not well supported in the present analysis, our study reveals some putative synapomorphies that can be tested in future phyloge- netic studies. Perhaps the most important of these is the absence of the gonossiculus from the megalyroid volsella, which is composed of a single sclerite. The absence of the gonossiculus is preceded by the loss of numerous muscles that are connected to this sclerite in other taxa. There is no uncontradicted synapomorphy in our analysis for the weakly supported Evanioidea, but the absence of the cercal plate (ch. 1:1) is a putative synapomorphy for Gasteruptiidae + Evaniidae and may be an important character for future study in this group. A longstanding hypothesis states that Ceraphronoidea is composed of two easily distinguishable and possibly monophyletic extant families—Megaspilidae and Ceraphronidae (Masner & Dessart 1967; Dessart 1995a,b; Mikó & Deans 2009). We retrieved Megaspilidae as monophyletic only in the implied weighting analyses, and with very weak support. Putative synapomorphies for the family are the ventrally curved penisvalva (ch. 22:1; with reversals in Aphanogmus, Elysoceraphron and Gnathoceraphron) and the presence of the proximomedial apodeme of the harpe (ch. 29:1; reversal in Trassedia). Although the monophyly of Lagynodinae is strongly supported in the implied weighting analyses, it is resolved as a basal polytomy in the equal weighting analysis. Lagynodinae exhibits the largest number of character states shared with Xyela (Xyeloidea: Xyelidae). Lagynodinae and Ceraphronidae share two plesiomorphies with the outgroup taxa—the proximally pointed proximoventral margin of the gonostyle/ volsella complex (ch. 11:1) and presence of the dorsolateral cupulo-gonostyle/volsella

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

296 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Fig. 19. Tree produced by equal weighting analysis.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 297

Fig. 20. Tree produced by implied weighting analysis with k = 5.

complex muscle (ch. 34:1). These findings challenge the current classification of the superfamily and suggest that Lagynodinae should probably be elevated from subfamil- ial status in Megaspilidae to family status. Although our results do not resolve family level relationships in Ceraphronoidea with strong support, Megaspilinae and Ceraphronidae were monophyletic in both analyses. A monophyletic Megaspilinae had greater support in the implied weighting

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

298 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 analyses than in the equal weighting analysis, with the following synapomorphies: straight proximoventral margin of the gonostyle/volsella complex (ch. 11:0), absence of apex gonostipitis (ch. 12:1), dorsoventrally continuous gonostyle/volsella complex (ch. 17:0), and absence of the dorsolateral cupulo-gonostyle/volsella complex muscle (ch. 34:0). The monophyly of the subfamily is also supported by the presence of a pterostigma (Mikó and Deans 2009), which is also present in two ceraphronid taxa, Masner and Trassedia. Delimitation of taxa within Megaspilinae has been a longstanding problem. The work of previous authors (Dessart & Cancemi 1987; Fergusson 1980) suggested that the species of Megaspilinae are found in two assemblages surrounding Conostigmus and Dendrocerus, respectively. These lineages have been previously differentiated on the basis of the shape of the interocellar triangle (equilateral in Conostigmus) and the shape of the male flagellomeres (trapezoidal in Dendrocerus). However, these characters are not fixed for each lineage and the genera are defined by the morphology of their con- stituent species and not by clear generic concepts. Our analysis retrieves a Dendrocerus clade that contains three species of Conostigmus, a clade of “Conostigmus sensu stricto” species group (sensu Dessart and Cancemi 1987) and Trichosteresis, and a basal poly- tomy of Conostigmus and Megaspilus species. Dendrocerus clade is supported by three synapomorphies—absence of medioventral conjunctiva of the gonostyle/volsella complex (ch. 16:0), the distodorsally extended site of origin of the gonostyle/volsella complex-volsellal muscles (ch. 37:1), and the disto- dorsal site of origin of the proximal gonostipes/volsella complex-harpal muscle (ch. 45:1). Three Conostigmus species with symmetric, elongate flagellomeres and an equi- lateral ocellar triangle are nested in this group. Dessart and Cancemi (1987) used two male genitalia characters in the delimitation of Conostigmus sensu strict—the presence of a parossiculus (ch. 13:0), and a proximodorsal notch of cupula (ch. 8:0). These two characters are the only synapomorphies for this clade in our analysis. The non-equilat- eral arrangement of the ocelli and non-trapezoidal flagellomeres found inTri ­chosteresis give this a dubious position within the Megaspilinae. This, and three Conostigmus species with typical, Conostigmus type structures of the ocelli and flagellomeres nesting within the Dendrocerus clade, provide additional evidence for the plasticity of ocellar and flagellar features previously used for classification of the subfamily. Masner lubomirus was retrieved as sister of Ceraphronidae in the implied weighting analyses. The monophyly of the rest of Ceraphronidae is supported by only two char- acter states—the concave anterior margin of S9 (ch. 3:1), and the lateral site of inser- tion of the mediolateral S9-cupulal muscle (ch. 32:1). These character states are related with the protraction and retraction of the male genitalia, which is cardinally different in Ceraphronidae, excluding Masner, and the rest of the Hymenoptera studied in our analysis. Reversal of this character is hence less likely, and given the presence of two possible megaspilid synapomorphies (presence of the occipital depression and the pterostigma; Mikó & Deans 2009) in Masner, it seems to be reasonable to hypothesize that Masner lubomirus is the most basal ceraphronid taxon. Dessart and Cancemi (1987) classified Ceraphronidae into two “satellite” species groups, the Ceraphron-group and Aphanogmus-group based on the degree of lateral

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 299

compression of the body and the shape of the male flagellomeres. Our implied weight- ing analyses retrieved a weakly supported clade of an Aphanogmus-group (Aphanogmus, Gnathoceraphron and Elysoceraphron) and a basal polytomy of Ceraphron, Cyoceraphron and Trassedia. The monophyly of Aphanogmus is not supported in the equal weighting analysis. Ernst et al. (in press) suggest that Trassedia belongs to Ceraphronidae, contradicting its original classification within Megaspilidae (Cancemi 1996). Cancemi (1996) classi- fiedTrassedia in Megaspilidae based on the presence of a pterostigma and the presence of nine female flagellomeres. The position of Trassedia within the Ceraphronidae is supported by numerous other body characters—presence of Waterston’s evaporato- rium, absence of an occipital depression, absence of a narrow sclerite anterior to the synsternum, presence of axillar setae, and a single mesotibial apical spur. Based on the present analysis and these additional characters, we transfer Trassedia from Megaspilidae to Ceraphronidae. Members of the Aphanogmus-group share two character states—ventrally curved penisvalva (ch. 22:1) and cupula not extended proximoventrally (ch. 7:1). Although these two features appear symplesiomorphic, they more likely represent reversals because they are shared with Megaspilidae and with outgroup taxa. Our analysis retrieved two monophyletic lineages in the Aphanogmus-group clade in both analyses. Although these lineages are well supported, they are defined only by a few synapomor- phies. Members of the Aphanogmus fasciipennis group share the vertical medioventral area of the gonostyle/volsella complex (ch. 18:0) and the gonossiculus not being associ- ated with the distal aedeagus (ch. 21:1). The gonossiculus might have a different func- tion in these taxa than in other Ceraphronoidea (see character 21). Gnathoceraphron is nested within this lineage, suggesting that it might best be treated as a junior synonym of Aphanogmus. The Aphanogmus nigripes-group is supported by only one synapomor- phy, the presence of the distolateral projection of the harpe (ch. 30:0).

Conclusions The importance of internal characters in systematics has been demonstrated by numer- ous studies (Deans et al. 2012). Besides providing an extra set of informative characters in a phylogenetic analysis, internal structures are crucial for the understanding and accurate interpretation of the external skeletal phenome. Song and Bucheli (2010) demonstrated that the phylogenetic signal of male genitalia is statistically similar to that of other body characters in many insects. The current phylogenetic analysis, the first for Ceraphronoidea, is based exclusively on male terminalia characters. A more comprehensive analysis of the greater somatic phenome is a prerequisite for clarifying unresolved parts of the Ceraphronoidea phylogeny and could reveal relevant informa- tion about the phylogenetic signal of external body vs. male genitalia characters. The specimen pool of our study is seemingly broad enough to use as a template for further molecular and morphological studies, which will be crucial for establishing a more robust and pragmatic Ceraphronoidea classification.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

300 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Acknowledgements We thank for the following curators for loaning specimens for the present research: David Smith (USNM), Dave Karlsson (Sweden), George Melika (Hungary), Andrew Bennett (CNC), Bob Copeland (ICIPE), Brian Fisher (CALS), Tony van Harten (Portugal), Bob Blinn (NCSU) and Simon van Noort (SAMC). Bob Blinn, Andrew Ernst, Gary Gibson, Lars Vilhelmsen and Elijah Talamas are also acknowledged for their help in specimen data management and valuable discussions, Scott Shaw for the identification of Dinapsis specimens, and Chuck Mooney (NCSU) for his assistance with Scanning Electron Microscopy. This research was funded in part by the US National Science Foundation (NSF; grant DBI-0850223) and benefitted from meet- ings supported by the Synthesis Center of the Encyclopedia of Life the Phenotype RCN (http://www.phenotypercn.org; NSF DEB-0956049).

References Allard, D., Gobin, B., Ito, F., Tsuji, K. & Billen, J. (2002) Sperm transfer in the Japanese queenless Diacamma Sp (Hymenoptera: Formicidae). Netherlands Journal of Zoology 52: 77–86. Andena, S.R., Noll, F.B., Carpenter, J.M. & Zucchi, R. (2007) Phylogenetic Analysis of the Neotropical Pseudopolybia de Saussure, 1863, with description of the male genitalia of Pseudopolybia vespiceps (Hymenoptera: , Epiponini). American Museum Novitates 3586: 1–11. Austin, A. (1983) Morphology and mechanics of the ovipositor system of Ceratobaeus Ashmead (Hymenoptera: Scelionidae) and related genera. International Journal of Insect Morphology and Embryology 12: 139–155. Brajković, M., Stanisavljević, L., Nikolić, Z., Ćurčić, S.B., Živić, I. & Stojanović, D. (2011) Male genita- lia of the species of the subfamily Agathidinae (Hymenoptera: ) and their importance in . Archives of Biological Sciences 62: 455–467. Bohart, R.M. & Menke, A.S. (1976). Sphecid Wasps of the World, a Generic Revision. University of California Press, Berkeley, CA, 695 pp. Cancemi, P. (1996) Trassedia luapi n. gen., n. sp. from Madagascar (Hymenoptera, Ceraphronoidea, Megaspilidae). Giornale Italiano di Entomologia 8: 231–233. Deans, A. R., Yoder, M.J. & Balhoff, J.P. (2012) Time to change how we describe biodiversity. Trends in Ecology and Evolution 27: 78–84. Deans, A.R., Mikó, I., Wipfler, B. & Friedrich, F. (2012) Evolutionary phenomics and the emerging enlightenment of systematics. Invertebrate Systematics 26: 323–330. Dessart, P. (1995a) Ceraphronidae. In: Hanson, P.E. & Gauld, I.D. (Eds), The Hymenoptera of Costa Rica. Oxford University Press, Oxford, pp. 199–203. Dessart, P. (1995b) Megaspilidae. In: Hanson, P.E. & Gauld, I.D. (Eds), The Hymenoptera of Costa Rica. Oxford University Press, Oxford, pp. 199–203. Dessart, P. & Bin, N. (1981) Gnathoceraphron, new genus with two new species from Africa (Hymenoptera, Ceraphronoidea, Ceraphronidae). Redia 63: 109–120. Dessart, P. & Cancemi, P. (1987) Tableau dichotomique des genres de Ceraphronoidea (Hymenoptera) avec commentaries et nouvelles especes. Frustula Entomologica 7–8: 307–372. Ernst, A.F., Mikó, I. & Deans, A.R. (2013) Morphology and function of the ovipositor mechanism in Ceraphronoidea (Hymenoptera). Journal of Hymenoptera Research 33: 25–61. Evans, G.A., Dessart, P. & Glenn, H. (2005) Two new species of Aphanogmus (Hymenoptera: Ceraphronidae) of economic importance reared from nipponicus (Coleoptera: ). Zootaxa 1018: 47–54. Fergusson, N.D.M. (1980) A revision of the British species of Dendrocerus Ratzeburg (Hymenoptera: Ceraphronoidea) with a review of their biology as aphid . Bulletin of the British Museum (Natural History, Entomology) 41: 255–314. Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 301

Ferreira, A., Abdalla, F.C., Kerr, W.E. & Cruz-Landim, C.(2004) Comparative anatomy of the male reproductive internal organs of 51 species of bees. Neotropical Entomology 33: 569–576. Gibson, G.A.P. (1985) Some pro- and mesothoracic structures important for phylogenetic analysis of Hymenoptera, with a review of terms used for the structures. The Canadian Entomologist, 117: 1395–1443. Gibson, G.A.P. (1999) Sister-group relationships of the Platygastroidea and Chalcidoidea (Hymenoptera)— an alternative hypothesis to Rasnitsyn (1988). Zoologica Scripta 28: 125–138. Goloboff, P.A. (1993) Estimating character weights during tree search. Cladistics 9: 83–91. Goloboff, P.A., Farris, J.S. & Nixon, K.C. (2008) TNT, a free program for phylogenetic analysis.Cladistics 24: 1–13. Heraty, J.M., Woolley, J.B. & Darling, D.C. (1994) Phylogenetic implications of the mesofurca and mesopostnotum in Hymenoptera. Journal of Hymenopteran Research 3: 241–77. Heraty, J., Ronquist, F., Carpenter, J.M., Hawks, D., Schulmeister, S., Dowling, A.P., Murray, D., Munro, J., Wheeler, W.C., Schiff, N. & Sharkey, M. (2011) Evolution of the hymenopteran megaradiation. Molecular Phylogenetics and Evolution 60: 73–88. Haviland, M.D. (1920) On the bionomics and development of Lygocerus testaceimanus Kieffer, and Lygocerus cameroni Kieffer (Proctotrypoidea: Ceraphronidae) parasites of Aphidius. Quarterly Journal of Microscopical Science 65: 101–127. Huber, J.T. (2009) Biodiversity of Hymenoptera. In: Foottit, R.G. & Adler, P.H. (Eds), Insect Biodiversity: Science and Society. Blackwell Publishing, London, pp. 303–323. Imaris Bitplane. Available online at http://www.bitplane.com/ (accessed 27 August 2012). Johnson, N.F. & Musetti, L. (2004) Catalog of the systematic literature of the superfamily Ceraphronoidea (Hymenoptera). Contributions of the American Entomological Institute 33: 1–149. Kamal, M. (1939) Biological studies on some Hymenopterous parasites of aphidophagous Syrphidae. Bulletin. Ministry of Agriculture, Egypt. Technical and Scientific Service. Entomology Section 207: 111 pp. Kamimura, Y. (2008) Copulatory wounds in the monandrous ant species japonica (Hymenoptera, Formicidae). Insectes Sociaux 55: 51–53. Martínez de Murgía, L., Angeles Vazquez, M. & Nieves-Aldrey, J.L. (2001) The families of Hymenoptera (Insecta) in an heterogenous acidofilous forest in Artikutza (Navarra, Spain).Frustula Entomologica (Nuova Serie) 24: 81–98. Masner, L. & Dessart, P. (1967) La reclassification des categories taxonomiques superieures des Ceraphronoidea (Hymenoptera). Bulletin de l’Institute Royal des Sciences Naturelles de Belgique 43: 1–33. Mikheyev, A.S. (2004) Male accessory gland size and the evolutionary transition from single to multiple mating in the fungus-gardening ants. Journal of Insect Science 4: 37. Mikó, I. & Deans, A.R. (2009) Masner, a new genus of Ceraphronidae (Hymenoptera, Ceraphronoidea) described using controlled vocabularies. ZooKeys 20: 127–153. Mikó, I., Vilhelmsen, L., Johnson, N.F., Masner, L. & Pénzes, Z. (2007) Morphology of Scelionidae (Hymenoptera: Platygastroidea): head and mesosoma. Zootaxa 1571: 1-78. Mullins, P.L., Kawada, R., Balhoff, J.P. & Deans, A.R. (2012) A revision ofEvaniscus (Hymenoptera, Evaniidae) using ontology-based semantic phenotype annotation. ZooKeys. 223: 1–38, doi: 10.3897/ zookeys.223.3572. Oatman, E.R. (1985) Aphanogmus floridanus, a primary parasite of Feltiella acarivora, a predator of spider mites on strawberry (Hymenoptera: Ceraphronidae; Diptera: Cecidomyiidae). Proceedings of the Entomological Society of Washington 87: 714–716. Polaszek, A. & Dessart, P. (1996) Taxonomic problems in the Aphanogmus hakonensis species complex; (Hymenoptera: Ceraphronidae) common hyperparasitoids in biocontrol programmes against lepi- dopterous pests in the tropics. Bulletin of Entomological Research 86: 419–422. Rasnitsyn, A.P. (1988) An outline of the evolution of the hymenopterous insects (order Vespida). Oriental Insects 22: 115–145. Rasnitsyn, A.P. (2002) Superorder Vespidea Laicharting, 1781. Order Hymenoptera Linn, 1758. In: Rasnitsyn, A.P. & Quicke, D.L.J. (Eds), History of Insects. Kluwer Academic Publishers, Dordrecht. pp. 242–254. Downloaded from Brill.com10/07/2021 09:32:22AM via free access

302 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Ronquist, F., Rasnitsyn, A.P., Roy, A., Eriksson, K. & Lindgren, M. (1999) Phylogeny of the Hymenoptera: A cladistic reanalysis of Rasnitsyn’s (1988) data. Zoologica Scripta 28: 13–50. Rozen, J.G. (1951) A Preliminary Comparative Study of the Male Genitalia of (Hymenoptera, ). Journal of the Kansas Entomological Society 24: 142–150. Sharanowski, B.J., Robbertse, B., Walker, J., Randal, V., Yoder, R., Spatafora, J. & Sharkey, M.J. (2010) Expressed sequence tags reveal Proctotrupomorpha (minus Chalcidoidea) as sister to (Hymenoptera: Insecta). Molecular Phylogenetics and Evolution 57: 101–112. Schmitt, G. (2004) communities (Hymenoptera) in the agricultural landscape: effects of land use types and cultivation methods on structural parameters. PhD thesis. Technische Universität Dresden, Dresden. Schulmeister, S. (2001) Functional morphology of the male genitalia and copulation in lower Hymenoptera, with special emphasis on the Tenthredinoidea s. str. (Insecta, Hymenoptera, Symphyta’). Acta Zoologica 82: 331–349. Schulmeister, S. (2003a) Review of morphological evidence on the phylogeny of basal Hymenoptera (Insecta), with a discussion of the ordering of characters. Biological Journal of the Linnean Society 79: 209–243. Schulmeister, S. (2003b) Genitalia and terminal abdominal segments of male basal Hymenoptera (Insecta): morphology and evolution. Organisms, Diversity and Evolution 3: 253–279. Sharkey, M.J. (2007). Phylogeny and classification of Hymenoptera. Zootaxa 1668: 521–548. Shcherbakov, D.E. (1981) Morphology of the pterothoracic pleura in Hymenoptera. 2. Modifications of the ground plan. Zoologischeskii Zhurnal 60: 205–213. Snodgrass, R.E. (1941) The male genitalia of Hymenoptera. Smithsonian Miscellaneous Collections 99: 1–86. Song, H. & Bucheli, S.B. (2010) Comparison of phylogenetic signal between male genitalia and non- genital characters in insect systematics. Cladistics 26: 23–35. Takada, H. (1973) Studies on aphid hyperparasites of Japan, I. Aphid hyperparasites of the genus Dendrocerus Ratzeburg occuring in Japan (Hymenoptera: Ceraphronidae). Insecta Matsumurana 2: 1–37. Teodorescu, I. (1967) Specii de (Hymenoptera - Proctotrupoidea) noi pentru fauna României. Studii si Cercetari de Biologie, Seria Zoologie 19: 369–374. Vilhelmsen, L. (1996) The preoral cavity of lower Hymenoptera (Insecta): comparative morphology and phylogenetic significance. Zoologica Scripta 25: 143–170. Vilhelmsen, L. (2000) Cervical and prothoracic skeletomusculature in the basal Hymenoptera (Insecta): Comparative anatomy and phylogenetic implications. Zoologischer Anzeiger 239: 105–138. Vilhelmsen, L. (2000b) Before the -waist: Comparative anatomy and phylogenetic implications of the skeleto-musculature of the thoraco-abdominal boundary region in basal Hymenoptera (Insecta). Zoomorphology 119: 185–221. Vilhelmsen, L. (2003) Towards a consensus: latest results from simultaneous analysis of the basal hyme- nopteran lineages. Entomologische Abhandlungen 61: 162–163. Vilhelmsen, L., Isidoro, N., Romani, R., Basibuyuk, H.H. & Quicke, D.L.J. (2001) Host location and oviposition in a basal group of parasitic wasps: the subgenual organ, ovipositor apparatus, and associ- ated structures in the (Hymenoptera, Insecta). Zoomorphology 121: 63–84. Vilhelmsen, L., Miko, I. & Krogmann, L. (2010) Beyond the wasp-waist: structural diversity and phylo- genetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera). Zoological Journal of the Linnean Society 159: 22–194. Whitfield, J.B. & Kjer, K (2008) Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annual Review of Entomology 53: 449–472. Withycombe, C.L. (1924) Note on the economic value of the Neuroptera, with special reference to the Coniopterygidae. Annals of Applied Biology 11: 112–125. Žikić, V., van Achterberg, C., Stankovića, S.S. & Ilića, M. (2011) The male genitalia in the subfamily Agathidinae (Hymenoptera: Braconidae): Morphological information of species on generic level. Zoologischer Anzeiger - A Journal of Comparative Zoology 250: 246–257.

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 303

Appendix A. Taxa examined, with number of specimens, country, and DOIs for media files deposited at http://www.figshare.com. Taxon Total Country URL of media files SEM and bright field specimens micrographs on http://www.figshare.com observed Macroxyela ferruginea 1 USA (Xyeloidea, Xyelidae) Xyela sp. (Xyeloidea, 2 USA http://dx.doi.org/10.6084/m9.figshare.95695 Xyelidae) http://dx.doi.org/10.6084/m9.figshare.95700 Megischus sp. 3 USA http://dx.doi.org/10.6084/m9.figshare.97752 (Stephanoidea, ) Schletterius cinctipes http://dx.doi.org/10.6084/m9.figshare.102034 (Stephanoidea, http://dx.doi.org/10.6084/m9.figshare.102042 Stephanidae) http://dx.doi.org/10.6084/m9.figshare.102045 Orthogonalys pulchella 5 USA http://dx.doi.org/10.6084/m9.figshare.95772 (Trigonaloidea, http://dx.doi.org/10.6084/m9.figshare.95770 Trigonalidae) http://dx.doi.org/10.6084/m9.figshare.95769 http://dx.doi.org/10.6084/m9.figshare.102044 http://dx.doi.org/10.6084/m9.figshare.102001 Taeniogonalos 2 USA http://dx.doi.org/10.6084/m9.figshare.102012 gundlachii http://dx.doi.org/10.6084/m9.figshare.102004 (Trigonaloidea, Trigonalidae) Megalyra sp. 2 Australia http://dx.doi.org/10.6084/m9.figshare.100574 (Megalyroidea, http://dx.doi.org/10.6084/m9.figshare.100961 ) http://dx.doi.org/10.6084/m9.figshare.100977 http://dx.doi.org/10.6084/m9.figshare.100978 Dinapsis nr. oculohirta 2 Madagascar http://dx.doi.org/10.6084/m9.figshare.95696 (Megalyroidea, http://dx.doi.org/10.6084/m9.figshare.95688 Megalyridae) http://dx.doi.org/10.6084/m9.figshare.95679 http://dx.doi.org/10.6084/m9.figshare.95674 Evania albofascialis 3 Costa Rica http://dx.doi.org/10.6084/m9.figshare.101998 (Evanioidea, Evaniidae) http://dx.doi.org/10.6084/m9.figshare.102005 http://dx.doi.org/10.6084/m9.figshare.102017 http://dx.doi.org/10.6084/m9.figshare.102021 http://dx.doi.org/10.6084/m9.figshare.102025 http://dx.doi.org/10.6084/m9.figshare.102029 http://dx.doi.org/10.6084/m9.figshare.102032 http://dx.doi.org/10.6084/m9.figshare.102036 http://dx.doi.org/10.6084/m9.figshare.102037 Hyptia sp. (Evanioidea, 3 USA http://dx.doi.org/10.6084/m9.figshare.101997 Evaniidae) http://dx.doi.org/10.6084/m9.figshare.102019 http://dx.doi.org/10.6084/m9.figshare.102022 http://dx.doi.org/10.6084/m9.figshare.102038 http://dx.doi.org/10.6084/m9.figshare.102047 Szepligetella levipetiolata 2 New Caledonia (Evanioidea, Evaniidae) Pristaulacus sp. 3 USA http://dx.doi.org/10.6084/m9.figshare.100889 (Evanioidea, )

(Continued ) Downloaded from Brill.com10/07/2021 09:32:22AM via free access

304 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Appendix A. (Cont.)

Taxon Total Country URL of media files SEM and bright field specimen micrographs on http://www.figshare.com observed Aulacus burquei USA http://dx.doi.org/10.6084/m9.figshare.100582 (Evanioidea, Aulacidae) http://dx.doi.org/10.6084/m9.figshare.100906 Gasteruption sp. 4 USA http://dx.doi.org/10.6084/m9.figshare.102002 (Evanioidea, http://dx.doi.org/10.6084/m9.figshare.102006 Gasteruptiidae) http://dx.doi.org/10.6084/m9.figshare.102027 http://dx.doi.org/10.6084/m9.figshare.102041 Pseudofoenus sp. 2 Fiji, Australia http://dx.doi.org/10.6084/m9.figshare.95694 (Evanioidea, http://dx.doi.org/10.6084/m9.figshare.95705 Gasteruptiidae) http://dx.doi.org/10.6084/m9.figshare.102014 Dendrocerus sp. 1 3 USA http://dx.doi.org/10.6084/m9.figshare.100899 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100934 Megaspilidae) Dendrocerus sp. 2 3 USA, Canada http://dx.doi.org/10.6084/m9.figshare.100871 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100609 Megaspilidae) Dendrocerus conwentziae 3 USA http://dx.doi.org/10.6084/m9.figshare.100599 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100615 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.100614 Dendrocerus penmaricus 3 USA http://dx.doi.org/10.6084/m9.figshare.100984 Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100989 Megaspilidae) Dendrocerus marycarverae 5 Australia http://dx.doi.org/10.6084/m9.figshare.100980 (Ceraphronoidea, Megaspilidae) Dendrocerus africanus 5 Kenya, Central http://dx.doi.org/10.6084/m9.figshare.100914 (Ceraphronoidea, Africa http://dx.doi.org/10.6084/m9.figshare.100928 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.101951 Dendrocerus rectangularis 10 Sweden http://dx.doi.org/10.6084/m9.figshare.95773 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100985 Megaspilidae) Dendrocerus punctipes 2 Sweden http://dx.doi.org/10.6084/m9.figshare.100931 (Ceraphronoidea, Megaspilidae) Dendrocerus sp. 11 1 USA http://dx.doi.org/10.6084/m9.figshare.100905 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100920 Megaspilidae) Dendrocerus floridanus 5 Sweden http://dx.doi.org/10.6084/m9.figshare.95673 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100608 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.100926 Dendrocerus perlucidus 2 United Arab http://dx.doi.org/10.6084/m9.figshare.101988 (Ceraphronoidea, Emirates http://dx.doi.org/10.6084/m9.figshare.101977 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.101970 http://dx.doi.org/10.6084/m9.figshare.101967 http://dx.doi.org/10.6084/m9.figshare.101944

(Continued )

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 305

Appendix A. (Cont.)

Taxon Specimen Country URL of media files SEM and bright field number micrographs on http://www.figshare.com Dendrocerus propodealis 3 United Arab http://dx.doi.org/10.6084/m9.figshare.101982 (Ceraphronoidea, Emirates http://dx.doi.org/10.6084/m9.figshare.101975 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.101955 Dendrocerus sp. 16 1 Thailand http://dx.doi.org/10.6084/m9.figshare.100625 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100860 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.102033 http://dx.doi.org/10.6084/m9.figshare.102028 http://dx.doi.org/10.6084/m9.figshare.102018 Dendrocerus wollastoni 3 Yemen http://dx.doi.org/10.6084/m9.figshare.95698 (Ceraphronoidea, Megaspilidae) Dendrocerus anneckei 5 Madagascar, http://dx.doi.org/10.6084/m9.figshare.100879 (Ceraphronoidea, United Arab http://dx.doi.org/10.6084/m9.figshare.100904 Megaspilidae) Emirates http://dx.doi.org/10.6084/m9.figshare.101986 http://dx.doi.org/10.6084/m9.figshare.101962 http://dx.doi.org/10.6084/m9.figshare.101950 Dendrocerus vivianae 3 United Arab http://dx.doi.org/10.6084/m9.figshare.101989 (Ceraphronoidea, Emirates http://dx.doi.org/10.6084/m9.figshare.101979 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.101974 http://dx.doi.org/10.6084/m9.figshare.101971 http://dx.doi.org/10.6084/m9.figshare.101963 Dendrocerus carpenteri 4 Hungary, http://dx.doi.org/10.6084/m9.figshare.101946 (Ceraphronoidea, Sweden, USA, http://dx.doi.org/10.6084/m9.figshare.101953 Megaspilidae) South Africa Dendrocerus liebscheri 7 Sweden http://dx.doi.org/10.6084/m9.figshare.100913 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100925 Megaspilidae) Dendrocerus ramicornis 3 Sweden http://dx.doi.org/10.6084/m9.figshare.95691 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.95703 Megaspilidae) Dendrocerus flavipes 3 Sweden http://dx.doi.org/10.6084/m9.figshare.100591 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100867 Megaspilidae) Dendrocerus halidayi 2 Sweden http://dx.doi.org/10.6084/m9.figshare.100862 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100606 Megaspilidae) Dendrocerus aphidum 6 Sweden, United http://dx.doi.org/10.6084/m9.figshare.100628 (Ceraphronoidea, Arab Emirates http://dx.doi.org/10.6084/m9.figshare.100866 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.101969 http://dx.doi.org/10.6084/m9.figshare.101966 http://dx.doi.org/10.6084/m9.figshare.101958 Dendrocerus sp. 29 3 Chile http://dx.doi.org/10.6084/m9.figshare.100618 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100873 Megaspilidae) Dendrocerus sp. 30 1 Chile http://dx.doi.org/10.6084/m9.figshare.100611 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100612 Megaspilidae)

(Continued ) Downloaded from Brill.com10/07/2021 09:32:22AM via free access

306 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Appendix A. (Cont.)

Taxon Specimen Country URL of media files SEM and bright field number micrographs on http://www.figshare.com Dendrocerus paradoxus 1 Sweden http://dx.doi.org/10.6084/m9.figshare.100600 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100601 Megaspilidae) Dendrocerus sp. 36 2 Sweden http://dx.doi.org/10.6084/m9.figshare.100577 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100896 Megaspilidae) Dendrocerus indicus 2 United Arab http://dx.doi.org/10.6084/m9.figshare.101958 (Ceraphronoidea, Emirates http://dx.doi.org/10.6084/m9.figshare.101983 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.101968 http://dx.doi.org/10.6084/m9.figshare.101965 http://dx.doi.org/10.6084/m9.figshare.101964 http://dx.doi.org/10.6084/m9.figshare.101959 Dendrocerus koyamai 1 USA http://dx.doi.org/10.6084/m9.figshare.95708 (Ceraphronoidea, Megaspilidae) Conostigmus bipunctatus 5 Sweden http://dx.doi.org/10.6084/m9.figshare.100892 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100987 Megaspilidae) Conostigmus sp. 3 5 Sweden http://dx.doi.org/10.6084/m9.figshare.100864 (Ceraphronoidea, Megaspilidae) Conostigmus crassicornis 4 Sweden http://dx.doi.org/10.6084/m9.figshare.95777 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.95776 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.95775 http://dx.doi.org/10.6084/m9.figshare.100556 http://dx.doi.org/10.6084/m9.figshare.100861 http://dx.doi.org/10.6084/m9.figshare.100900 http://dx.doi.org/10.6084/m9.figshare.100996 Conostigmus sp. 5 3 Sweden http://dx.doi.org/10.6084/m9.figshare.100991 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100994 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.100997 Conostigmus sp. 6 1 Sweden http://dx.doi.org/10.6084/m9.figshare.100616 Conostigmus abdominalis 3 Sweden http://dx.doi.org/10.6084/m9.figshare.95692 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100598 Megaspilidae) Conostigmus pulchellus 2 USA (Ceraphronoidea, Megaspilidae) Conostigmus sp. 10 1 Sweden http://dx.doi.org/10.6084/m9.figshare.100909 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100876 Megaspilidae) Conostigmus sp. 11 4 Sweden http://dx.doi.org/10.6084/m9.figshare.100992 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100993 Megaspilidae) Conostigmus sp. 12 3 Sweden http://dx.doi.org/10.6084/m9.figshare.100903 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100916 Megaspilidae)

(Continued ) Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 307

Appendix A. (Cont.)

Taxon Specimen Country URL of media files SEM and bright field number micrographs on http://www.figshare.com Conostigmus sp. 14 2 Fiji http://dx.doi.org/10.6084/m9.figshare.100859 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100878 Megaspilidae) Conostigmus sp. 20 3 Sweden http://dx.doi.org/10.6084/m9.figshare.100927 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.103106 Megaspilidae) Conostigmus sp. 22 2 Australia http://dx.doi.org/10.6084/m9.figshare.95685 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.95707 Megaspilidae) Conostigmus sp. 23 2 Australia http://dx.doi.org/10.6084/m9.figshare.100624 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.103107 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.101960 Conostigmus sp. 24 3 Sweden http://dx.doi.org/10.6084/m9.figshare.100626 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100629 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.101976 Conostigmus triangularis 1 United Arab http://dx.doi.org/10.6084/m9.figshare.95671 (Ceraphronoidea, Emirates http://dx.doi.org/10.6084/m9.figshare.95672 Megaspilidae) Conostigmus geniculatus 3 Sweden http://dx.doi.org/10.6084/m9.figshare.100988 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100880 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.100604 http://dx.doi.org/10.6084/m9.figshare.100995 Conostigmus sp. 29 3 Sweden (Ceraphronoidea, Megaspilidae) Conostigmus sp. 30 1 Sweden http://dx.doi.org/10.6084/m9.figshare.100602 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100610 Megaspilidae) Conostigmus sp. 31 1 Sweden http://dx.doi.org/10.6084/m9.figshare.95684 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.95680 Megaspilidae) Conostigmus scabriceps 3 Australia http://dx.doi.org/10.6084/m9.figshare.100869 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.103108 Megaspilidae) Conostigmus sp. 35 3 Sweden http://dx.doi.org/10.6084/m9.figshare.100567 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100902 Megaspilidae) Conostigmus sp. 36 3 Sweden http://dx.doi.org/10.6084/m9.figshare.100617 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100607 Megaspilidae) Conostigmus uninasutus 2 Thailand (Ceraphronoidea, Megaspilidae) Conostigmus villosus 3 Thailand http://dx.doi.org/10.6084/m9.figshare.100865 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100901 Megaspilidae)

(Continued )

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

308 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Appendix A. (Cont.)

Taxon Specimen Country URL of media files SEM and bright field number micrographs on http://www.figshare.com Conostigmus sp. 40 1 Sweden http://dx.doi.org/10.6084/m9.figshare.100620 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100613 Megaspilidae) Megaspilus armatus USA http://dx.doi.org/10.6084/m9.figshare.95706 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.95704 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.100974 http://dx.doi.org/10.6084/m9.figshare.100979 http://dx.doi.org/10.6084/m9.figshare.101947 http://dx.doi.org/10.6084/m9.figshare.101949 http://dx.doi.org/10.6084/m9.figshare.101956 http://dx.doi.org/10.6084/m9.figshare.101972 http://dx.doi.org/10.6084/m9.figshare.101978 http://dx.doi.org/10.6084/m9.figshare.101980 http://dx.doi.org/10.6084/m9.figshare.101984 http://dx.doi.org/10.6084/m9.figshare.101985 http://dx.doi.org/10.6084/m9.figshare.101987 http://dx.doi.org/10.6084/m9.figshare.102000 http://dx.doi.org/10.6084/m9.figshare.102008 http://dx.doi.org/10.6084/m9.figshare.102011 Megaspilus sp 2. 2 Hungary (Ceraphronoidea, Megaspilidae) Aetholagynodes sp. 3 Australia http://dx.doi.org/10.6084/m9.figshare.95678 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.95709 Megaspilidae) Holophleps sp. 2 Australia http://dx.doi.org/10.6084/m9.figshare.100933 (Ceraphronoidea, Megaspilidae) Trichosteresis 3 Canada, South http://dx.doi.org/10.6084/m9.figshare.95771 (Ceraphronoidea, Africa http://dx.doi.org/10.6084/m9.figshare.102024 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.102023 http://dx.doi.org/10.6084/m9.figshare.102016 Lagynodes pallidus 5 Sweden, USA, http://dx.doi.org/10.6084/m9.figshare.101952 (Ceraphronoidea, Hungary http://dx.doi.org/10.6084/m9.figshare.101954 Megaspilidae) Lagynodes crassicornis 3 USA http://dx.doi.org/10.6084/m9.figshare.100981 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100983 Megaspilidae) http://dx.doi.org/10.6084/m9.figshare.102010 http://dx.doi.org/10.6084/m9.figshare.102026 Cyoceraphron sp. 1 2 Gabon (Ceraphronoidea, Ceraphronidae) Cyoceraphron sp. 3 2 Thailand http://dx.doi.org/10.6084/m9.figshare.100986 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100990 Ceraphronidae)

(Continued )

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 309

Appendix A. (Cont.)

Taxon Specimen Country URL of media files SEM and bright field number micrographs on http://www.figshare.com Gnathoceraphron sp. 3 South Africa http://dx.doi.org/10.6084/m9.figshare.100982 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.102031 Ceraphronidae) Ceraphron binubeculatus 2 USA (Ceraphronoidea, Ceraphronidae) Ceraphron sp. 2 4 Australia http://dx.doi.org/10.6084/m9.figshare.100923 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100951 Ceraphronidae) Ceraphron sp. 3 4 Australia http://dx.doi.org/10.6084/m9.figshare.100890 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100918 Ceraphronidae) Ceraphron testaceipes 4 Madagascar http://dx.doi.org/10.6084/m9.figshare.100621 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100605 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.101948 http://dx.doi.org/10.6084/m9.figshare.101961 http://dx.doi.org/10.6084/m9.figshare.101973 http://dx.doi.org/10.6084/m9.figshare.101981 http://dx.doi.org/10.6084/m9.figshare.103154 Ceraphron sp. 5 4 Australia http://dx.doi.org/10.6084/m9.figshare.100553 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100557 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100943 http://dx.doi.org/10.6084/m9.figshare.100947 http://dx.doi.org/10.6084/m9.figshare.100953 Ceraphron sp. 6 4 Madagascar http://dx.doi.org/10.6084/m9.figshare.100944 (Ceraphronoidea, Ceraphronidae) Ceraphron sp. 7 2 Mexico http://dx.doi.org/10.6084/m9.figshare.100910 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100929 Ceraphronidae) Ceraphron sp. 8 5 South Africa http://dx.doi.org/10.6084/m9.figshare.95689 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100622 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100872 http://dx.doi.org/10.6084/m9.figshare.95690 Ceraphron sp. 11 2 Madagascar http://dx.doi.org/10.6084/m9.figshare.100594 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100603 Ceraphronidae) Ceraphron sp. 12 2 Madagascar http://dx.doi.org/10.6084/m9.figshare.100893 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100911 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100960 Ceraphron sp. 13 2 Madagascar http://dx.doi.org/10.6084/m9.figshare.100597 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100552 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100874 Ceraphron sp. 14 2 Hungary http://dx.doi.org/10.6084/m9.figshare.100592 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100596 Ceraphronidae)

(Continued )

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

310 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Appendix A. (Cont.)

Taxon Specimen Country URL of media files SEM and bright field number micrographs on http://www.figshare.com Ceraphron sp. 15 2 Hungary http://dx.doi.org/10.6084/m9.figshare.100595 (Ceraphronoidea, Ceraphronidae) Ceraphron sp. 16 2 Australia http://dx.doi.org/10.6084/m9.figshare.100888 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100907 Ceraphronidae) Ceraphron bispinosus 4 Hungary http://dx.doi.org/10.6084/m9.figshare.100623 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100870 Ceraphronidae) Masner lubomirus 5 Australia http://dx.doi.org/10.6084/m9.figshare.95693 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.95683 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.95701 http://dx.doi.org/10.6084/m9.figshare.100930 http://dx.doi.org/10.6084/m9.figshare.100976 http://dx.doi.org/10.6084/m9.figshare.101996 http://dx.doi.org/10.6084/m9.figshare.101999 http://dx.doi.org/10.6084/m9.figshare.102009 Aphanogmus fasciipennis 8 Hungary/ http://dx.doi.org/10.6084/m9.figshare.95681 (Ceraphronoidea, Sweden http://dx.doi.org/10.6084/m9.figshare.100881 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100882 http://dx.doi.org/10.6084/m9.figshare.100952 http://dx.doi.org/10.6084/m9.figshare.100968 Aphanogmus sp. 2 2 Sweden http://dx.doi.org/10.6084/m9.figshare.100919 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100932 Ceraphronidae) Aphanogmus sp. 3 2 Sweden http://dx.doi.org/10.6084/m9.figshare.95687 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.95682 Ceraphronidae) Aphanogmus fulmeki 5 China http://dx.doi.org/10.6084/m9.figshare.100589 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100627 Ceraphronidae) Aphanogmus abdominalis 6 US/Sweden http://dx.doi.org/10.6084/m9.figshare.100619 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100875 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100877 Aphanogmus compressus 1 Sweden http://dx.doi.org/10.6084/m9.figshare.100573 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100898 Ceraphronidae) Aphanogmus sp. 7 4 China http://dx.doi.org/10.6084/m9.figshare.100571 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100572 Ceraphronidae) Aphanogmus sp. 8. 2 Sweden http://dx.doi.org/10.6084/m9.figshare.100581 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100584 Ceraphronidae) Aphanogmus sp. 9 5 Madagascar http://dx.doi.org/10.6084/m9.figshare.100576 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.103114 Ceraphronidae)

(Continued )

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 311

Appendix A. (Cont.)

Taxon Specimen Country URL of media files SEM and bright field number micrographs on http://www.figshare.com Aphanogmus sp. 10 3 Hungary http://dx.doi.org/10.6084/m9.figshare.95676 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100587 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100959 http://dx.doi.org/10.6084/m9.figshare.102020 Aphanogmus sp. 11 3 USA http://dx.doi.org/10.6084/m9.figshare.100585 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100570 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100897 http://dx.doi.org/10.6084/m9.figshare.102046 http://dx.doi.org/10.6084/m9.figshare.102040 http://dx.doi.org/10.6084/m9.figshare.102039 Aphanogmus sp. 12 3 Chile http://dx.doi.org/10.6084/m9.figshare.100945 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100960 Ceraphronidae) Aphanogmus sp. 13 5 Hungary http://dx.doi.org/10.6084/m9.figshare.100568 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100569 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100956 http://dx.doi.org/10.6084/m9.figshare.102003 http://dx.doi.org/10.6084/m9.figshare.102013 http://dx.doi.org/10.6084/m9.figshare.102030 Aphanogmus sp. 14 4 Hungary http://dx.doi.org/10.6084/m9.figshare.95677 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100580 Ceraphronidae) Aphanogmus sp. 16 4 Hungary http://dx.doi.org/10.6084/m9.figshare.100583 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100575 Ceraphronidae) Aphanogmus sp. 18 2 Madagascar (Ceraphronoidea, Ceraphronidae) Aphanogmus sp. 20 2 Australia http://dx.doi.org/10.6084/m9.figshare.95697 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100578 Ceraphronidae) Aphanogmus sp. 24 4 United Arab http://dx.doi.org/10.6084/m9.figshare.100565 (Ceraphronoidea, Emirates http://dx.doi.org/10.6084/m9.figshare.100566 Ceraphronidae) Aphanogmus sp. 26 3 United Arab http://dx.doi.org/10.6084/m9.figshare.100579 (Ceraphronoidea, Emirates Ceraphronidae) Aphanogmus sp. 27 6 Australia http://dx.doi.org/10.6084/m9.figshare.95675 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100894 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100915 http://dx.doi.org/10.6084/m9.figshare.100948 Aphanogmus bicolor 2 Sweden http://dx.doi.org/10.6084/m9.figshare.100946 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.103115 Ceraphronidae)

(Continued )

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

312 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Appendix A. (Cont.)

Taxon Specimen Country URL of media files SEM and bright field number micrographs on http://www.figshare.com Aphanogmus fumipennis 2 Sweden http://dx.doi.org/10.6084/m9.figshare.100586 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100590 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100949 http://dx.doi.org/10.6084/m9.figshare.100954 Aphanogmus tenuicornis 7 China http://dx.doi.org/10.6084/m9.figshare.100593 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100912 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100921 Aphanogmus dyctinna 2 Kenya (Ceraphronoidea, Ceraphronidae) Trassedia luapi 1 Madagascar http://dx.doi.org/10.6084/m9.figshare.95768 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.95699 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100887 http://dx.doi.org/10.6084/m9.figshare.100973 Trassedia sp. 2 1 Costa Rica http://dx.doi.org/10.6084/m9.figshare.95686 (Ceraphronoidea, Ceraphronidae) Trassedia sp. 3 1 French Guyana http://dx.doi.org/10.6084/m9.figshare.100922 (Ceraphronoidea, Ceraphronidae) Elysoceraphron sp. 2 Thailand http://dx.doi.org/10.6084/m9.figshare.100863 (Ceraphronoidea, http://dx.doi.org/10.6084/m9.figshare.100891 Ceraphronidae) http://dx.doi.org/10.6084/m9.figshare.100917

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 313 )

Continued ( http://purl.obolibrary.org/obo/HAO_0000336 http://purl.obolibrary.org/obo/HAO_0001574 http://purl.obolibrary.org/obo/HAO_0000239 http://purl.obolibrary.org/obo/HAO_0002038 http://purl.obolibrary.org/obo/HAO_0000221 http://purl.obolibrary.org/obo/HAO_0002032 http://purl.obolibrary.org/obo/HAO_0002031 http://purl.obolibrary.org/obo/HAO_0002030 http://purl.obolibrary.org/obo/HAO_0000146 http://purl.obolibrary.org/obo/HAO_0000246 http://purl.obolibrary.org/obo/HAO_0000134 http://purl.obolibrary.org/obo/HAO_0000107 http://purl.obolibrary.org/obo/HAO_0000091 http://purl.obolibrary.org/obo/HAO_0000078 URI ymenoptera Anatomy Ontology; URI = Uniform Resource Identifier). Resource URI = Uniform ymenoptera Anatomy Ontology; median wall of the harpe and arises distally site origin complex-harpal muscle. gonostipes/volsella of the proximal and adjacent to the digitus. muscles to abdominal tergum 9 and the gonostyle/volsella muscles to abdominal tergum 9 and the gonostyle/volsella complex. exocuticle. posteriorly of the anterior margin abdominal tergum 9. abdomen and bears the cercus. anatomical entities. distolateral margin of the gonostipes/volsella complex and insertsdistolateral margin of the gonostipes/volsella on the lateral wall of harpe. of the gonostipes and is the site of origin of the ventral gonostyle/ of the gonostipes and is site origin ventral muscles. complex-penisvalval volsella the anatomical structures encircled by the sclerite. by encircled the anatomical structures to the distal end of ejaculatory duct. The gonostipes/volsella complex-harpal muscle that insertsThe gonostipes/volsella on the The projection that is located apically on the gonossiculus. The projection The projection that is located distolaterally on the parossiculus that is located distolaterally on the parossiculus The projection The sclerite that is connected via conjunctiva and attached via The sclerite that is connected via conjunctiva The area of the integument that is weakly sclerotized, with thin weakly sclerotized, of the integument that is The area The setiferous patch that is one of a pair patches located The setiferous The seta that is on the cercus. The sclerite that is one of a pair sclerites located apically on the The anatomical structure that is delimited by material or immaterial that is delimited The anatomical structure The gonostipes/volsella complex-harpal muscle that arises from the complex-harpal muscle that arises from The gonostipes/volsella The apodeme that is located medially on the proximoventral margin The apodeme that is located medially on the proximoventral The anatomical cluster that is composed of the antennal sclerite and The anatomical cluster that is composed of sclerites that are adjacent The anatomical cluster that is composed of sclerites are The gland that empties into one of the reproductive ducts. reproductive The gland that empties into one of the Concept complex-harpal muscle complex-harpal muscle Distal gonostipes/volsella gonostipes/volsella Distal Digital spine Digital Cuspis Cupula Conjunctiva Cercus Cercal seta Cercal Cercal plate Cercal Area Apical gonostipes/volsella gonostipes/volsella Apical Apex gonostipitis Apex Antennomere Aedeagus Accessory gland Label Anatomical terms used, cross-referenced to an ontological (formal) definition (H Anatomical terms used, cross-referenced

gs-hrd dgt cus c crc crs cp gs-hra apg aed Appendix B. Appendix Abbreviation

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

314 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 http://purl.obolibrary.org/obo/HAO_0002039 http://purl.obolibrary.org/obo/HAO_0000270 http://purl.obolibrary.org/obo/HAO_0000278 http://purl.obolibrary.org/obo/HAO_0002062 http://purl.obolibrary.org/obo/HAO_0002037 http://purl.obolibrary.org/obo/HAO_0002036 http://purl.obolibrary.org/obo/HAO_0000251 http://purl.obolibrary.org/obo/HAO_0002035 http://purl.obolibrary.org/obo/HAO_0002034 http://purl.obolibrary.org/obo/HAO_0000250 http://purl.obolibrary.org/obo/HAO_0000249 URI on the dorsal region of the gonostyle/volsella complex. of the gonostyle/volsella on the dorsal region dorsolateral part of the cupula, just laterally site origin complex muscle, of the dorsomedian cupulo-gonostyle/volsella and inserts on the dorsolateral part of the gonostipes. gonostyle/volsella complex-volsellal muscles. complex-volsellal gonostyle/volsella corresponds to the site of origin lateral cupulo-gonostyle/ corresponds complex muscle. volsella is the site of insertion of the distodorsal gonostipo-penisvalval is the site of insertion of the distodorsal gonostipo-penisvalval muscle. from the proximoventral part complex, of the gonostyle-volsella the proximoventral from and is oriented distodorsally. inserts medially on the penisvalva of the gonostyle/volsella complex and accommodates the of the gonostyle/volsella proximodorsally. gonossiculus when it is pivotted distodorsally from the gonostyle volsella complex and inserts the gonostyle volsella on distodorsally from of the penisvalva. region the proximal site of insertion of the gonostyle/volsella complex-volsellal muscle. site of insertion complex-volsellal of the gonostyle/volsella The apodeme that is median and oriented proximally. The cupulo-gonostyle/volsella complex muscle that insertsThe cupulo-gonostyle/volsella medially The cupulo-gonostyle/volsella complex muscle that arises from the complex muscle that arises from The cupulo-gonostyle/volsella The apodeme that corresponds to the site of insertion of the The apodeme that corresponds The impression that is located dorsolaterally on the cupula and The impression The apodeme that is located proximodorsally on the aedeagus and The apodeme that is located proximodorsally The ventral gonostyle/volsella complex-penisvalval muscle that arises complex-penisvalval ventral gonostyle/volsella The The projection that is located distolaterally on the harpe. The projection The notch that is located submedially on the proximodorsal margin The notch that is located submedially on the proximodorsal The dorsal gonostyle/volsella complex penisvalval muscle that arises complex penisvalval The dorsal gonostyle/volsella The apodeme that is located distally on the parossiculus and is the The apodeme that is located distally on the parossiculus Concept of the aedeagus gonostyle/volsella gonostyle/volsella complex muscle gonostyle/volsella gonostyle/volsella complex muscle impression of cupula impression penisvalva volsella complex- volsella muscle penisvalval of the harpe notch of gonostyle/ complex volsella volsella complex- volsella muscle penisvalval Dorsomedian apodeme Dorsomedian Dorsomedial cupulo- Dorsomedial Dorsolateral cupulo- Dorsolateral Dorsalmost digital spine Dorsalmost Dorsal submedian Dorsal Dorsal apodeme of Dorsal Distoventral gonostyle/ Distoventral Distolateral projection projection Distolateral Distodorsal submedian Distodorsal Distodorsal gonostyle/ Distodorsal Distivolsellar apodeme Distivolsellar Label Cont. ) (

dae c-gsdm c-gsdl dsi dap gs-pvdv dph ddn gs-pvdd Appendix B. Appendix Abbreviation dva

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 315 )

Continued ( http://purl.obolibrary.org/obo/HAO_0002063 http://purl.obolibrary.org/obo/HAO_0002033 http://purl.obolibrary.org/obo/HAO_0002041 http://purl.obolibrary.org/obo/HAO_0000389 http://purl.obolibrary.org/obo/HAO_0000168 http://purl.obolibrary.org/obo/HAO_0000386 http://purl.obolibrary.org/obo/HAO_0000385 http://purl.obolibrary.org/obo/HAO_0000381 http://purl.obolibrary.org/obo/HAO_0000380 http://purl.obolibrary.org/obo/HAO_0000285 http://purl.obolibrary.org/obo/HAO_0002040 surface of the gonossiculus and gonossiculal articular surface of the parossiculus. located distally of the cupula and surround the aedeagus. located distally of the cupula and surround gonostyle, is proximomedially oriented, and inserts on the gonostyle, is proximomedially sclerite of the volsella. proximalmost of the cupula dorsolaterally of the volsella, and that surround the and that surround of the cupula dorsolaterally volsella, aedeagus. and is composed of the sclerites that are proximal to the harpe. proximal and is composed of the sclerites that are complex, is connected to the distal margin of cupula, margin of the harpe, and to lateral proximal complex. parossiculus volsella complex, and is articulated with the more proximal proximal complex, and is articulatedvolsella with the more complex. sclerites of the gononstyle/volsella of the volsella, surrounds the aedeagus dorsolaterally and does surrounds of the volsella, not connected to any sclerite distally. margin of the cupula and is site insertion of the lateral S9-cupulal muscle. oriented differently. region of the gonostyle/volsella complex. of the gonostyle/volsella region The articulation articular that is composed of the parossiculal The anatomical cluster that is composed of the sclerites that are The anatomical cluster that is composed of the sclerites are The male genitalia muscle that arises ventromedially from the from ventromedially The male genitalia muscle that arises The anatomical cluster that is composed of sclerites located distally The anatomical cluster that is part complex of the gonostyle/volsella The sclerite that is located dorsolaterally on the gonostyle/volsella The sclerite that is located dorsolaterally on the gonostyle/volsella The sclerite that is located on the distoventral part of the gonostyle/ The sclerite that is located on the distoventral The sclerite that is located distally of the cupula and dorsolaterally The apophysis that is located ventromedially on the proximal on the proximal ventromedially The apophysis that is located The margin that extends along the border of two areas that are that are of two areas The margin that extends along the border The conjunctiva that is linear and extends medially on the dorsal The conjunctiva complex-gonossiculus articulation complex muscle complex of the gonostyle/volsella of the gonostyle/volsella complex Gonostyle/volsella Gonostyle/volsella Gonostyle/volsella Gonostyle/volsella Gonostyle-parossiculal Gonostyle-parossiculal Gonostyle Gonostipes/volsella Gonostipes/volsella Gonostipes Gonossiculus Gonoforceps Gonocondyle Edge Dorsomedian conjunctiva conjunctiva Dorsomedian gvc gs-pss gs gst gss gfc dmc

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

316 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 http://purl.obolibrary.org/obo/HAO_0000655 http://purl.obolibrary.org/obo/HAO_0001120 http://purl.obolibrary.org/obo/HAO_0002046 http://purl.obolibrary.org/obo/HAO_0000533 http://purl.obolibrary.org/obo/HAO_0000517 http://purl.obolibrary.org/obo/HAO_0000510 http://purl.obolibrary.org/obo/HAO_0000464 http://purl.obolibrary.org/obo/HAO_0000473 http://purl.obolibrary.org/obo/HAO_0000472 http://purl.obolibrary.org/obo/HAO_0000395 http://purl.obolibrary.org/obo/HAO_0002042 http://purl.obolibrary.org/obo/HAO_0002043 URI to the occipital carina. region of the gonostyle/volsella complex. of the gonostyle/volsella region 9 and inserts ventrolaterally on the cupula. 9 and inserts ventrolaterally gonostyle/volsella complex and inserts ventromedially on the complex and insertsgonostyle/volsella ventromedially gonossiculus sharing a common tendom with the penisvalvo- gonossiculal muscle. medioventrally on the cupula. medioventrally of the submedian conjunctiva on the distoventral margin of on the distoventral of the submedian conjunctiva complex. gonostyle/volsella anterolaterally of the site origin distodorsal gonostyle/ anterolaterally muscle and inserts laterally on the complex-penisvalval volsella penisvalva. and does not connected to the cupula and to the volsella by by and does not connected to the cupula volsella and muscles. conjunctivae gonostyle/volsella complex and inserts the gonossiculal gonostyle/volsella nearby articulation. complex and inserts on the harpe. The depression that is located submedially on the occiput ventral that is located submedially on the occiput The depression The tibial spur that is located on the mesotibia. The conjunctiva that is linear and extends medially on the ventral that is linear and extends medially on the The conjunctiva The cupulal muscle that arises medially from abdominal sternum The cupulal muscle that arises medially from The gonossiculal muscle that arises ventromedially from the from ventromedially The gonossiculal muscle that arises The line that delimits the periphery of an area. The S9-cupulal muscle that arises sublaterally from S9 and insertsThe S9-cupulal muscle that arises sublaterally from The gonostyle/volsella complex-volsellal muscle that arises medially complex-volsellal The gonostyle/volsella The gonostyle/volsella complex-penisvalval muscle that arises complex-penisvalval The gonostyle/volsella The sclerite that is located distally on the gonostipes/volsella complex The sclerite that is located distally on the gonostipes/volsella The male genitalia muscle that arises proximoventrally from the from The male genitalia muscle that arises proximoventrally The male genitalia muscle that arises from the gonostipes/volsella the gonostipes/volsella The male genitalia muscle that arises from Concept of the gonostyle/ complex volsella muscle complex-gonossiculus muscle complex-volsella complex-volsella muscle complex-penisvalval complex-penisvalval muscle complex-volsellal muscle complex-volsellal complex-harpal muscle Occipital depression Occipital Mesotibial apical spur Mesotibial Medioventral conjunctiva conjunctiva Medioventral Mediolateral S9-cupulal Mediolateral Gonostyle/volsella Gonostyle/volsella Margin Lateral S9-cupulal muscle Medial gonostyle/volsella gonostyle/volsella Medial Lateral gonostyle/volsella Lateral gonostyle/volsella Harpe Gonostyle/volsella Gonostyle/volsella Gonostipes/volsella Gonostipes/volsella Label Cont. ) (

mvc S9-cml imvm S9-cl imvl gs-pvl hrp gs-vl Appendix B. Appendix Abbreviation gs-hr

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 317 )

Continued ( http://purl.obolibrary.org/obo/HAO_0002049 http://purl.obolibrary.org/obo/HAO_0002048 http://purl.obolibrary.org/obo/HAO_0000877 http://purl.obolibrary.org/obo/HAO_0002047 http://purl.obolibrary.org/obo/HAO_0001574 http://purl.obolibrary.org/obo/HAO_0000829 http://purl.obolibrary.org/obo/HAO_0000714 http://purl.obolibrary.org/obo/HAO_0000710 http://purl.obolibrary.org/obo/HAO_0000709 http://purl.obolibrary.org/obo/HAO_0000707 http://purl.obolibrary.org/obo/HAO_0000703 http://purl.obolibrary.org/obo/HAO_0000138 accommodates the gonossiculus if it is pivoted proximodorsally. accommodates the gonossiculus if it is pivoted cupula and is delimited laterally by the site of origins cupula and is delimited laterally by complex muscles. dorsomedial cupulo-gonostyle/volsella proximodorsally from the gonostyle/volsella complex and inserts the gonostyle/volsella from proximodorsally distally of the site insertion of the distodorsal on the penisvalva muscle. complex-penisvalva gononstyle/volsella median wall of the harpe and arises proximally of the site median wall of the harpe and arises proximally complex-harpal muscle. origin of the distal gonostipes/volsella proximal part of the penisvalva and inserts part on the endophallus just of the penisvalva proximal the phallotrema. around surrounds the distal partsurrounds of the ductus ejaculatorius and endophallus. penisvalva. articulates with the gonossiculus. gonostyle/volsella complex just laterally of the gonostyle/volsella complex just laterally of the gonostyle/volsella gonostyle/volsella complex-gonossiculus articulation. The notch that is located proximodorsally on the harpe that The notch that is located proximodorsally The notch that is medially on the proximodorsal margin of the The notch that is medially on the proximodorsal The dorsal gonostyle/volsella complex penisvalval muscle that arises complex penisvalval The dorsal gonostyle/volsella The lobe that is connected to the vas deferens. The lobe that is connected to the The gonostipes/volsella complex-harpal muscle that insertsThe gonostipes/volsella on the The process that is located on an edge. The process The anatomical space that is the distal opening of endophallus. The male genitalia muscle that arises from the medial surfaceThe male genitalia muscle that arises from of the The gonossiculal muscle that arises from the penisvalva. The gonossiculal muscle that arises from The sclerite that is in the middle of external male genitalia, The muscle that arises from the parossiculus and inserts the parossiculus on the The muscle that arises from The sclerite that is connected distoventrally to the gonostipes, and The sclerite that is connected distoventrally The seta that is located close to the distoventral margin of the The seta that is located close to the distoventral harpe cupula volsella complex- volsella muscle penisvalval deferens volsella complex-harpal volsella muscle muscle muscle muscle Proximodorsal notch of Proximodorsal Proximodorsal notch of Proximodorsal Proximodorsal gonostyle/ Proximodorsal Proximal lobe of vas lobe of vas Proximal Proximal gonostipes/ Proximal projection Phallotrema Penisvalvo-phallotremal Penisvalvo-phallotremal Penisvalvo-gonossiculal Penisvalvo-gonossiculal Penisvalva Parossiculo-penisvalval Parossiculo-penisvalval Parossiculus Parossiculal seta Parossiculal pnh pvn gs-pvpd pvd gs-hrp pht pv-gss plv pss-pv pss prs

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

318 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 http://purl.obolibrary.org/obo/HAO_0002060 http://purl.obolibrary.org/obo/HAO_0002059 http://purl.obolibrary.org/obo/HAO_0002058 http://purl.obolibrary.org/obo/HAO_0002057 http://purl.obolibrary.org/obo/HAO_0000985 http://purl.obolibrary.org/obo/HAO_0002056 http://purl.obolibrary.org/obo/HAO_0002055 http://purl.obolibrary.org/obo/HAO_0000946 http://purl.obolibrary.org/obo/HAO_0002054 http://purl.obolibrary.org/obo/HAO_0000909 http://purl.obolibrary.org/obo/HAO_0002053 http://purl.obolibrary.org/obo/HAO_0000903 http://purl.obolibrary.org/obo/HAO_0000957 http://purl.obolibrary.org/obo/HAO_0000879 http://purl.obolibrary.org/obo/HAO_0002050 URI gonostyle/volsella complex and delimits laterally the site of origin gonostyle/volsella complex-gonossiculus muscle. of the gonostyle/volsella complex laterally of the gonostyle/volsella complex-gonossiculus complex laterally of the gonostyle/volsella articulation. abdominal sternum 9 and corresponds to the site of origin abdominal sternum 9 and corresponds mediolateral S9-cupulal muscles. internal male genitalia. exocuticle and is surrounded by conjunctivae. by and is surrounded exocuticle margin of the fore wing. margin of the fore ventromedially from the gonostyle/volsella complex, inserts the gonostyle/volsella on the from ventromedially and is oriented proximodorsally. end of the penisvalva proximal is the site of insertion of the proximal and distal gonostipes/ is the site of insertion of the proximal complex-harpal muscles. volsella The abdominal muscle that connects T9 with T10. T9 with The abdominal muscle that connects The tergite that is connected to S9 via muscles. The tergite that is distally connected to T9 via muscles. The tergite that is distally connected to The tergite that is posterior to T9 and is connected to T9 via muscles. T9 and is connected to The tergite that is posterior to The sternite that is at least two times as long an adjacent sternite. The conjunctiva that is elongate, is on the distoventral margin of the that is elongate, on the distoventral The conjunctiva The notch that is on the distoventral margin of the gonostyle/volsella margin of the gonostyle/volsella The notch that is on the distoventral The apophysis that is located medially on the anterior margin of The portion of tissue that is produced by the gland cells of The portion of tissue that is produced The area of the integument that is strongly sclerotised, with thick sclerotised, of the integument that is strongly The area The sternite that is connected posteriorly to the cupula via muscles. The row that is composed of setae. row The The patch on the wing that is sclerotized and is on the anterior The patch on the wing that is sclerotized The ventral gonostyle/volsella complex-penisvalval muscle that arises complex-penisvalval ventral gonostyle/volsella The The apodeme that is on the proximomedian margin of the harpe that The apodeme that is on the proximomedian Concept on the distoventral on the distoventral margin of gonostyle/ complex volsella distoventral margin of distoventral gonostyle/volsella complex volsella complex- volsella muscle penisvalval of the harpe T9-T10 muscle T9 T8 T10 Synsternum Submedian conjunctiva conjunctiva Submedian Submedial notch on Submedial Spiculum Semen Sclerite S9 Row of setae Row Pterostigma Proximoventral gonostyle/ Proximoventral Proximomedian apodeme Proximomedian Label Cont. ) (

T9-T10 T9 T8 T10 sdv pn spc sem S9 rss gs-pvpv Appendix B. Appendix Abbreviation pah

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 319 http://purl.obolibrary.org/obo/HAO_0001088 http://purl.obolibrary.org/obo/HAO_0001084 http://purl.obolibrary.org/obo/HAO_0002064 http://purl.obolibrary.org/obo/HAO_0001075 http://purl.obolibrary.org/obo/HAO_0001074 http://purl.obolibrary.org/obo/HAO_0002061 http://purl.obolibrary.org/obo/HAO_0002052 http://purl.obolibrary.org/obo/HAO_0001052 abdominal tergite 7. ventral part of the male genitalia that are not connected to the partventral of the male genitalia that are cupula via muscles. continuous with the ventromedian conjunctiva of the gonostyle- conjunctiva continuous with the ventromedian complex. volsella medially on the ventral region of the gonostyle/volsella complex. of the gonostyle/volsella region medially on the ventral ventrolaterally on the gonostyle/volsella complex between the complex between on the gonostyle/volsella ventrolaterally and dorsolateral cupulo- site of insertion of the ventromedian complex muscles. gonostyle/volsella continuous with the ventromedian conjunctiva of the gonostyle- conjunctiva continuous with the ventromedian complex. volsella volsella complex. volsella The evaporatorium that is located medially on the acrotergite of that is located medially on the acrotergite The evaporatorium The anatomical cluster that is composed of the sclerites on The apodeme that arises distoventrally from the aedeagus and is not from The apodeme that arises distoventrally The cupulo-gonostyle/volsella complex muscle that insertsThe cupulo-gonostyle/volsella The cupulo-gonostyle/volsella complex muscle that insertsThe cupulo-gonostyle/volsella The apodeme that arises distoventrally from the aedeagus and is from The apodeme that arises distoventrally The penisvalval muscle that arises ventrally from the gonostyle/ ventrally from muscle that arises The penisvalval The duct that connect the testis with ejaculatory duct. evaporatorium of the aedeagus gonostyle/volsella gonostyle/volsella complex msucle gonostyle/volsella gonostyle/volsella complex complex-penisvalval complex-penisvalval muscles Waterston’s Waterston’s Volsella Ventromedian apodeme Ventromedian Ventromedial cupulo- Ventromedial Ventrolateral cupolo- Ventrolateral ventral rod of aedeagus rod ventral Ventral gonostyle-volsella gonostyle-volsella Ventral Vas deferens Vas vol vaa c-gsvm c-gsvl vra vdf

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

320 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 sp. Megischus sp. Megischus Taxon Macroxyela ferruginea Macroxyela sp. Xyela sp. Xyela sp. Evania sp. Evania sp. Evania sp. Hyptia sp. Hyptia sp. Hyptia Szepligetella sp. Szepligetella sp. Depository PSUC PSUC PSUC PSUC PSUC InBio InBio InBio PSUC PSUC PSUC PSUC PSUC .2008, 1km N Dillon rd, 261m, 33°48.240'N 116°10.857'W, 4.v 261m, 33°48.240'N 116°10.857'W, rd, 1km N Dillon

E08-015 A Ernst, dead Palo Verde wood Verde dead Palo E08-015 A Ernst, E08-015 A Ernst, dead Palo Verde wood Verde dead Palo E08-015 A Ernst, 84°06'W, 1450-1550m 84°06'W, 1450-1550m 84°06'W, 1450-1550m 84°06'W, Vanderbv trap 30°19.751’N, 84°30.309'W 9-18-viii-2005 A. Malaise Vanderbv trap 30°19.751'N, 84°30.309'W 9-18-viii-2005 A. Malaise Vanderbv trap 30°19.751'N, 84°30.309'W 9-18-viii-2005 A. Malaise 27-xi-8-xii-2000 EI Schlinger ME Irwin, LJ Boutin 3-6m, 2-2m, MT; 27-xi-8-xii-2000 EI Schlinger ME Irwin, LJ Boutin 3-6m, 2-2m, MT; USA, CA, Riverside Co, Indio, ~ Co, Indio, USA, CA, Riverside USA, CA, Riverside Co, Indio, ~ km N Dillon rd, 261m, 33°48.240'N 116°10.857'W, 4.v.2008, 4.v.2008, 261m, 33°48.240'N 116°10.857'W, rd, ~ km N Dillon Co, Indio, USA, CA, Riverside Locality data USA, MD, 2004, Schulmeister USA, NC, Creedmoore, Buttner, 04.18.2009, YPT, Mikó & Blinn Mikó YPT, 04.18.2009, Buttner, USA, NC, Creedmoore, & Blinn Mikó YPT, 04.18.2009, Buttner, USA, NC, Creedmoore, 10°14'N, Blanca, Vara 9km NE Costa Rica, 21.II.2005 15/M/16/016 1500-site Rica Heredia, 10°14'N, Blanca, Vara 9km NE Costa Rica, 21.II.2005 15/M/16/016 1500-site Rica Heredia, 10°14'N, Blanca, Vara 9km NE Costa Rica, 21.II.2005 15/M/16/016 1500-site Rica Heredia, ant heaven, FS 366 pine/oak savanna Forest National Apalachicola County, Wakulla USA, FL, ant heaven, FS 366 pine/oak savanna Forest National Apalachicola County, Wakulla USA, FL, ant heaven, FS 366 pine/oak savanna Forest National Apalachicola County, Wakulla USA FL, 20.397S 164.528E, 780m, WSW Puebo, 5 km Mandjelia, Mount Nord Caledonia, Prov. New 20.397S 164.528E, 780m, WSW Puebo, 5 km Mandjelia, Mount Nord Caledonia, Prov. New Specimens examined. Abbreviations of depositories, PSUC, Frost Entomological Museum, University Park, PA, USA; InBio, Instituto Nacional de Nacional Instituto USA; InBio, PA, Park, University Museum, Entomological of depositories, PSUC, Frost Abbreviations examined. Specimens

PSUCIM_3011 Appendix C. Appendix ID Specimen PSUCIM_2999 PSUCIM_3000 PSUCIM_3001 PSUCIM_3002 PSUCIM_3003 PSUCIM_3004 PSUCIM_3005 PSUCIM_3006 PSUCIM_3007 PSUCIM_3008 PSUCIM_3009 PSUCIM_3010 Biodiversidad, Santo Domingo de Heredia, Costa Rica; CAS, California Academy of Sciences, San Francisco, CA, USA; ANIC, Australian National Insect Collection, Insect National CA, USA; ANIC, Australian Francisco, of Sciences, San Costa Rica; CAS, California Academy de Heredia, Domingo Santo Biodiversidad, SAMC, Iziko Kenya; Nairobi, of Kenya, Museum NMKE, National SA, Australia; Adelaide, Museum, Australian SAM, South Australia; ACT, Canberra City, riksmuseet, Africa; NHRS, Naturhistoriska South Natal, Kwa-Zulu Pietermaritzburg, Museum, Africa; NMSA, Natal South Town, Cape Town, of Cape Museum National CNC, Canadian Thailand; Chaing Mai, Botanic Garden, Sirikit Queen QSGB, Fiji; Suva, Collection, Insect National Fiji FNIC, Sweden; Stockholm, Australia; WA, Perth, Museum, Australian Western WAM, Australia; QLD, Brisbane, South Museum, Queensland Canada; ON, Ottawa, Insects, of Collection Museum, London, UK. History Natural BMNH, The

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 321 )

Continued ( gundlachii gundlachii sp. Megischus Schletterius cinctipes Orthogonalys pulchella Orthogonalys pulchella Orthogonalys pulchella Orthogonalys pulchella Orthogonalys pulchella Taeniogonalos Taeniogonalos Dinapsis nr oculohirta Dinapsis nr oculohirta Dinapsis nr oculohirta Dinapsis nr oculohirta resutorivus Pristaulacus resutorivus Pristaulacus resutorivus Pristaulacus burquei Aulacus burquei Aulacus burquei Aulacus sp. Gasteruption PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC CAS CAS CAS CAS PSUC PSUC PSUC PSUC PSUC PSUC PSUC

.2008, 1km N Dillon rd, 261m, 33°48.240'N 116°10.857'W, 4.v 261m, 33°48.240'N 116°10.857'W, rd, 1km N Dillon

E08-015 A Ernst, dead Palo Verde wood Verde dead Palo E08-015 A Ernst, Emerge iv.06, F. Reuter F. iv.06, Emerge BLF7820 mx id, 19835 Litter, et al., Sifted Griswold 1100.0 meters 18-22..2003 Fisher, close malaise trap in degraded riparian forest Project, Wilderness of Sciences colls. Frontier Acad. to water MGF075 225 -12.8047 Antsiranana Madagascar Analamerana, 16.7 km 123° Anivorano-Nord Rés. forest GPS obtained from coordinates 49.3738 Malagasy 50 -23.2214 43.8811 Malagasy Madagascar Toliara wood) Fiherenana litter (leaf mold, rotten GPS obtained from coordinates vii.2005, Lindsey&Edelen USA, CA, Riverside Co, Indio, ~ Co, Indio, USA, CA, Riverside USA, CA, S. BRDO. Co. Jenks LK. Rd., 2105m, 34°9'48”N 116°51'43”W, ex. Abies log coll. 28.I.06. ex. Abies LK. Rd., 2105m, 34°9'48”N 116°51'43”W, Jenks USA, CA, S. BRDO. Co. D. Smith trap. 2-15.vii.2004, Malaise 38°55'N, 78°49'W, Mathias, 3mi Ne Co. Hardy WV, USA, D. Smith trap. 2-15.vii.2004, Malaise 38°55'N, 78°49'W, Mathias, 3mi Ne Co. Hardy WV, USA, D. Smith trap. 2-15.vii.2004, Malaise 38°55'N, 78°49'W, Mathias, 3mi Ne Co. Hardy WV, USA, D. Smith trap. 2-15.vii.2004, Malaise 38°55'N, 78°49'W, Mathias, 3mi Ne Co. Hardy WV, USA, D. Smith trap. 2-15.vii.2004, Malaise 38°55'N, 78°49'W, Mathias, 3mi Ne Co. Hardy WV, USA, D. Smith trap. 18.vi-1.vii.2004, Malaise 38°55'N, 78°49'W, Mathias, 3mi Ne Co. Hardy WV, USA, D. Smith trap. 18.vi-1.vii.2004, Malaise 38°55'N, 78°49'W, Mathias, 3mi Ne Co. Hardy WV, USA, -22.675S, 44.19E 29.2 km 343° NNW Mahaboboka Classée d’Analavelona, Fôret Madagascar 2003 California elev 65m -23.22252, 43.880885-10 August Fiherenana, Prov. Toliara Madagascar dry MW 25 sample transect, 5m tropical trap, 2004-12-03 Malaise BLF11276 B.L.Fisher Madagascar 2002-11-17 MW 20 sample transect, 5m gallery sifted forest Project MGF046 Frontier Madagascar 5-23-55, ex lumber of newRBW house yielding productus USA, MS, Jackson, J.N.Knull Vi-6-12, Hummelstown, USA, PA, 5-27-1948, in pine bark USA, MD, College Park, 6. 13, USNM_2048833 Vi. 11338, reared USA, Hopk, 6. 13, USNM_2048833 Vi. 11338, reared USA, Hopk, 6. 13, USNM_2048833 Vi. 10180, reared USA, Hopk, 38°13.178'N, 84°51.325', MTFloodplainHI#25014-21. Park, Springs Cove Co., USA, Franklin PSUCIM_4000 PSUCIM_3013 PSUCIM_3014 PSUCIM_3015 PSUCIM_3016 PSUCIM_3017 PSUCIM_3018 PSUCIM_3019 PSUCIM_3020 PSUCIM_3021 PSUCIM_3022 PSUCIM_3023 PSUCIM_3024 PSUCIM_2362 PSUCIM_2360 PSUCIM_2359 PSUCIM_2363 PSUCIM_2364 PSUCIM_3025 PSUCIM_3012

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

322 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 conwentziae conwentziae conwentziae penmaricus penmaricus penmaricus Taxon sp. Gasteruption sp. Gasteruption sp. Gasteruption sp. Pseudofoenus sp. Pseudofoenus sp. Megalyra sp. Megalyra 1 sp. Dendrocerus 1 sp. Dendrocerus 1 sp. Dendrocerus 1 sp. Dendrocerus 1 sp. Dendrocerus Dendrocerus Dendrocerus Dendrocerus Dendrocerus Dendrocerus Dendrocerus Depository PSUC PSUC PSUC ANIC FNIC ANIC ANIC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC vii.2005, Lindsey&Edelen trap in flowering heath. 3-21.ii.2004. Lambkin & Starick, Anic bulk sample 2133, 35°24'52”S, heath. 3-21.ii.2004. Lambkin & trap in flowering 149°32'04”E 178.424°E. FBA 102795 Tokota’a.18.055°S, 3. Schlinger, 25.II-17.III.03, Malaise J. Pedersen 13-23.ix.2008 MT in 2 forest M Bertone, B. Blinn A Deans, Locality data USA Franklin Co., Cove Springs Park, 38°13.178'N, 84°51.325', MTFloodplainHI#25014-21. Park, Springs Cove Co., USA Franklin USA WV, Hardy Co., 11–22.v.2006, MT, O.R.Smith MT, 11–22.v.2006, Co., Hardy WV, USA O.R.Smith MT, 11–22.v.2006, Co., Hardy WV, USA Malaise Hoskinstown, 14.3 km from Park, National Tallaganda Range, Black South NSW, Australia, Nkobalevu, 372m, Vlg. Mount W9W Colo-1-Suva 4 km Prov. viti Levu Naitasiri Fiji, 19.I.1999, G. Gibson Mnt., Canberra, Black ACT, Australia, 29.xii.2006, -33.66, 151.22, Creek, Smiths Park, Chase Nat. Ku-Ring-Gai NSW, Australia, blacklight Lab, Dunn 10.06.2010, Bioblitz, Forest, USA, NC, Duke VIII.29–IX.25.2006 Co. Hardy USA, WV, VIII.29–IX.25.2006 Co. Hardy USA, WV, VIII.29–IX.25.2006 Co. Hardy USA, WV, sweeping#19 Goulet & Boudreault, field Canada, Cloridorme, 49.18, -64.85, 26.VII.2008, fallow VIII.29–IX.25.2006 Co. Hardy USA, WV, VI.21–VII.07.2005 Co. Hardy USA, WV, 1998 Turkey, USA, KY, 2005 Trap, Malaise VI-7-20-05, DR Smith, Co., Hardy WV, USA, Science, 35.647°N 78.431°W (+-500m), Environment Clayton Bayer Co., USA, NC, Johnston 1998 Turkey, USA, KY, Cont. ) (

Appendix C. Appendix ID Specimen PSUCIM_3026 PSUCIM_3027 PSUCIM_3028 PSUCIM_3029 PSUCIM_3030 PSUCIM_3031 PSUCIM_3032 PSUCIM_3033 PSUCIM_3034 PSUCIM_3035 PSUCIM_3036 PSUCIM_3037 PSUCIM_3038 PSUCIM_3039 PSUCIM_3040 PSUCIM_2118 PSUCIM_1521 PSUCIM_3041

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 323 )

Continued ( rectangularis rectangularis rectangularis rectangularis rectangularis marycarverae marycarverae marycarverae marycarverae marycarverae Dendrocerus Dendrocerus Dendrocerus Dendrocerus Dendrocerus Dendrocerus Dendrocerus Dendrocerus Dendrocerus Dendrocerus Dendrocerus Dendrocerus africanus Dendrocerus africanus Dendrocerus africanus Dendrocerus africanus Dendrocerus africanus Dendrocerus NHRS NHRS NHRS NHRS NHRS SAM SAM SAM SAM SAM NMKE NMKE NMKE SAMC NMKE alaise Trap Trap alaise TrapID 23) TrapID

alaise Trap Project (Swedish (Swedish Project Trap alaise edish Malaise Trap Project Project Trap edish Malaise Project Trap edish Malaise alaise Trap Project (Swedish Museum Museum (Swedish Project Trap alaise coll.event ID 451) Leg. Swedish M ID 451) Leg. Swedish coll.event

coll event ID 1226) Leg. Swedish M ID 1226) Leg. Swedish coll event

coll. event ID 1415) Leg. Swedish M ID 1415) Leg. Swedish coll. event

TrapID 25) 22.vii-12.viii.2003 (= TrapID

TrapID 4) 02.vii-21.vii.2003 (coll. event ID 88) Leg. Sw 4) 02.vii-21.vii.2003 (coll. event TrapID ID 88) Leg. Sw 4) 02.vii-21.vii.2003 (coll. event TrapID

TrapID 50) 19.viii-03.ix.2004 (= TrapID

22ix.2005-06.X.2005 (= History) of Natural (= History) of Natural Museum 59.88°N, 17.19°E, (= History) of Natural Museum (Swedish Project 18.24°E, (= History) of Natural Museum (Swedish 18.24°E, (= History) of Natural Museum (Swedish 173°S Lidjombo, 2°21.60'N 16°03.20'E, 350m, 26-27.v.2001, S. van Noort, Malaise trap Malaise Noort, S. van 173°S Lidjombo, 2°21.60'N 16°03.20'E, 350m, 26-27.v.2001, rainforest CAR01-M224, Lowland Sweden, BI, Ronneby kommun, Tromtö nabb. Beech and oak forest. 56.14°N, 15.48°E, (= and oak forest. Beech nabb. Tromtö kommun, BI, Ronneby Sweden, Sweden, BD, Kiruna kommun, Abisko nationalpark, Drywood, 68.35°N, 18.78°E, nationalpark, alpine birch BD, Kiruna kommun, Abisko Sweden, along brook, deciduous forest källa, mixed Trefaldighets urskog, kommun, Fiby Upsala Sweden, 59.17°N, Blueburry. spruce wood w. Norway Urskogsslingan Tyresta, kommun, Haninge Sö, Sweden, 59.17°N, Blueburry. spruce wood w. Norway Urskogsslingan Tyresta, kommun, Haninge Sö, Sweden, Australia, SA, 32km North Renmark, -33.88, 140.71, 263m, 15.II-15.IV. 2000 C. Darling -33.88, 140.71, 263m, 15.II-15.IV. Renmark, SA, 32km North Australia, Australia, SA, 32km North Renmark, -33.88, 140.71, 263m, 15.II-15.IV. 2000 C. Darling -33.88, 140.71, 263m, 15.II-15.IV. Renmark, SA, 32km North Australia, 2000 C. Darling -33.88, 140.71, 263m, 15.II-15.IV. Renmark, SA, 32km North Australia, 2000 C. Darling -33.88, 140.71, 263m, 15.II-15.IV. Renmark, SA, 32km North Australia, 2000 C. Darling -33.88, 140.71, 263m, 15.II-15.IV. Renmark, SA, 32km North Australia, 13-27.VIII.2006 MT, Kakamega Rondo, Kenya, 13-27.VIII.2006 MT, Kakamega Rondo, Kenya, 13-27.VIII.2006 MT, Kakamega Rondo, Kenya, de Dzanga-Ndoki, 38.6km National Parc Sangha-Mbaéré, Prefecture Central African Republic, 5-19.V.05 Ungoye, Victoria, Lake Nyanza, Kenya, PSUCIM_1679 PSUCIM_1743 PSUCIM_1707 PSUCIM_1708 PSUCIM_2074 PSUCIM_2077 PSUCIM_2076 PSUCIM_2075 PSUCIM_3042 PSUCIM_3043 PSUCIM_3044 PSUCIM_3045 PSUCIM_3046 PSUCIM_3047 PSUCIM_1749

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

324 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 propodealis propodealis propodealis Dendrocerus punctipes Dendrocerus punctipes Dendrocerus 11 sp. Dendrocerus floridanus Dendrocerus floridanus Dendrocerus floridanus Dendrocerus floridanus Dendrocerus floridanus Dendrocerus perlucidus Dendrocerus perlucidus Dendrocerus Dendrocerus Dendrocerus Dendrocerus Taxon Depository NHRS NHRS NHRS NHRS NHRS PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC

alaise trap Trap ID Trap

alaise trap Trap ID 29), Trap

coll. event ID 191) Leg. coll. event

coll. event ID 1389) Leg. coll. event

alaise trap Project (Swedish Museum of Museum (Swedish alaise trap Project coll event ID 768) Leg. Swedish M ID 768) Leg. Swedish coll event

coll event ID 768) Leg. Swedish M ID 768) Leg. Swedish coll event

TrapId 54), 01.viii-18.viii.2003 (= TrapId

coll. event ID 1050), Leg. Swedish M ID 1050), Leg. Swedish coll. event

alluvial sediments (64.19°N, 19.605°E) (= History) of Natural Museum (Swedish Project Trap Malaise Swedish ID 5) 16.viii-08.ix.2004(= 59.17°N, 17.99°E (Trap History) of Natural Museum (Swedish Project 15.ix-21.10.2004 (= History) Natural ID 5) 16.viii-08.ix.2004 (= 59.17°N, 17.99°E (Trap History) of Natural Museum (Swedish Project ravine 24.vii-12.ix.2005 (= in stream deciduous forest 1003) old mixed History) of Natural Museum (Swedish Project Trap Malaise Swedish Laburnum anagyroides, 530m, 13.vi.2009 coll, mumified nymph, eclosis, around 23.vi.2009, 530m, 13.vi.2009 coll, mumified nymph, eclosis, around Laburnum anagyroides, Lauterer P. 23.vi.2009, 530m, 13.vi.2009 coll, mumified nymph, eclosis, around Laburnum anagyroides, Lauterer P. Sweden, Go, Gottlands kommun, Rembs, Lichen pine forest, 56.93°N, 16.26°E (= Lichen pine forest, kommun, Rembs, Gottlands Go, Sweden, N6632516 E1365816 (= Ransbergs Herrgard, kommun, Ransäter, Munkfors Vr, Sweden, Sweden, Sö, Huddinge kommun, Sofielunds atervinningsanläggning, Pine forest with garbage, atervinningsanläggning,Pine forest kommun, Sofielunds Huddinge Sö, Sweden, V.03-IV.13.2000 Turkey, USA, Kentucky, , garden, Boskovice distr. Korenec Highlands, vrchovina Drahanská Morava, Republic, Czech , garden, Boskovice distr. Korenec Highlands, vrchovina Drahanská Morava, Republic, Czech with garbage, atervinningsanläggning,Pine forest kommun, Sofielunds Huddinge Sö, Sweden, Al-Rafa 17.03.2009 water traps C. Schmid-Egger Arab Emirates, United Harten A.van Trap, farm, 24-30.03.2009, Malaise Wurayah Wadi Arab Emirates, United Harten (id 11562) (10583), A. van Trap Al-Ajban, 26.02-02.04.2006, Malaise Arab Emirates, United Harten (id 11562) (10583), A. van Trap Al-Ajban, 26.02-02.04.2006, Malaise Arab Emirates, United Harten (id 11562) (10583), A. van Trap Al-Ajban, 26.02-02.04.2006, Malaise Arab Emirates, United Locality data Sweden, Vb, Vindelns kommun, Svartbergets försökspark Kulbäcken meadow, birch wood on fine birch meadow, Kulbäcken försökspark kommun, Svartbergets Vindelns Vb, Sweden, Cont. ) (

PSUCIM_1571 PSUCIM_1979 PSUCIM_3048 PSUCIM_2365 PSUCIM_2366 PSUCIM_1575 PSUCIM_1578 NCSU_22030 NCSU_22031 NCSU_22026 NCSU_22027 NCSU_22028 Appendix C. Appendix ID Specimen PSUCIM_2080

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 325 )

Continued ( Dendrocerus carpenteri Dendrocerus carpenteri Dendrocerus carpenteri Dendrocerus carpenteri Dendrocerus liebscheri Dendrocerus sp. 16 sp. Dendrocerus 16 sp. Dendrocerus 16 sp. Dendrocerus wollastoni Dendrocerus wollastoni Dendrocerus wollastoni Dendrocerus anneckei Dendrocerus anneckei Dendrocerus anneckei Dendrocerus anneckei Dendrocerus anneckei Dendrocerus vivianae Dendrocerus vivianae Dendrocerus vivianae Dendrocerus vivianae Dendrocerus vivianae Dendrocerus carpenteri Dendrocerus NHRS NHRS NMSA NMSA PSUC QSBG QSBG QSBG PSUC PSUC PSUC CAS PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC alaise trap alaise Trap Project Project Trap alaise coll event ID 768) Leg. Swedish M ID 768) Leg. Swedish coll event

coll. event ID 1459), Leg Swedish M ID 1459), Leg Swedish coll. event

TrapID 28), 02.viii-19.viii.2004 (= TrapID

59.17°N, 17.99°E (Trap ID 5) 16.viii-08.ix.2004 (= 59.17°N, 17.99°E (Trap History) of Natural Museum (Swedish Project (= History) of Natural Museum (Swedish badiss, sweeping, #18 badiss, sweeping, Acharaporn Sukpeng, coll’s. Malaise trap. T2809. 18.8334833333°N 99.4780666667°E trap. Malaise coll’s. Sukpeng, Acharaporn Nukoonchai Jaroenchai leg. T635 leg. Jaroenchai Nukoonchai T635 leg. Jaroenchai Nukoonchai malaise trap in gallery forest Project, Wilderness of Sciences, colls, Frontier California Academy MGF041 South Africa, KZN, PMB Hilton 6.ix.-3.x.04 Malaise tr./garden M. Mostovski coll. M. Mostovski tr./garden 6.ix.-3.x.04 Malaise Africa, KZN, PMB Hilton South coll. M. Mostovski tr./garden 6.ix.-3.x.04 Malaise Africa, KZN, PMB Hilton South & field, Coulet, Boudreault 26.VII.2008, fallow Anse, 48°37.496'N, 64°10.701'W, Canada, QC, Belle 57.53°N, 18.33°E pine forest, calcareous Grazed kommun, Roleks, Gottlands Gotland, Sweden, Thailand, Lampang, Chae Son NP, behind hotspring, 461m. 1-8.ix.2007. Bunruen Kwunnui, Bunruen behind hotspring, 461m. 1-8.ix.2007. Son NP, Thailand, Lampang, Chae Thailand Loei Phu Ruea NP Huay sai 17°29.917’N 101°20.513’E 1177m Malaise trap 5-12.x.2006 Huay sai 17°29.917’N 101°20.513’E 1177m Ruea NP Phu Thailand Loei Malaise trap 5-12.x.2006 Huay sai 17°29.917’N 101°20.513'E 1177m Ruea NP Phu Thailand Loei 5454 Yemen, 5454 Yemen, 5454 Yemen, 2002, el 100m, -23.17, 43.96, 22-28 October Fiherenana, Prov. Toliara CASENT2053390 Madagascar, Harten. leg. A. van trap, 16.x.2000–15.i.2001, Malaise Ar-Rujum, Yemen, Harten. leg. A. van trap, 16.x.2000–15.i.2001, Malaise Ar-Rujum, Yemen, Harten. leg. A. van trap, 16.x.2000–15.i.2001, Malaise Ar-Rujum, Yemen, Harten. leg. A. van trap, 16.x.2000–15.i.2001, Malaise Ar-Rujum, Yemen, trap” Malaise 25º24'N, 56º17’E, 12–14.iv.2005, Wurayah, Wadi Arab Emirates, United trap” Malaise 25º24'N, 56º17’E, 12–14.iv.2005, Wurayah, Wadi Arab Emirates, United trap Malaise 25º24'N, 56º17’E, 12–14.iv.2005, Wurayah, Wadi Arab Emirates, United trap Malaise 25º24'N, 56º17’E, 12–14.iv.2005, Wurayah, Wadi Arab Emirates, United trap Malaise 25º24'N, 56º17’E, 12–14.iv.2005, Wurayah, Wadi Arab Emirates, United trap Z. Nyiro Malaise 47.82, 19.02, 122m, 1-10.v.2005 Veröce, Hungary, with garbage, atervinningsanläggning,Pine forest kommun, Sofielunds Huddinge Sö, Sweden, PSUCIM_2121 PSUCIM_3049 PSUCIM_2059 PSUCIM_1593 PSUCIM_1873 PSUCIM_4005 PSUCIM_4006 PSUCIM_1997 PSUCIM_1998 PSUCIM_1996 PSUCIM_2290 NCSU_22049 NCSU_22050 NCSU_22052 NCSU_22053 NCSU_22059 NCSU_22059 NCSU_22032 NCSU_22033 NCSU_22034 PSUCIM_2111 PSUCIM_1574

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

326 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 Dendrocerus ramicornis Dendrocerus ramicornis Dendrocerus flavipes Dendrocerus flavipes Dendrocerus flavipes Dendrocerus halidayi Dendrocerus Dendrocerus liebscheri Dendrocerus liebscheri Dendrocerus liebscheri Dendrocerus ramicornis Dendrocerus Taxon Depository NHRS NHRS NHRS NHRS NHRS PSUC NHRS NHRS NHRS NHRS Trap Project Project Trap TrapID 1006), TrapID

alaise Trap Project Project Trap alaise alaise Trap Project Project Trap alaise Project Trap alaise Project Trap alaise alaise Trap Project Project Trap alaise Project Trap alaise alaise Trap Project (Swedish (Swedish Project Trap alaise coll. event ID 233), Leg. swedish Malaise Malaise ID 233), Leg. swedish coll. event

coll. event ID 1902), Leg Swedish M ID 1902), Leg Swedish coll. event

coll. event ID 1459), Leg Swedish M ID 1459), Leg Swedish coll. event M ID 1459), Leg Swedish coll. event M ID 1459), Leg Swedish coll. event

coll. event ID 1459), Leg Swedish M ID 1459), Leg Swedish coll. event M ID 1459), Leg Swedish coll. event

coll. event ID 488), Leg Swedish M ID 488), Leg Swedish coll. event

TrapID 20), 25.vi-20.vii.2003 (= TrapID

TrapID 28), 08.vii-18.vii.2003 (= TrapID 28) 02.viii-19.viii.2004 (= TrapID 28) 02.viii-19.viii.2004 (= TrapID TrapID 28), 02.viii-19.viii.2004 (= TrapID 28), 02.viii-19.viii.2004 (= TrapID 28), 02.viii-19.viii.2004 (= TrapID

16.57°E (= History) of Natural Museum (Swedish (= History) of Natural Museum (= History) of Natural Museum (Swedish (= History) of Natural Museum (Swedish 16.5°E), Trap no. 22, Malaise trap in meadow w. bushes, 17 vii 2003-7.viii.2003, J. Liljeblad, w. trap in meadow 22, Malaise no. Trap 16.5°E), ParentID1640 (= History) of Natural Museum (Swedish (= History) of Natural Museum (Swedish (= History) of Natural Museum (Swedish 26.ix.2005-10.ii.2006 (= forest, Mixed History) of Natural Museum (Swedish Sweden, Gotland, Gottlands kommun, Roleks, Grazed calcareous pine forest, 57.53°N, 18.33°E pine forest, calcareous Grazed kommun, Roleks, Gottlands Gotland, Sweden, (56.616°N, (Kalkstad), “diversitetsängen” Skogsby kommun, Gamla Mörbylanga Öland, Sweden, 57.53°N, 18.33°E pine forest. calcareous Grazed kommun, Roleks, Gottlands Gotland, Sweden, 57.53°N, 18.33°E pine forest. calcareous Grazed kommun, Roleks, Gottlands Gotland, Sweden, viii. 20. 2001, leg. Z. Ács Máriahalom, county, Komárom-Esztergom Hungary, Sweden, Skåne, Ystad kommun, Sanhammren, Järehusen, N6142723 E1398306 (= Järehusen, Ystad kommun, Sanhammren, Skåne, Sweden, Sweden, Gotland, Gottlands kommun, Roleks, Grazed calcareous pine forest, 57.53°N, 18.33°E pine forest, calcareous Grazed kommun, Roleks, Gottlands Gotland, Sweden, 57.53°N, 18.33°E pine forest, calcareous Grazed kommun, Roleks, Gottlands Gotland, Sweden, north56.54°N, eastern part, pasture, Alvar alvar, kommun, Frösslunda Mörbylanga Öland, Sweden, Locality data Sweden, Gotland, Gottlands kommun, Roleks, Grazed calcareous pine forest, 57.53°N, 18.33°E pine forest, calcareous Grazed kommun, Roleks, Gottlands Gotland, Sweden, Cont. ) (

PSUCIM_2234 PSUCIM_3051 PSUCIM_1594 PSUCIM_1598 PSUCIM_1983 PSUCIM_1599 PSUCIM_1601 PSUCIM_1610 PSUCIM_3050 Appendix C. Appendix ID Specimen PSUCIM_1595

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 327 )

Continued ( Dendrocerus halidayi Dendrocerus aphidum Dendrocerus aphidum Dendrocerus aphidum Dendrocerus aphidum Dendrocerus aphidum Dendrocerus aphidum Dendrocerus aphidum Dendrocerus aphidum Dendrocerus 29 sp. Dendrocerus 29 sp. Dendrocerus 29 sp. Dendrocerus 30 sp. Dendrocerus paradoxus Dendrocerus 36 sp. Dendrocerus 36 sp. Dendrocerus NHRS NHRS NHRS NHRS NHRS NHRS NHRS PSUC PSUC PSUC PSUC PSUC CNC CNC CNC CNC alaise alaise trap Trap ID Trap

alaise Trap Project Project Trap alaise coll. event ID 1388) Leg. coll. event

coll. event ID 487), Leg. Swedish ID 487), Leg. Swedish coll. event

coll. event ID 187), Leg. Swedish M ID 187), Leg. Swedish coll. event

coll event ID 768), Leg. Swedish M ID 768), Leg. Swedish coll event

Trap ID 1001), 18.v-15.vi.2006 (coll.event ID 1728), ID 1001), 18.v-15.vi.2006 (coll.event Trap

coll. event ID 451), Leg. Swedish M ID 451), Leg. Swedish coll. event

Trap ID 28), 02.viii-19.viii.2004 (coll.event ID 1459), Leg. ID 28), 02.viii-19.viii.2004 (coll.event Trap

Trap ID 27), 02.vi.-16.vi.2004 (= Trap

TrapID 53) (64.18°N, 19.55°E), 01.viii-18.viii. 2003 (= TrapID

1003) old mixed deciduous forest in stream ravine 10.vii-24.vii.2005 (= in stream deciduous forest 1003) old mixed History) of Natural Museum (Swedish Project Trap Malaise Swedish 59.88°N, 17.19°E, 22.vii-12.viii.2003 (= History) of Natural Museum (Swedish 57°32.207'N, 18°20.273´E (= pasture, of natural History) Museum (Swedish Project Trap Malaise Swedish edge, 56°55’53.066”N, 16°5’7.93”E (= forest of natural History) Museum (Swedish Project Trap Malaise Leg. Swedish (= of natural History) Museum (Swedish Project Trap ID 5), 16.viii-08.ix.2004 (= 59.17°N, 17.99°E (Trap History) of Natural Museum (Swedish Project oaks, 59.93°N, 18.354°E (= History) of Natural Museum (Swedish Project Trap Malaise van Harten (1505) (id 1804) van Sweden, Vr, Munkfors kommun, Ransäter, Ransbergs Herrgard, N6632516 E1365816 (= Ransbergs Herrgard, kommun, Ransäter, Munkfors Vr, Sweden, Sweden, Up, Uppsala kommun, Fiby urskog, Trefaldighets Källa, Mixed deciduous forest along brook, along brook, deciduous forest Källa, Mixed Trefaldighets urskog, kommun, Fiby Uppsala Up, Sweden, wood and open between pine forest calcareous Grazed kommun, Roleks, Gotlands Gotland, Sweden, in moisty haymaking meadow naturreservat, Old Grytsjöns kommun, Bäckebo, Nybro Sm, Sweden, Antonius light trap, 25.17ºN, 55.42ºE 29.iii-06.iv.2005, Desert Park, Sharjah Arab Emirates, United Harten (id 11560) dam, 22-26.03.2009, water traps, A. van Bih Wadi Arab Emirates, United Harten, water traps 10840 dam, 22-26.3.2009, A. van Bih Wadi Arab Emirates, United Harten (id 11560) dam, 22-26.03.2009, water traps, A. van Bih Wadi Arab Emirates, United Harten light traps (4615) 4615 24.49°N, 56.07°E, 8-26.4.2006, A. van Hatta, Arab Emirates, United Campanas, 250m, -32.932, -71.5078, 2-20.i.2000, M. Irwin et. al. MT P.N. Prov., Chile, Quillota Campanas, 250m, -32.932, -71.5078, 2-20.i.2000, M. Irwin et. al. MT P.N. Prov., Chile, Quillota Campanas, 250m, -32.932, -71.5078, 2-20.i.2000, M. Irwin et. al. MT P.N. Prov., Chile, Quillota Campanas, 250m, -32.932, -71.5078, 2-20.i.2000, M. Irwin et. al. MT P.N. Prov., Chile, Quillota bog Kronmayran, stormyr, Degerö försökspark, kommun, Kulbäckslidens Vindelns VB, Sweden, with garbage, atervinningsanläggning,Pine forest kommun, Sofielunds Huddinge Sö, Sweden, with old mixed trees herbs and young Tall naturreservat, kommun, Ekdalens Uppsala Up, Sweden, PSUCIM_1744 PSUCIM_1596 PSUCIM_3053 NCSU_16855 NCSU_16885 NCSU_16884 NCSU_16886 NCSU_16889 PSUCIM_1614 PSUCIM_1618 PSUCIM_1617 PSUCIM_1616 PSUCIM_1761 PSUCIM_1572 PSUCIM_3053 PSUCIM_3052

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

328 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 bipunctatus bipunctatus bipunctatus bipunctatus bipunctatus crassicornis Taxon Dendrocerus koyamai Dendrocerus indicus Dendrocerus indicus Dendrocerus indicus Dendrocerus indicus Dendrocerus Conostigmus Conostigmus Conostigmus Conostigmus Conostigmus 3 Conostigmus sp. 3 Conostigmus sp. 3 Conostigmus sp. 3 Conostigmus sp. Conostigmus Depository PSUC PSUC PSUC PSUC PSUC NHRS NHRS NHRS NHRS NHRS NHRS NHRS NHRS NHRS NHRS iv.2004, Hym. Inst. Hym. iv.2004, A. Stark Harten (3293) (2591) (id 1790) Harten (id 11563) 18-Aug-2003 trap project Malaise 64.19020081°N, 19.60569954°E, Swedish 15-Jul-2005 trap project, Malaise 59.77299881°N, 13.47369957°E, Swedish pasture-land, 18-Aug-2003 trap project, Malaise 64.19020081°N, 19.60569954°E, Swedish 01-Aug-2003 trap project Malaise 19.58889961°E, Swedish 01-Sep-2003 trap project Malaise 19.59320068°E, Swedish 31-Oct-2003 trap project Malaise 66.60759735°N, 14.1505003°E, Swedish pasture-land, 26-Jun-2003 trap project Malaise 14.19309998°E, Swedish 18-Aug-2003 trap project Malaise 14.19309998°E, Swedish 15-Jul-2003 trap project Malaise 14.19309998°E, Swedish 21-Jul-2003 trap project Malaise Swedish Locality data USA, KY, Harrison Co., Silverlake Farm, Savannah, 38.32, -84.354, MT 2, Bramble (HI#3) 21-28. 38.32, -84.354, MT 2, Bramble Savannah, Farm, Silverlake Co., Harrison USA, KY, United Arab Emirates, Wadi Shawkah, 27.08°N 56.01°E, 26.03.2007, sweep-net (8130), F. Menzel & Menzel (8130), F. 27.08°N 56.01°E, 26.03.2007, sweep-net Shawkah, Wadi Arab Emirates, United traps, A. van Al-Ajban, 24.36°N, 55.01°E, 09.xi-07.xii.2005, light & Malaise Arab Emirates, United Harten A. van trap, Al-Ajban, 24.36°N, 55.01°E, 22.10-09.11.2005, Malaise Arab Emirates, United trap (5661), A. van Al-Ajban, 24.36°N, 55.01°E, 01.04-02.05.2006, Malaise Arab Emirates, United wood on fine alluvial sediments, Birch kommun, Kulbacksangarna, Vindelns Vasterbotten, Sweden, railway embankment through Sandy Rudstorp, kommun Ransater, Munkfors Varmland, Sweden, wood on fine alluvial sediments, Birch kommun, Kulbacksangarna, Vindelns Vasterbotten, Sweden, 64.14479828°N, forsokspark, kommun, Kulbackslidens Vindelns Vasterbotten, Sweden, 64.15450287°N, forsokspark, kommun, Kulbackslidens Vindelns Vasterbotten, Sweden, through sandy railway embarkment Rudstorp, kommun, Rahsater, Munkfors Varmland, Sweden, with old beeches, 56.60910034°N, bokbacke, Heath Djaknabygds Stenbrohult, Småland, Sweden, bokbacke, 56.60910034°N, Djaknabygds Almhults kommun, Stenbrohult, Småland, Sweden, with old beeches, 56.60910034°N, bokbacke, Heath Djaknabygds Stenbrohult, Småland, Sweden, bog, 67.22979736°N, 23.18670082°E, Mowable Vasikkavuoma, kommun, Pajala Norrbotten, Sweden, Cont. ) (

Appendix C. Appendix ID Specimen DM058 NCSU_22040 NCSU_22045 NCSU_22041 NCSU_22043 NCSU_43398 NCSU_43327 NCSU_43398 NCSU_43390 NCSU_43347 NCSU_43341 NCSU_43348 NCSU_43366 NCSU_43378 NCSU_55672

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 329 )

Continued ( crassicornis crassicornis abdominalis abdominalis abdominalis crassicornis abdominalis crassicornis Conostigmus Conostigmus 5 Conostigmus sp. 5 Conostigmus sp. 5 Conostigmus sp. Conostigmus Conostigmus Conostigmus sp. 10 Conostigmus sp. 11 Conostigmus sp. Conostigmus Conostigmus Conostigmus pulchellus Conostigmus pulchellus 6 Conostigmus sp. Conostigmus NHRS NHRS NHRS NHRS NHRS NHRS NHRS NHRS NHRS NHRS NHRS NHRS PSUC PSUC NHRS NHRS alaise Trap Trap alaise Trap ID 44) Trap

coll. event ID 215), Leg. Swedish ID 215), Leg. Swedish coll. event

coll. event ID 451), Leg. Swedish M ID 451), Leg. Swedish coll. event

TrapID 25) (= TrapID

TrapID 60), 01.viii-18.viii. 2003 (= TrapID

Trap ID 1003) 1389, 2005.vii.24-2005.ix.12 Trap

coll. event ID 1187), 2004.vii.25-2004.viii.09 coll. event Trap ID 48) 1209, 2004.vii.29-2004.viii.13 Trap

bog, 62.14030075°N, 16.28610039°E, Swedish Malaise trap project 25-Aug-2004 trap project Malaise bog, 62.14030075°N, 16.28610039°E, Swedish 24-Aug-2005 trap project Malaise 16-Sep-2003 trap project Malaise Swedish 29-Jun-2003 trap project Malaise 59.88339996°N, 17.19309998°E, Swedish brook, 02-Jul-2005 trap project Malaise terrain, 56.92169952°N, 16.1012001°E, Swedish 19-Jul-2005 trap project Malaise 19.0529995°E, Swedish edge, 56.9314003°N, 16.08550072°E, Swedish Malaise trap project 18-Jul-2005 trap project Malaise edge, 56.9314003°N, 16.08550072°E, Swedish forest, 64.178°N, 19.586°E (= forest, of natural History) Museum (Swedish Project Trap Malaise (= ravine (= 59.88°N, 17.19°E, 22.vii-12.viii.2003 (= History) of Natural Museum (Swedish Project (= 18.33790016°E, Swedish Malaise trap project 02-Aug-2004 trap project Malaise 18.33790016°E, Swedish bog, 62.14030075°N, 16.28610039°E, Swedish Malaise trap project 25-Aug-2004 trap project Malaise bog, 62.14030075°N, 16.28610039°E, Swedish Sweden, Halsingland, Hudiksvalls kommun, Stensjon-Lomtjarn, stensjon, Marsh pine wood close to stensjon, Marsh kommun, Stensjon-Lomtjarn, Hudiksvalls Halsingland, Sweden, stream in forest deciduous mixed Old Herrgård, Ransberg Ransäter, kommun, Munkfors Vr, Sweden, Swedish 14.09689999°E, 66.54190063°N, Herrgard, Ransbergs kommun, Munkfors Varmland, Sweden, Alder wood ravine 60.36669922°N, 15.7166996°E, Nasakerspussen, Saterdalen, Dalarna, Sweden, along deciduous forest kalla, mixed Trefaldeghets urskog, kommun, Fiby Uppsala Uppland, Sweden, in boulder aspen forest naturreservat, Old Grytsjons kommun, Backebo, Nybro Småland, Sweden, deciduous wood, 59.56949997°N, Maritime Matkrok, kommun, Svartloga, Norrtalje Uppland, Sweden, along brook, deciduous forest Källa, Mixed Trefaldighets urskog, kommun, Fiby Uppsala Up, Sweden, Sweden, Småland, Nybro kommun, Grytsjons naturreservat, Old moisty haymaking meadow in forest in forest moisty haymaking meadow naturreservat, Old kommun, Grytsjons Nybro Småland, Sweden, Sweden, Ån, Örnsköldsviks kommun, Skuleskogen, Långrå. Brook ravine in mixed forest (= forest ravine in mixed Långrå. Brook kommun, Skuleskogen, Ån, Örnsköldsviks Sweden, USA WV, Hardy Co. 28.vii-06.viii.2006, MT, O.R.Smith 28.vii-06.viii.2006, MT, Co. Hardy WV, USA O.R.Smith 28.vii-06.viii.2006, MT, Co. Hardy WV, USA 57.53680038°N, pine forest, calcareous Grazed kommun, Roleks, Gotlands Gotland, Sweden, vitis-idaea pine wood Vaccinium Pelttovaara, försökspark, kommun, Ätnarova Gällivare Lu, Sweden, Sweden, Halsingland, Hudiksvalls kommun, Stensjon-Lomtjarn, stensjon, Marsh pine wood close to stensjon, Marsh kommun, Stensjon-Lomtjarn, Hudiksvalls Halsingland, Sweden, Sweden, VB, Vindelns kommun, Kulbäckslidens försökspark, dense 20-25 years old mixed coniferous coniferous old mixed years 20-25 dense försökspark, Kulbäckslidens kommun, Vindelns VB, Sweden, NCSU_55667 PSUCIM_1590 NCSU_55651 NCSU_52268 NCSU_17731 NCSU_55614 NCSU_55635 PSUCIM_1742 NCSU_52279 PSUCIM_1722 PSUCIM_3054 PSUCIM_3055 NCSU_55674 PSUCIM_1560 NCSU_17749 PSUCIM_1766

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

330 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 Taxon sp. 11 Conostigmus sp. 11 Conostigmus sp. 11 Conostigmus sp. 12 Conostigmus sp. 12 Conostigmus sp. 12 Conostigmus sp. 14 Conostigmus sp. 14 Conostigmus sp. 20 Conostigmus sp. 20 Conostigmus sp. 20 Conostigmus sp. 22 Conostigmus sp. 22 Conostigmus sp. 23 Conostigmus sp. 23 Conostigmus sp. 23 Conostigmus sp. Depository NHRS NHRS NHRS NHRS NHRS NHRS FNIC FNIC NHRS NHRS NHRS QM QM NHRS NHRS QM Swedish Malaise trap project 16-Sep-2003 trap project Malaise Swedish Swedish Malaise trap project, 14-Oct-2003 trap project, Malaise Swedish 01-Sep-2003 trap project Malaise Swedish 26-Aug-2003 trap project Malaise 59.17679977°N, 18.24690056°E, Swedish 11-Aug-2004 trap project Malaise 59.17679977°N, 18.24690056°E, Swedish 11-Aug-2004 trap project Malaise 59.17679977°N, 18.24690056°E, Swedish M01 E.I. Schlinger FBA 225580 IX.-7.X.2003. Malaise FBA 151780 16.837°S, 179.973°W, Tokota’a, H. E.I. Schlinger, 04-Aug-2003 trap project Malaise 59.17589951°N, 18.24760056°E, Swedish 26-Aug-2003 trap project Malaise 59.17679977°N, 18.24690056°E, Swedish 02-Jul-2003 trap project Malaise 18.24760056°E, Swedish along the trail, 28-31.08.2004, leg. M. Földvári along the trail, 28-31.08.2004, leg. M. Földvári along the trail, 28-31.08.2004, leg. M. Földvári Locality data Sweden, Dalarna, Saterdalen, Nasakerspussen, Alder wood ravine, 60.36669922°N, 15.7166996°E, Nasakerspussen, Saterdalen, Dalarna, Sweden, Sweden, Dalarna, Saterdalen Nasakerspussen, Alder wood ravine, 60.36669922°N, 15.7166996°E, Nasakerspussen, Saterdalen Dalarna, Sweden, 64.15450287°N, 19.59320068°E, forsokspark, kommun, Kulbackslidens Vindelns Vasterbotten, Sweden, rock and pine forest, flat Urskogsslingan, Tyresta kommun, Haninge Sodermanland, Sweden, rock and pine forest, flat Urskogsslingan, Tyresta kommun, Haninge Sodermanland, Sweden, rock and pine forest, flat Urskogsslingan, Tyresta kommun, Haninge Sodermanland, Sweden (-17.557, 177.55), 800m, 9. Village. 0.5km N. Abaca EcoPark. Koroyanitu Prov. Vuda Levu, Viti Fiji, 4, coll. 892m, 14-31.VII.2004, Malaise Devo, Mount Village, Tavuki Prov. Cakaudrove Taveuni, Fiji, Blueberry, spruce wood w. Norway kommun, Urskogsslingan, Haninge Sodermanland, Sweden, rock and pine forest, flat Urskogsslingan, Tyresta kommun, Haninge Sodermanland, Sweden 59.17589951°N, Blueberry, spruce wood w. Norway Urskogsslingan, Tyresta Sodermanland, Sweden, Q-7a rainforest 17°34'06''S, 145°42'21''E, 9-14.ix.2004, L. Masner YPT, NP, Wooroonooran Australia Q-7a rainforest 17°34'06''S, 145°42'21''E, 9-14.ix.2004, L. Masner YPT, NP, Wooroonooran Australia pan traps in the creek, trail, yellow Falls Morans Canungra (town), QLD, Lamington NP, Australia pan traps in the creek, trail, yellow Falls Morans Canungra (town), QLD, Lamington NP, Australia pan traps in the creek, trail, yellow Falls Morans Canungra (town), QLD, Lamington NP, Australia Cont. ) (

Appendix C. Appendix ID Specimen NCSU_52269 NCSU_43395 NCSU_43346 NCSU_43315 NCSU_55610 NCSU_55609 PSUCIM_2008 PSUCIM_1868 NCSU_52230 NCSU_43316 NCSU_55668 PSUCIM_1534 PSUCIM_3056 PSUCIM_2123 PSUCIM_3057 PSUCIM_3058

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 331 )

Continued ( triangularis geniculatus geniculatus geniculatus sp. 33 Conostigmus sp. sp. 24 Conostigmus sp. 24 Conostigmus sp. 24 Conostigmus sp. Conostigmus Conostigmus 25 Conostigmus Conostigmus Conostigmus 29 Conostigmus sp. 29 Conostigmus sp. 29 Conostigmus sp. 30 Conostigmus sp. 31 Conostigmus sp. Conostigmus scabriceps Conostigmus scabriceps NHRS NHRS NHRS NHRS PSUC NHRS NHRS NHRS NHRS NHRS NHRS NHRS NHRS NHRS QM QM

Trap ID 48) 1209, 2004.vii.29-2004.viii.13 Trap

(= Swedish Malaise trap project 26-Jul-2005 trap project Malaise Swedish wood, 67.05169678°N, 20.3859005°E, Swedish Malaise trap project 29-Jul-2004 trap project Malaise wood, 67.05169678°N, 20.3859005°E, Swedish 01-Sep-2003 trap project Malaise 64.23049927°N, 19.78510094°E, Swedish 18-Aug-2003 trap project Malaise 56.60910034°N, 14.19309998°E, Swedish 18-Aug-2003 trap project Malaise 56.60910034°N, 14.19309998°E, Swedish 18-Jul-2005 trap project Malaise edge, 56.9314003°N, 16.08550072°E, Swedish 17-Jul-2005 trap project Malaise 57.53680038°N, 18.33790016°E, Swedish pasture, 01-Sep-2003 trap project Malaise 64.1785965°N, 19.58650017°E, Swedish old forest, 20–25 year 29-Jul-2004 trap project Malaise wood, 67.05169678°N, 20.3859005°E, Swedish 25-Jun-2003 trap project Malaise bushes, 17 vii 2003-7.viii.2003, J. w. trap in meadow 22 Malaise no. Trap (N56.616, 16.5), Liljeblad, ParentID1640 trap project06-Aug-2004 Malaise 56.02640152°N, 13.22299957°E, Swedish Sweden, Östergotland, Omberg, Stocklycke ang, Lime meadow 58.30749893°N, 14.63099957°E, ang, Lime meadow Stocklycke Omberg, Östergotland, Sweden, Sweden, Lappland, Gallivare kommun atnarova forsokspark, Pelttovaara, Vaccinium vitis-idaea pine Vaccinium Pelttovaara, forsokspark, kommun atnarova Lappland, Gallivare Sweden, aheden, Lichen pine heath, forsokspark, kommun, Svartbergets Vindelns Vasterbotten, Sweden, Harten (UAE10840) dam, 22-26.03.2009, water traps, A. van Bih Wadi Arab Emirates, United with old beeches, bokback, Heath Djaknabygds Almhults kommun, Stenbrohult, Småland, Sweden, with old beeches, bokback, Heath Djaknabygds Almhults kommun, Stenbrohult, Småland, Sweden, in forest moisty haymaking meadow naturreservat, Old kommun, Grytsjons Nybro Småland, Sweden, wood and open between pine forest calcareous Grazed kommun, Roleks, Gotlands Gotland, Sweden, coniferous, dense mixed forsokspark, kommun, Kulbackslidens Vindelns Vasterbotten, Sweden, vitis-idaea pine Vaccinium Pelttovaara, forsokspark, kommun atnarova Lappland, Gallivare Sweden, 56.21929932°N, 16.42230034°E, Swedish grove, Nemoral lunden (Ottenby), Sodra Öland, Sweden, (Kalkstad), “diversitetsängen” Skogsby kommun, Gamla Mörbylanga Öland, Sweden, flexuosa beech forest, Lierna, Deschampsia Klippans kommun, Skaralid, Skåne, Sweden, MT 13. 1998 N.Power 27°19.54'S, 152°45.29'E, Febr. Glorious QLD, Mount Australia, 740m, 29.II-3.III.1980 Creek, Brindle SF, Wiangaree NSW, Australia. vitis-idaea pine wood Vaccinium Pelttovaara, försökspark, kommun, Ätnarova Gällivare Lu, Sweden, NCSU_52246 NCSU_52257 NCSU_52260 PSUCIM_1836 NCSU43360 NCSU_43360 NCSU_52278 NCSU_52295 NCSU_52236 NCSU_52254 NCSU_55659 PSUCIM_1805 NCSU_55663 PSUCIM_3059 PSUCIM_3060 PSUCIM_1552

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

332 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 Taxon sp. 35 Conostigmus sp. 35 Conostigmus sp. 35 Conostigmus sp. 36 Conostigmus sp. 36 Conostigmus sp. 36 Conostigmus sp. 37 Conostigmus sp. 37 Conostigmus sp. 38 Conostigmus sp. 38 Conostigmus sp. 38 Conostigmus sp. 40 Conostigmus sp. armatus Megaspilus Depository NHRS NHRS NHRS NHRS NHRS NHRS QSBG QSBG QSBG QSBG QSBG NHRS PSUC Swedish Malaise trap project 26-Aug-2003 trap project Malaise Swedish wood on line alluvial sediments, 64.19020081°N, 19.60569954°E, Swedish Malaise trap project trap project Malaise wood on line alluvial sediments, 64.19020081°N, 19.60569954°E, Swedish 01-Aug-2003 trap project Malaise wood on line alluvial sediments, 64.19020081°N, 19.60569954°E, Swedish 01-Aug-2003 trap project Malaise after cutting, 64.14479828°N, 19.58889961°E, Swedish 10-15 year trees, larch 01-Aug-2003 11-Jul-2003 trap project Malaise 18.36989975°E, Swedish trap project Malaise after cutting, 64.14479828°N, 19.58889961°E, Swedish 10-15 year trees, larch 01-Aug-2003 T642 leg. Jaroenchai 19-26.x.2006, Nukoonchai T642 leg. Jaroenchai 19-26.x.2006, Nukoonchai T1852 leg. Areeluck Y. 29.iv-6.v.2007, trap, T1744 D. Lohman leg. trap, 75m, Malaise T1865 leg. Areeluck Y. 24.xi-1.xii.2006, trap, 30-Jun-2004 trap project Malaise Swedish Locality data Sweden, Dalarna, Saterdalen, Nasakerspussen, alder wood ravine, 60.36669922°N, 15.7166996°E, Nasakerspussen, Saterdalen, Dalarna, Sweden, Sweden, Vasterbotten, Vindelns kommun, Svartbergets forsokspark, Kulbacken meadow, birch birch meadow, Kulbacken forsokspark, kommun, Svartbergets Vindelns Vasterbotten, Sweden, birch meadow, Kulbacken forsokspark, kommun, Svartbergets Vindelns Vasterbotten, Sweden, and Spruce Gammnybranna, forsokspark, kommun, Kulbackslidens Vindelns Vasterbotten, Sweden, 59.1719017°N, coastal oak forest, spirudden, mixed kommun Ava, Tyresso Sodermanland, Sweden, and Spruce Gammnybranna, forsokspark, kommun, Kulbackslidens Vindelns Vasterbotten, Sweden, Malaise trap, Palee, 17°29.863'N, 101°20.554'E, 1178m, Suan hin Ruea NP, Phu Thailand, Loei Malaise trap, Palee, 17°29.863'N, 101°20.554'E, 1178m, Suan hin Ruea NP, Phu Thailand, Loei Malaise Summit marsh, 18°35.361'N, 98°29.157’E, 2500m, Inthanon NP, Doi Mai Thailand, Chiang Station, 7°33.002'N, 99°47.023'E, Research Forest Khoa Chong Ya NP, Pu-Khao Trang Khao Thailand, Malaise Summit marsh, 18°35.361'N, 98°29.157'E, 2500m, Inthanon NP, Doi Mai Thailand, Chiang fen, 57.00650024°N, 16.1093998°E, Birch kronopark, kommun, Hornso Hogsby Småland, Sweden, 14-21. vii. 2004 38°19.553'N, 84°21.428W, Silverlake, Co. Harrison USA, KY, Cont. ) (

Appendix C. Appendix ID Specimen NCSU_52282 NCSU_55664 NCSU_55665 NCSU_52241 NCSU_55666 NCSU_43388 PSUCIM_2236 PSUCIM_2237 PSUCIM_840 PSUCIM_637 PSUCIM_785 NCSU_43386 NCSU_22061

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 333 )

Continued ( stupendus stupendus stupendus Lagynodes pallidus Lagynodes pallidus Lagynodes pallidus Megaspilus armatus Megaspilus armatus Megaspilus armatus Megaspilus armatus Megaspilus armatus Megaspilus armatus Megaspilus armatus Megaspilus armatus Megaspilus armatus Megaspilus armatus Megaspilus Aetholagynodes Aetholagynodes Aetholagynodes sp. Holophleps sp. Holophleps glabra Trichosteresis glabra Trichosteresis glabra Trichosteresis NHRS NHRS PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC QM QM ANIC WAM WAM SAMC SAMC PSUC + year old spruce forest old spruce+ year forest

coll. event ID 217), 2003.ix.01-2003.ix.22 coll. event

coll. event ID 198), 2003.ix.22-2003.x.14 coll. event

Trap ID 60) (= Trap

Trap ID 55) (= Trap

forest (= forest (= 4-9 viii. 2005, Boring&Sharanovski 4-9 viii. 2005, Boring&Sharanovski MT 37.414444°S, 149.775°E, 6.12.2004-12.1.2005, C. Lambkin & N. Starick snig track in forest, 425m, 24°19.8S 116°52.7E Parker, 2003, M.E. Irwin, F.D. V. 8/9. Irwin M.E. Parker, F.D. flowers, dioicum (Malvaceae) and Abutilon Eucalyprus from burned area #19 sweeping, Hungary, Vas, Köszeg, Jun 12-15, YPT, Mikó YPT, 12-15, Jun Köszeg, Vas, Hungary, Sweden, Vb, Vindelns kommun, Kulbäckslidens försökspark, Granliden, 80 Granliden, försökspark, kommun, Kulbäckslidens Vindelns Vb, Sweden, USA WV, Hardy Co., 23.vi-10.vii.2006, MT, O.R.Smith 23.vi-10.vii.2006, MT, Co., Hardy WV, USA USA, KY, Harrison Co., Silverlake, 38°19.553'N, 84°21.428W, 14-21. vii. 2004 38°19.553'N, 84°21.428W, Silverlake, Co., Harrison USA, KY, 14-21. vii. 2004 38°19.553'N, 84°21.428W, Silverlake, Co., Harrison USA, KY, 14-21. vii. 2004 38°19.553'N, 84°21.428W, Silverlake, Co., Harrison USA, KY, 14-21. vii. 2004 38°19.553'N, 84°21.428W, Silverlake, Co., Harrison USA, KY, 14-21. vii. 2004 38°19.553’N, 84°21.428W, Silverlake, Co., Harrison USA, KY, 1994, apple orchard Canada, QC, Frelighsburg, 1994, apple orchard Canada, QC, Frelighsburg, MT 1, nr stagnant pond (HI#261), 38°17.076'N, 84°27.090'W, Pike, 234 Finnell Scott Co., USA, KY, MT 1, nr stagnant pond (HI#261), 38°17.076'N, 84°27.090'W, Pike, 234 Finnell Scott Co. USA, KY, MT 27°19'54''S, 152°45'29''E, 4.xii.1997, N. Power, Glorious, QLD, Mount Australia, MT 27°19'54''S, 152°45'29''E, 4.xii.1997, N. Power, Glorious, QLD, Mount Australia, disused trap across Rd., 56 km SE Bombala, Malaise Gooma Forest, State NSW East Boyd Australia, wash w/Eucalyptus, in narrow Malaise Warraria, Grove, Gum Big NP, Augustus Mount WA, Australia, hand netted in 160m, 20°54.5'S 119°59.1'E, 23.iv-8.v.2003, Bar, 35km N Marble WA, Australia, Africa LW02-UI-M78 South Africa LW02-UI-M78 South Goulet & Boudreault, field, 26.vii.2008, fallow Canada, QC, Cloridorme, 49°11.216'N, 64°51.275'W, old 20-25 year coniferous dense mixed försökspark, kommun, Kulbäckslidens Vindelns Vb, Sweden PSUCIM_1689 PSUCIM_2126 PSUCIM_3061 PSUCIM_2038 PSUCIM_2034 PSUCIM_2035 PSUCIM_3171 PSUCIM_3172 PSUCIM_3062 PSUCIM_3063 PSUCIM_1535 PSUCIM_1336 PSUCIM_3064 PSUCIM_3065 RLMV079 PSUCIM_2353 PSUCIM_3066 PSUCIM_3173 PSUCIM_3174 NCSU_53513 PSUCIM_1748

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

334 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 Lagynodes crassicornis 3 sp. Cyoceraphron 3 sp. Cyoceraphron 1 sp. Cyoceraphron 1 sp. Cyoceraphron sp. Gnathoceraphron sp. Gnathoceraphron sp. Gnathoceraphron sp. Gnathoceraphron sp. Elysoceraphron Taxon Lagynodes pallidus Lagynodes pallidus Lagynodes crassicornis Lagynodes crassicornis Lagynodes crassicornis PSUC QSBG QSBG BMNH BMNH SAMC SAMC SAMC SAMC QSBG Depository PSUC PSUC PSUC PSUC PSUC trap, YPT, 29.08.1994, C.E. Bostanian YPT, trap,

+

xi.2006-10.xi.0206, Patikhom Tumtip leg. T1112 xi.2006-10.xi.0206, Tumtip Patikhom T653 leg. Adnafai & Buakaw 24-25.x.2006, Katae Sa-nog trap, 604m, Pan mine dump Rehabilitated trap LW02-R2-M54, Malaise Noort, 18°07.244'E, 25.ix-2.x 2002, S van (id, 15778) mine dump Rehabilitated trap LW02-R2-M54, Malaise Noort, 18°07.244'E, 25.ix-2.x 2002, S van (id, 15778) mine dump Rehabilitated trap LW02-R2-M54, Malaise Noort, 18°07.244'E, 25.ix-2.x 2002, S van (id, 15778) mine dump Rehabilitated trap LW02-R2-M54, Malaise Noort, 18°07.244'E, 25.ix-2.x 2002, S van (id, 15778) T1992 leg. M. Sharkey 7-14.vii.2005, Lindsay & Edelen 7-14.vii.2005, Lindsay & Edelen 7-14.vii.2005, Lindsay & Edelen Thailand, Loei Phu Ruea NP, Ma Kraow, ditch, 17°29.652'N, 101°21.020'E, 1167m, Pan trap, 9. Pan trap, ditch, 17°29.652'N, 101°21.020'E, 1167m, Ma Kraow, Ruea NP, Phu Thailand, Loei (Thepana waterfall),Savana 15°38.948'N, 101°25.625'E, Hin Ngam, NP Pa Thailand, Chaiyaphum, 25.xi-3.xii.1987, J.S. Noyes 15-25km N Libreville, de la Mandah, Forêt Gabon, 25.xi-3.xii.1987, J.S. Noyes 15-25km N Libreville, de la Mandah, Forêt Gabon, 32°58.098'S W Langebaanweg), (3 km 280° Park Coast Fossil West Cape, W. Africa, South 32°58.098'S W Langebaanweg), (3 km 280° Park Coast Fossil West Cape, W. Africa, South 32°58.098'S W Langebaanweg), (3 km 280° Park Coast Fossil West Cape, W. Africa, South 32°58.098'S W Langebaanweg), (3 km 280° Park Coast Fossil West Cape, W. Africa, South 13-16.i.2006, Malaise trap, 7°33.038'N, 99°47.369'E, 75m, Ya NP, Pu-Khao Trang Khao Thailand, Canada, Frelighsburg, Orchard, J-est Orchard, Canada, Frelighsburg, Locality data Hungary, Vas, Köszeg, Jun 12-15, YPT, Mikó YPT, 12-15, Jun Köszeg, Vas, Hungary, USA, NC, Johnston, Clayton, 35.647N, 78.431W, 13-23.ix.2008, MT. Clayton, 35.647N, 78.431W, USA, NC, Johnston, MT 1, nr stagnant pond (HI#244), 38°17.076'N, 84°27.090'W, Pike, 234 Finnel Scott Co., USA, KY, MT 1, nr stagnant pond (HI#244), 38°17.076'N, 84°27.090'W, Pike, 234 Finnel Scott Co., USA, KY, MT 1, nr stagnant pond (HI#244), 38°17.076'N, 84°27.090'W, Pike, 234 Finnel Scott Co., USA, KY, Cont. ) (

PSUCIM_829 PSUCIM_320 RLMV083 PSUCIM_2270 PSUCIM_1165 PSUCIM_4007 PSUCIM_2253 PSUCIM_2252 PSUCIM_391 Appendix C. Appendix ID Specimen PSUCIM_2125 PSUCIM_1519 PSUCIM_2042 PSUCIM_1550 PSUCIM_1551 PSUCIM_2061

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 335 )

Continued ( binubeculatus binubeculatus sp. Elysoceraphron luapi Trassedia sp. Trassedia sp. Trassedia lubomirusMasner lubomirusMasner lubomirusMasner lubomirusMasner lubomirusMasner Ceraphron Ceraphron 2 sp. Ceraphron 2 sp. Ceraphron 2 sp. Ceraphron 2 sp. Ceraphron 3 sp. Ceraphron 3 sp. Ceraphron 3 sp. Ceraphron 3 sp. Ceraphron testaceipes Ceraphron testaceipes Ceraphron QSBG CAS CNC CNC QM QM QM QM QM PSUC PSUC ANIC ANIC ANIC ANIC ANIC ANIC ANIC ANIC CAS CAS 15°38.132'N, 101°23.922'E, 698m Malaise trap, 1-7.ii.2007, Katae Sa-nog & Buakaw Adnafai leg. Adnafai & Buakaw 1-7.ii.2007, Katae Sa-nog trap, 15°38.132'N, 101°23.922'E, 698m Malaise T1643 Malaise trap, forest edge, mixed tropical forest, open area radio tower, Ranomafana National Park, Park, Ranomafana National radio tower, open area forest, tropical edge, mixed forest trap, Malaise 1130, -21.2508, 47.4072, Malagasy Madagascar Fianarantsoa Prov. Fianarantsoa of et al., California Acad. Griswold Fisher, 2000, 18º28'24''S 47º57'36'', Ecoll. 1300m, 5-13. Dec. coll. code BLF2371 CASLOT15540 trap, Malaise Sciences, montane rainforest, of et al., California Acad. Griswold Fisher, 2000, 18º28'24''S 47º57'36'', Ecoll. 1300m, 5-13. Dec. coll. code BLF2371 CASLOT15540 trap, Malaise Sciences, montane rainforest, Thailand, Chaiyaphum, Pa Hin Ngam, NP ecotone between mix deciduous and dipterocarp forest, forest, mix deciduous and dipterocarp Hin Ngam, NP ecotone between Pa Thailand, Chaiyaphum, Madagascar, MA-02-09B-01, M.E. Irwin, F.D. Parker, R. Harin’Hala, 2001-10-16 2001-11-08, R. Harin’Hala, Parker, MA-02-09B-01, M.E. Irwin, F.D. Madagascar, 1200m, 17.viii-12.ix.1982 de Coto Brus, Vito Costa Rica, San iii.2005, J.A. Cerda Patawa, Kaw Mountain, regina Guyana, French MT 13. 1998, N.Power 27°19.54'S, 152°45.29'E, Febr. Glorious, QLD, Mount Australia, Q-7a rainforest 17°34'06''S, 145°42'21''E, 9-14.ix.2004, L. Masner, YPT, NP, Wooroonooran Australia, MT 13. 1998, N.Power 27°19.54'S, 152°45.29'E, Febr. Glorious, QLD, Mount Australia, MT 13. 1998, N.Power 27°19.54'S, 152°45.29'E, Febr. Glorious, QLD, Mount Australia, MT 27°19.54'S, 152°45.29'E,6-12.xii. 1997, N.Power Glorious, QLD, Mount Australia, 1-23. viii.1979, S&J. Peck Arroyo, Carrizo Los Lunas, W. 20m County, Valencia USA, NM, 1-23. viii.1979, S&J. Peck Arroyo, Carrizo Los Lunas, W. 20m County, Valencia USA, NM, YPT 35.2666°S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, YPT 35.2666°S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, YPT 35.2666°S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, YPT 35.2666S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, YPT 35.2666°S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, YPT 35.2666°S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, YPT 35.2666°S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, YPT 35.2666°S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, 11.5 km 147º SSE Anjozorobeelev, 3 km 41° NE Andranomay, d’Antananarivo, Procince Madagascar, 11.5 km 147º SSE Anjozorobeelev, 3 km 41° NE Andranomay, d’Antananarivo, Procince Madagascar, PSUCIM_3067 CASENT 2045974 PSUCIM_2357 PSUCIM_3175 PSUCIM_2124 PSUCIM_2356 PSUCIM_3068 PSUCIM_3069 PSUCIM_1542 PSUCIM_1631 PSUCIM_3070 PSUCIM_3071 PSUCIM_3072 PSUCIM_3073 PSUCIM_3074 PSUCIM_3075 PSUCIM_3076 PSUCIM_3077 PSUCIM_3078 PSUCIM_3079 PSUCIM_3080

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

336 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 Taxon Ceraphron testaceipes Ceraphron testaceipes Ceraphron testaceipes Ceraphron testaceipes Ceraphron 5 sp. Ceraphron 5 sp. Ceraphron 5 sp. Ceraphron 5 sp. Ceraphron 6 sp. Ceraphron 6 sp. Ceraphron 6 sp. Ceraphron Depository CAS CAS CAS CAS ANIC ANIC ANIC ANIC CAS CAS CAS 1300m, 5-13. Dec. 2000, 18º28'24''S 47º57'36'', Ecoll. Fisher, Griswold et al., California Acad. of et al., California Acad. Griswold Fisher, 2000, 18º28'24''S 47º57'36'', Ecoll. 1300m, 5-13. Dec. coll. code BLF2371 CASLOT15540 trap, Malaise Sciences, montane rainforest, 1300m, 5-13. Dec. 2000, 18º28'24''S 47º57'36'', Ecoll. Fisher, Griswold et al., California Acad. of et al., California Acad. Griswold Fisher, 2000, 18º28'24''S 47º57'36'', Ecoll. 1300m, 5-13. Dec. coll. code BLF2371 CASLOT15540 trap, Malaise Sciences, montane rainforest, of et al., California Acad. Griswold Fisher, 2000, 18º28'24''S 47º57'36'', Ecoll. 1300m, 5-13. Dec. coll. code BLF2371 CASLOT15540 trap, Malaise Sciences, montane rainforest, of et al., California Acad. Griswold Fisher, 2000, 18º28'24''S 47º57'36'', Ecoll. 1300m, 5-13. Dec. coll. code BLF2371 CASLOT15540 trap, Malaise Sciences, montane rainforest, Prov., Auto. Antananarivo 20.9 km (72°) NE Ankazobe, Ambohitantely Forest, montane rainforest, CASENT 2136705, Fisher, as 1410 metres), -18.2253, 47.2869, minimum 1410 (interpreted et al., BLF3694 Griswold Prov., Auto. Antananarivo 20.9 km (72°) NE Ankazobe, Ambohitantely Forest, montane rainforest, CASENT 2136705, Fisher, as 1410 metres), -18.2253, 47.2869, minimum 1410 (interpreted et al., BLF3694 Griswold Prov., Auto. Antananarivo 20.9 km (72°) NE Ankazobe, Ambohitantely Forest, montane rainforest, CASENT 2136705, Fisher, as 1410 metres), -18.2253, 47.2869, minimum 1410 (interpreted et al., BLF3694 Griswold Locality data Madagascar, Procince d’Antananarivo, 3 km 41° NE Andranomay, 11.5 km 147º SSE Anjozorobeelev, 11.5 km 147º SSE Anjozorobeelev, 3 km 41° NE Andranomay, d’Antananarivo, Procince Madagascar, Madagascar, Procince d’Antananarivo, 3 km 41° NE Andranomay, 11.5 km 147º SSE Anjozorobeelev, 11.5 km 147º SSE Anjozorobeelev, 3 km 41° NE Andranomay, d’Antananarivo, Procince Madagascar, 11.5 km 147º SSE Anjozorobeelev, 3 km 41° NE Andranomay, d’Antananarivo, Procince Madagascar, 11.5 km 147º SSE Anjozorobeelev, 3 km 41° NE Andranomay, d’Antananarivo, Procince Madagascar, YPT 35.2666'S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, YPT 35.2666'S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, YPT 35.2666'S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, YPT 35.2666'S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, Reserve, 18°13'31''S, 47°17'13''E, 1410m, BLF3694, litter/ Ambohitantely Special Madagascar, Reserve, 18°13'31''S, 47°17'13''E, 1410m, BLF3694, litter/ Ambohitantely Special Madagascar, Reserve, 18°13'31''S, 47°17'13''E, 1410m, BLF3694, litter/ Ambohitantely Special Madagascar, Cont. ) (

Appendix C. Appendix ID Specimen PSUCIM_3081 PSUCIM_3082 NCSU_43080 NCSU_43081 PSUCIM_3083 PSUCIM_3084 PSUCIM_3085 PSUCIM_3086 PSUCIM_3087 PSUCIM_3088 PSUCIM_3089

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 337 )

Continued ( sp. 6 sp. Ceraphron 7 sp. Ceraphron 7 sp. Ceraphron 8 sp. Ceraphron 8 sp. Ceraphron 8 sp. Ceraphron 8 sp. Ceraphron 8 sp. Ceraphron 11 sp. Ceraphron 11 sp. Ceraphron 12 sp. Ceraphron 12 sp. Ceraphron 13 sp. Ceraphron CAS PSUC PSUC NMSA NMSA NMSA NMSA NMSA CAS CAS CAS CAS CAS montane rainforest, Ambohitantely Forest, 20.9 km (72°) NE Ankazobe, Antananarivo Auto. Prov., Prov., Auto. Antananarivo 20.9 km (72°) NE Ankazobe, Ambohitantely Forest, montane rainforest, CASENT 2136705, Fisher, as 1410 metres), -18.2253, 47.2869, minimum 1410 (interpreted et al., BLF3694 Griswold WaA051 WaA051 Prov., Auto. Antananarivo 20.9 km (72°) NE Ankazobe, Ambohitantely Forest, montane rainforest, CASENT 2136705, Fisher, as 1410 metres), -18.2253, 47.2869, minimum 1410 (interpreted et al. BLF3694 Griswold Prov., Auto. Antananarivo 20.9 km (72°) NE Ankazobe, Ambohitantely Forest, montane rainforest, CASENT 2136705, Fisher, as 1410 metres), -18.2253, 47.2869, minimum 1410 (interpreted et al. BLF3694 Griswold Prov., Auto. Antananarivo 20.9 km (72°) NE Ankazobe, Ambohitantely Forest, montane rainforest, CASENT 2136705, Fisher, as 1410 metres), -18.2253, 47.2869, minimum 1410 (interpreted et al. BLF3694 Griswold Prov., Auto. Antananarivo 20.9 km (72°) NE Ankazobe, Ambohitantely Forest, montane rainforest, CASENT 2136705, Fisher, as 1410 metres), -18.2253, 47.2869, minimum 1410 (interpreted et al. BLF3694 Griswold Prov., Auto. Antananarivo 20.9 km (72°) NE Ankazobe, Ambohitantely Forest, montane rainforest, CASENT 2136705, Fisher, as 1410 metres), -18.2253, 47.2869, minimum 1410 (interpreted et al. BLF3694 Griswold Madagascar, Ambohitantely Special Reserve, 18°13'31''S, 47°17'13''E, 1410m, BLF3694, litter/ Ambohitantely Special Madagascar, Mexico, Chiapas, 15km E. San Cristobal, 2500m, 16.74683°N, 92.49008W, 29.May 2008, LLAMA 29.May 2500m, 16.74683°N, 92.49008W, Cristobal, Chiapas, 15km E. San Mexico, 2008, LLAMA 29.May 2500m, 16.74683°N, 92.49008°W, Cristobal, Chiapas, 15km E. San Mexico, Kolyada V. YPT, 8.11.02.2005, garden, Pretoria Africa Gauteng, South Kolyada V. YPT, 8.11.02.2005, garden, Pretoria Africa Gauteng, South Kolyada V. YPT, 8.11.02.2005, garden, Pretoria Africa Gauteng, South Kolyada V. YPT, 8.11.02.2005, garden, Pretoria Africa Gauteng, South Kolyada V. YPT, 8.11.02.2005, garden, Pretoria Africa Gauteng, South Reserve, 18°13'31''S, 47°17'13''E, 1410m, BLF3694, litter/ Ambohitantely Special Madagascar, Reserve, 18°13'31''S, 47°17'13''E, 1410m, BLF3694, litter/ Ambohitantely Special Madagascar, Reserve, 18°13'31''S, 47°17'13''E, 1410m, BLF3694, litter/ Ambohitantely Special Madagascar, Reserve, 18°13’31”S, 47°17’13”E, 1410m, BLF3694, litter/ Ambohitantely Special Madagascar, Reserve, 18°13'31''S, 47°17'13''E, 1410m, BLF3694, litter/ Ambohitantely Special Madagascar, PSUCIM_3090 PSUCIM_3091 PSUCIM_2123 PSUCIM_2016 PSUCIM_2017 PSUCIM_2015 PSUCIM_2014 PSUCIM_2013 PSUCIM_3092 PSUCIM_3093 PSUCIM_3094 PSUCIM_3095 PSUCIM_3096

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

338 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 fasciipennis fasciipennis fasciipennis fasciipennis fasciipennis Aphanogmus Aphanogmus Aphanogmus Aphanogmus Aphanogmus Taxon sp. 13 sp. Ceraphron 14 sp. Ceraphron 14 sp. Ceraphron 15 sp. Ceraphron 15 sp. Ceraphron 16 sp. Ceraphron 16 sp. Ceraphron 16 sp. Ceraphron bispinosus Ceraphron bispinosus Ceraphron bispinosus Ceraphron bispinosus Ceraphron Aphanogmus NHRS NHRS NHRS NHRS Depository CAS PSUC PSUC PSUC PSUC ANIC ANIC ANIC PSUC PSUC PSUC PSUC PSUC

Trap ID 3) Trap ID 3) Trap ID 3) Trap ID 3) Trap

coll. eventID 798) coll. eventID 798) coll. eventID 798) coll. eventID 798) coll. eventID

(= (= (= (= montane rainforest, Ambohitantely Forest, 20.9 km (72°) NE Ankazobe, Antananarivo Auto. Prov., Prov., Auto. Antananarivo 20.9 km (72°) NE Ankazobe, Ambohitantely Forest, montane rainforest, CASENT 2136705, Fisher, as 1410 metres), -18.2253, 47.2869, minimum 1410 (interpreted et al. BLF3694 Griswold Eucalyptus scrub, 622 m elev., 35°16.518' S, 149° 06.647' E A. R. Deans & M. Buffington 7-8. & M. Buffington 35°16.518' S, 149° 06.647' E A. R. Deans 622 m elev., scrub, Eucalyptus xii.2005 7-8. & M. Buffington 35°16.518' S, 149° 06.647' E A. R. Deans 622 m elev. scrub, Eucalyptus xii.2005 7-8. & M. Buffington 35°16.518' S, 149° 06.647' E A. R. Deans 622 m elev. scrub, Eucalyptus xii.2005 Sweden, Sö, Tyresta, Urskogsslingan, Flat-rock pine forest, 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden, 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden, 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden, 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden, Locality data Madagascar, Ambohitantely Special Reserve, 18°13'31''S, 47°17'13''E, 1410m, BLF3694, litter/ Ambohitantely Special Madagascar, Hungary, Bács-Kiskun, Miklapuszta, 1997.X.01. YPT, leg. Kovács Éva leg. Kovács YPT, 1997.X.01. Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01. Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01. Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01. Miklapuszta, Bács-Kiskun, Hungary, pan traps in Collection, yellow Insect National Canberra, 250 m NNW Australian ACT, Australia, pan traps in Collection, yellow Insect National Canberra, 250 m NNW Australian ACT, Australia, pan traps in Collection, yellow Insect National Canberra, 250 m NNW Australian ACT, Australia, Éva leg. Kovács YPT, 1997.X.01. Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01. Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01. Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01. Miklapuszta, Bács-Kiskun, Hungary, Mikó YPT, 12-15, Jun Köszeg, Vas, Hungary, Cont. ) (

PSUCIM_3110 PSUCIM_3111 PSUCIM_3112 Appendix C. Appendix ID Specimen PSUCIM_3097 PSUCIM_3098 PSUCIM_3099 PSUCIM_3100 PSUCIM_3101 PSUCIM_3102 PSUCIM_3103 PSUCIM_3104 PSUCIM_3105 PSUCIM_3106 PSUCIM_3107 PSUCIM_3108 PSUCIM_2125 PSUCIM_3109

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 339 )

Continued ( abdominalis abdominalis abdominalis abdominalis abdominalis sp. 2 sp. Aphanogmus sp. 2 sp. Aphanogmus 2 sp. Aphanogmus 2 sp. Aphanogmus 3 sp. Aphanogmus 3 sp. Aphanogmus fulmeki Aphanogmus fulmeki Aphanogmus fulmeki Aphanogmus fulmeki Aphanogmus fulmeki Aphanogmus Aphanogmus Aphanogmus Aphanogmus Aphanogmus Aphanogmus NHRS NHRS NHRS NHRS NHRS NHRS NHRS NHRS NHRS PSUC PSUC PSUC PSUC NHRS NHRS PSUC

Trap ID 3) Trap ID 3) Trap ID 3) Trap ID 3) Trap

Trap ID 3) Trap ID 3) Trap ID 3) Trap ID 3) Trap

coll. eventID 192), 2003.viii.18-2003.ix.01 coll. eventID

coll. eventID 798) coll. eventID 798) coll. eventID 798) coll. eventID 798) coll. eventID 798) coll. eventID 798) coll. eventID 798) coll. eventID 798) coll. eventID Trap ID 54) (= Trap

39°59.220N, 115°31.479E, 28.VII.2002 G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002 G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002 G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002 G. Melika, dry meadow 115°31.479, 28.VII.2002 G. Melika, Alonzo Gonzales Alonzo Gonzales (= (= (= (= (= (= (= (= (= China, Beijing province, Mentougo district, Beijing, 130 km NW, Xiaolong Station, 10 m a.s.l., Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing 10 m a.s.l., Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing 10 m a.s.l., Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing 10a.s.l. 39°59.220, Xiaolong Station 130km NW, district, Beijing. Mentougo provi China, Beijing 53.6674345°N, 15.88325°E 04/02/2009, I. radiatus, Clara Sjölunda (Tämnaren), Tierp Up. Sweden, 53.6674345°N, 15.88325°E 04/02/2009, I. radiatus, Clara Sjölunda (Tämnaren), Tierp Up. Sweden, Wharton & R. Yoder 8-11.viii.2005, wlco_05, M. J. USA, CO, Lake Co., wood on fine alluvial sediments Birch kommun, Kulbäcksängarna, Vindelns Vb, Sweden, Sweden, Sö, Tyresta, Urskogsslingan, Flat-rock pine forest, 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden, 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden, 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden, 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden, 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden PSUCIM_3114 PSUCIM_3115 PSUCIM_3116 PSUCIM_2175 PSUCIM_3117 PSUCIM_2170 PSUCIM_2211 PSUCIM_2192 PSUCIM_3118 PSUCIM_3119 PSUCIM_3120 PSUCIM_3121 PSUCIM_3122 RLMV087 PSUCIM_2140 PSUCIM_3113

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

340 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 abdominalis Aphanogmus Aphanogmus 7 sp. Aphanogmus 7 sp. Aphanogmus 7 sp. Aphanogmus 7 sp. Aphanogmus sp. 8 sp. Aphanogmus 9 sp. Aphanogmus 9 sp. Aphanogmus 9 sp. Aphanogmus 9 sp. Aphanogmus 9 sp. Aphanogmus 10 sp. Aphanogmus 10 sp. Aphanogmus 10 sp. Aphanogmus 10 sp. Aphanogmus 11 sp. Aphanogmus 11 sp. Aphanogmus Taxon NHRS PSUC PSUC PSUC PSUC NHRS CAS CAS CAS CAS CAS PSUC PSUC PSUC PSUC PSUC PSUC Depository

Trap ID 3) Trap

coll. eventID 192), 2003.viii.18-2003.ix.01 coll. eventID

coll. eventID 798) coll. eventID Trap ID 54) (= Trap

39°59.220N, 115°31.479E, 28.VII.2002 G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002 G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002 G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002 G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002 G. Melika, 13°57.7'S, 48°26.0’E, 8.xi.19. 98, B.Fisher#1996, sifted litter (leaf mold, rotten wood), sifted litter (leaf mold, rotten 13°57.7'S, 48°26.0’E, 8.xi.19. 98, B.Fisher#1996, rainforest wood), sifted litter (leaf mold, rotten 13°57.7'S, 48°26.0’E, 8.xi.19. 98, B.Fisher#1996, rainforest wood), rainforest sifted litter (leaf mold, rotten 13°57.7'S, 48°26.0’E, 8.xi.19. 98, B.Fisher#1996, wood), rainforest sifted litter (leaf mold, rotten 48°26.0’E, 8.xi.19. 98, B.Fisher#1996, wood), rainforest sifted litter (leaf mold, rotten 48°26.0’E, 8.xi.19. 98, B.Fisher#1996, (= (= China, Beijing province, Mentougo district, Beijing, 130 km NW, Xiaolong Station, 10 m a.s.l., Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing 10 m a.s.l., Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing 10 m a.s.l., Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing 10 m a.s.l., Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing Madagascar, Prov. Antsiranana, R.S Manongarivo, 10.8 km, 229°SW Antanambao, 400m, Antsiranana, R.S Manongarivo, Prov. Madagascar, 10.8 km, 229°SW Antanambao, 400m, Antsiranana, R.S Manongarivo, Prov. Madagascar, 10.8 km, 229°SW Antanambao, 400m, Antsiranana, R.S Manongarivo, Prov. Madagascar, 10.8 km, 229°SW Antanambao, 400m, 13°57.7'S, Antsiranana, R.S Manongarivo, Prov. Madagascar, 10.8 km, 229°SW Antanambao, 400m, 13°57.7'S, Antsiranana, R.S Manongarivo, Prov. Madagascar, 19.vii.2001, leg. Mikó Sziksóstó, sweeping, Csongrád, Kiskundorozsma, Hungary, leg. Mikó sweeping, 28.v.2002, rét, Tury Kiskörös, Bács-Kiskun, Hungary, É. 25.vi.2002, leg. Komlósi, Szolnok, Szolnok, Hungary, É. 25.vi.2002, leg. Komlósi, Szolnok, Szolnok, Hungary, 2-4.vi.2003, tamu ceraphronoids Co., USA, AR, Montogemery YPT 22.viii.2002, Oroege, USA, AZ, Cochise Co., Sweden Sö, Tyresta, Urskogsslingan, Flat-rock pine forest, 2004.vi.21-2004.vii.20 (= pine forest, Flat-rock Urskogsslingan, Tyresta, Sö, Sweden Locality data Sweden, Vb, Vindelns kommun, Kulbäcksängarna, Birch wood on fine alluvial sediments Birch kommun, Kulbäcksängarna, Vindelns Vb, Sweden, Cont. ) (

PSUCIM_2184 PSUCIM_2201 PSUCIM_2179 PSUCIM_2189 PSUCIM_3176 PSUCIM_3124 PSUCIM_3125 PSUCIM_3126 PSUCIM_3127 PSUCIM_3128 PSUCIM_3129 PSUCIM_3130 PSUCIM_3131 PSUCIM_4004 PSUCIM_3132 PSUCIM_3133 Appendix C. Appendix ID Specimen PSUCIM_2137

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 341 )

Continued ( sp. 11 sp. Aphanogmus 11 sp. Aphanogmus 12 sp. Aphanogmus 12 sp. Aphanogmus 12 sp. Aphanogmus 13 sp. Aphanogmus 13 sp. Aphanogmus 13 sp. Aphanogmus 13 sp. Aphanogmus 13 sp. Aphanogmus 13 sp. Aphanogmus 13 sp. Aphanogmus 14 sp. Aphanogmus 14 sp. Aphanogmus 14 sp. Aphanogmus 14 sp. Aphanogmus 16 sp. Aphanogmus 16 sp. Aphanogmus 16 sp. Aphanogmus 16 sp. Aphanogmus 18 sp. Aphanogmus 18 sp. Aphanogmus 20 sp. Aphanogmus PSUC PSUC CNC CNC CNC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC PSUC CAS CAS ANIC Canopy fog, Nothophagus dombevi., Arias et al. Canopy fog, Nothophagus dombevi., Arias et al. Canopy fog, Nothophagus D. Yeates D. Webb, wood), sifted litter (leaf mold, rotten 13°57.7'S, 48°26.0’E, 8.xi.19. 98, B.Fisher#1996, rainforest wood), sifted litter (leaf mold, rotten 13°57.7'S, 48°26.0’E, 8.xi.19. 98, B.Fisher#1996, rainforest G YPT Gibson, USA, AZ, Cochise Co., 22.viii.2002, Oroege, YPT 22.viii.2002, Oroege, USA, AZ, Cochise Co., 1190m, 12.iii.2005, 36°54.065'S, 071°30.096'W, Way, Shangrila Chilean Cordillera, Chile, viii region 1190m, 12.iii.2005, 36°54.065'S, 071°30.096’W, Way, Shangrila Chilean Cordillera, Chile, viii region (6-9)-I-2000, 360ft, 37.809S, 73.016W, de Nahuelbuta, Nacional IX, Parque Chile, Region É. 25.vi.2002, leg. Komlósi, Szolnok, Szolnok, Hungary, É. 25.vi.2002, leg. Komlósi, Szolnok, Szolnok, Hungary, É. 25.vi.2002, leg. Komlósi, Szolnok, Szolnok, Hungary, É. 25.vi.2002, leg. Komlósi, Szolnok, Szolnok, Hungary, É. 25.vi.2002, leg. Komlósi, Szolnok, Szolnok, Hungary, É. 25.vi.2002, leg. Komlósi, Szolnok, Szolnok, Hungary, É. 25.vi.2002, leg. Komlósi, Szolnok, Szolnok, Hungary, Éva leg. Kovács YPT, 1997.X.01, Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01, Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01. Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01, Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01, Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01, Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01, Miklapuszta, Bács-Kiskun, Hungary, Éva leg. Kovács YPT, 1997.X.01, Miklapuszta, Bács-Kiskun, Hungary, 10.8 km, 229°SW Antanambao, 400m, Antsiranana, R.S Manongarivo, Prov. Madagascar, 10.8 km, 229°SW Antanambao, 400m, Antsiranana, R.S Manongarivo, Prov. Madagascar, 35.2666°S, 149.1°E, 16-22.xi.1998, Mountains, Canberra, Black ACT, Australia, USA, AZ, Cochise Co., 22.viii.2002, Oroege, YPT 22.viii.2002, Oroege, USA, AZ, Cochise Co., PSUCIM_4001 PSUCIM_3135 PSUCIM_3136 PSUCIM_3137 PSUCIM_3138 PSUCIM_3139 PSUCIM_3140 PSUCIM_3141 PSUCIM_3142 PSUCIM_4002 PSUCIM_4003 PSUCIM_3143 PSUCIM_3144 PSUCIM_3145 PSUCIM_3146 PSUCIM_3147 PSUCIM_3148 PSUCIM_3149 PSUCIM_3150 PSUCIM_3151 PSUCIM_3152 PSUCIM_3153 PSUCIM_3134

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

342 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 fumipennis fumipennis tenuicornis tenuicornis Aphanogmus bicolor Aphanogmus bicolor Aphanogmus Aphanogmus Aphanogmus Aphanogmus Aphanogmus Aphanogmus Taxon sp. 20 sp. Aphanogmus 24 sp. Aphanogmus 26 sp. Aphanogmus 26 sp. Aphanogmus 26 sp. Aphanogmus 26 sp. Aphanogmus 27 sp. Aphanogmus 27 sp. Aphanogmus 27 sp. Aphanogmus 27 sp. Aphanogmus 27 sp. Aphanogmus 27 sp. Aphanogmus NHRS NHRS NHRS Depository NHRS PSUC PSUC ANIC PSUC PSUC PSUC PSUC PSUC SAM SAM SAM SAM SAM SAM Trap ID 24) 818, 2003. Trap

coll. eventID 192), 2003.viii.18-2003.ix.01 coll. eventID 192), 2003.viii.18-2003.ix.01 coll. eventID

Trap ID 60) 216, 2003.viii.18-2003.ix.01 Trap

Trap ID 54) (= Trap ID 54) (= Trap

39°59.220N, 115°31.479E, 28.VII.2002, G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002, G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002, G. Melika, (= (= (= forest viii.01-2003.viii.18 A. van Harten A. van Harte Harten A. van Harten A. van Harten A. van Sweden, Vb, Vindelns kommun, Kulbäcksängarna, Birch wood on fine alluvial sediments Birch kommun, Kulbäcksängarna, Vindelns Vb, Sweden, old 20-25 year coniferous, dense mixed försökspark, kommun, Kulbäckslidens Vindelns Vb, Sweden, China, Beijing province, Mentougo district, Beijing, 130 km NW, Xiaolong Station, 10 m a.s.l. Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing 10 m a.s.l. Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing Sweden, Sm, Stenbrohult, Djäknabygds bokbacke, Heath with old beeches (= bokbacke, Heath Djäknabygds Stenbrohult, Sm, Sweden, Locality data Australia, ACT, Canberra, Black Mountains, 35.2666°S, 149.1°E, 16-22.xi.1998, G Gibson, YPT 35.2666°S, 149.1°E, 16-22.xi.1998, G Gibson, Mountains, Canberra, Black ACT, Australia, United Arab Emirates, Al-Ajban, 24.36°N, 55.01°E, 01.04-02.05.2006 Malaise trap (5661), Al-Ajban, 24.36°N, 55.01°E, 01.04-02.05.2006 Malaise Arab Emirates, United trap (5661), A. van Al-Ajban, 24.36°N, 55.01°E, 01.04-02.05.2006 Malaise Arab Emirates, United 25.18°N, 56.07°E, 29.03-10.04.2006, water-traps (6061), Maidaq, Wadi Arab Emirates, United 25.18°N, 56.07°E, 29.03-10.04.2006, water-traps (6061), Maidaq, Wadi Arab Emirates, United 25.18°N, 56.07°E, 29.03-10.04.2006, water-traps (6061), Maidaq, Wadi Arab Emirates, United D.C. Darling 263m, 33.883°S, 140.716°E, 15.II-15.IV.2000, SA, 32 km N Renmark, Australia, D.C. Darling 263m, 33.883°S, 140.716°E, 15.II-15.IV.2000, SA, 32 km N Renmark, Australia, D.C. Darling 263m, 33.883°S, 140.716°E, 15.II-15.IV.2000, SA, 32 km N Renmark, Australia, D.C. Darling 263m, 33.883°S, 140.716°E, 15.II-15.IV.2000, SA, 32 km N Renmark, Australia, D.C. Darling 263m, 33.883°S, 140.716°E, 15.II-15.IV.2000, SA, 32 km N Renmark, Australia, D.C. Darling 263m, 33.883°S, 140.716°E, 15.II-15.IV.2000, SA, 32 km N Renmark, Australia, wood on fine alluvial sediments Birch kommun, Kulbäcksängarna, Vindelns Vb, Sweden, Cont. ) (

PSUCIM_3167 PSUCIM_3168 PSUCIM_3169 PSUCIM_2227 PSUCIM_2167 Appendix C. Appendix ID Specimen PSUCIM_3154 PSUCIM_3155 PSUCIM_3156 PSUCIM_3157 PSUCIM_3158 PSUCIM_3159 PSUCIM_3160 PSUCIM_3161 PSUCIM_3162 PSUCIM_3163 PSUCIM_3164 PSUCIM_3165 PSUCIM_3166

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 343 tenuicornis tenuicornis tenuicornis tenuicornis tenuicornis Aphanogmus Aphanogmus Aphanogmus Aphanogmus Aphanogmus Aphanogmus PSUC PSUC PSUC PSUC PSUC 39°59.220N, 115°31.479E, 28.VII.2002, G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002, G. Melika, 39°59.220N, 115°31.479E, 28.VII.2002, G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002, G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002, G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002, G. Melika, dry meadow 39°59.220N, 115°31.479E, 28.VII.2002, G. Melika, China, Beijing province, Mentougo district, Beijing, 130 km NW, Xiaolong Station, 10 m a.s.l. Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing China, Beijing province, Mentougo district, Beijing, 130 km NW, Xiaolong Station, 10 m a.s.l. Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing 10 m a.s.l. Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing 10 m a.s.l. Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing 10 m a.s.l. Xiaolong Station, 130 km NW, district, Beijing, Mentougo province, China, Beijing PSUCIM_2212 PSUCIM_2204 PSUCIM_2198 PSUCIM_2214 PSUCIM_3170

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

344 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Appendix D. Data matrix for phylogenetic analysis

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

Xyela sp. 0 0 0 0 1 0 1 1 0 1 1 0 0 – 0 1 1 1 0 1 – 2 Orthogonalys pulchella 0 1 0 0 1 0 1 1 0 1 1 0 0 – 0 1 1 1 0 1 – 2 Evania albofascialis 1 1 0 0 1 0 1 1 0 – 1 0 0 – 0 1 1 1 0 0 – 2 Szepligetella levipetiolata 1 1 0 0 1 0 1 1 0 – 1 0 0 – 0 1 1 1 0 0 – 2 Pristaulacus resutorivus 0 1 0 0 0 0 1 1 0 – 1 0 0 – 0 1 1 1 0 0 – 2 Pseudofoenus sp. 1 1 0 0 0 1 1 1 0 – 0 0 1 – 0 1 1 1 0 0 – 0 Dinapsis sp. 0 1 0 0 0 0 1 1 0 1 1 0 0 – 0 1 1 1 – 0 – 1 Megalyra fasciipennis 0 1 0 0 0 0 1 1 0 1 1 0 0 – 0 1 1 1 – 0 – 1 Megischus sp. 0 1 0 0 1 0 1 1 0 – 0 1 1 – 0 1 1 1 0 1 – 2 Aphanogmus fasciipennis 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 Aphanogmus sp. 2 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 Aphanogmus sp. 3 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus fulmeki 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 Aphanogmus abdominalis 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus compressus 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 Aphanogmus sp. 7 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus sp. 9 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus sp. 10 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus sp. 11 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus sp. 12 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus sp. 13 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 Aphanogmus sp. 14 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus sp. 16 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 Aphanogmus sp. 18 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus sp. 20 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 Aphanogmus sp. 24 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus sp. 26 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus sp. 27 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 Aphanogmus bicolor 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus fumipennis 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Aphanogmus tenuicormis 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 Ceraphron binubeculatus 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron sp. 2 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron sp. 3 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron testaceipes 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron sp. 5 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron sp. 6 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron sp. 7 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron sp. 8 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron sp. 11 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron sp. 12 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron sp. 13 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron sp. 14 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron sp. 15 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron sp. 16 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Ceraphron bispinosus 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Conostigmus bipunctatus 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Conostigmus sp. 3 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Conostigmus crassicornis 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 Conostigmus sp. 5 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 Conostigmus abdominalis 1 0 0 0 1 0 1 1 0 0 0 1 1 21 0 1 0 1 1 0 0 1 Conostigmus pulchellus 1 0 0 0 1 0 1 1 0 0 0 1 1 2 0 1 0 1 1 0 0 1 Conostigmus sp. 11 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 345

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

0 – 0 1 0 1 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0 2 1 0 1 0 1 0 0 0 1 1 1 – 0 – 1 1 0 0 1 0 0 – – 0 0 2 1 0 1 0 – 0 2 0 1 0 0 – 1 – 0 1 0 0 1 0 0 – – 0 0 2 1 0 1 0 – 0 2 0 1 0 0 – 1 – 0 1 0 0 1 0 0 – – 0 0 2 1 0 1 0 – 0 2 0 1 0 0 – 1 – 0 1 0 0 1 0 0 – – 0 0 2 0 0 1 0 – 0 2 0 1 0 0 – 1 – 0 1 1 0 1 0 0 – – 0 0 0 1 0 1 0 – 1 – – 0 0 0 – 1 – 1 1 1 0 1 0 0 – – 0 0 2 1 0 1 0 – 1 – – 0 0 0 – 1 – 1 1 1 0 1 0 0 – – 0 0 0 1 1 1 0 – 1 0 0 1 0 0 – 1 – 0 0 – 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 0 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 0 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 0 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 0 0 1 1 0 1 1

(Continued ) Downloaded from Brill.com10/07/2021 09:32:22AM via free access

346 I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347

Appendix D. (Cont.) 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22

Conostigmus sp. 12 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 Conostigmus sp. 14 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 Conostigmus sp. 20 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 Conostigmus sp. 22 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 Conostigmus sp. 23 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 Conostigmus sp. 26 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 Conostigmus sp. 29 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 0 1 Conostigmus scabriceps 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 Conostigmus uninasutus 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 Conostigmus villosus 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 Cyoceraphron sp. 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Cyoceraphron sp. 3 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Dendrocerus sp. 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus sp. 2 1 0 0 0 1 0 1 1 0 0 0 1 1 2 0 0 0 1 1 0 0 1 Dendrocerus conwentziae 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus penmaricus 1 0 0 0 1 0 1 1 0 0 0 1 0 2 0 1 0 1 1 0 0 1 Dendrocerus marycarverae 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus africanus 1 0 0 0 1 0 1 1 0 0 0 1 1 2 0 0 0 1 1 0 0 1 Dendrocerus rectangularis 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus punctipes 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus floridanus 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus perlucidus 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus propodealis 1 0 0 0 1 0 1 1 0 0 0 1 1 2 0 0 0 1 1 0 0 1 Dendrocerus wollastoni 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus anneckei 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus vivianae 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 Dendrocerus carpenteri 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus liebscheri 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus ramicornis 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 Dendrocerus flavipes 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus halidayi 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus aphidum 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus sp. 29 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus paradoxus 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus sp. 36 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Dendrocerus indicus 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 1 Elysoceraphron sp. 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0 0 1 Gnathoceraphron watshami 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 Aetholagynodes stupendus 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1 Holophleps sp. 1 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1 Lagynodes crassicornis 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1 Lagynodes pallidus 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 0 0 1 Masner lubomirus 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Megaspilus armatus 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 Megaspilus sp. 2 1 0 0 0 0 0 1 1 0 0 0 1 0 2 0 1 0 1 1 0 0 1 Trassedia luapi 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Trassedia sp. 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1 1 0 0 2 Trichosteresis glabra 1 0 0 0 1 0 1 0 0 0 0 1 0 2 0 1 0 1 1 0 0 1

Downloaded from Brill.com10/07/2021 09:32:22AM via free access

I. Mikó et al. / Insect Systematics & Evolution 44 (2013) 261–347 347

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 0 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 0 0 1 1 0 1 1 0 – 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 0 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 – 0 1 1 0 1 1 0 – 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 – 0 1 1 0 1 1 0 – 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 – 0 1 1 0 1 1 0 – 1 1 1 0 – 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 1 – 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 0 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 – 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 – 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 0 – 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 2 0 – 0 1 1 0 1 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 1 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 0 – 1 1 0 0 1 0 0 0 1 1 2 0 0 0 1 0 1 – 1 0 – 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 1 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 2 0 0 0 1 0 0 1 1 0 – 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 2 1 0 0 1 1 0 2 1 0 – 0 1 1 0 – – 1 0 0 0 0 0 0 1 1 2 0 0 0 – – 1 – 1

Downloaded from Brill.com10/07/2021 09:32:22AM via free access