Riparian Research and Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abstracts from the 1999 Symposium
UTAH I THE I DESERT TORTOISE COUNCIL ARIZONA NEVADA l I i I / + S v'LEI S % A|. w a CALIFORNIA PROCEEDINGS OF 1999 SYMPOSIUM DESERT TORTOISE COUNCIL PROCEEDINGS OF THE 1999 SYMPOSIUM A compilation of reports and papers presented at the twenty-fourth annual symposium of the Desert Tortoise Council, March 5-8, 1999 St. George, Utah PUBLICATIONS OF THE DESERT TORTOISE COUNCIL, INC. Members Non-members Proceedings of the 1976 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1977 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1978 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1979 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1980 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1981 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1982 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1983 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1984 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1985 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1986 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1987-91 Desert Tortoise Council Symposia $20,00 $20.00 Proceedings of the 1992 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1993 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1994 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1995 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1996 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1997-98 Desert Tortoise Council Symposia $10.00 $15.00 Annotated Bibliog raphy of the Desert Tortoise, Gopherus agassizii $10.00 $15.00 Note: Please add $1.00 per copy to cover postage and handling. -
Estimating the Energy Expenditure of Endotherms at the Species Level
Canadian Journal of Zoology Estimating the energy expenditure of endotherms at the species level Journal: Canadian Journal of Zoology Manuscript ID cjz-2020-0035 Manuscript Type: Article Date Submitted by the 17-Feb-2020 Author: Complete List of Authors: McNab, Brian; University of Florida, Biology Is your manuscript invited for consideration in a Special Not applicable (regular submission) Issue?: Draft arvicoline rodents, BMR, Anatidae, energy expenditure, endotherms, Keyword: Meliphagidae, Phyllostomidae © The Author(s) or their Institution(s) Page 1 of 42 Canadian Journal of Zoology Estimating the energy expenditure of endotherms at the species level Brian K. McNab B.K. McNab, Department of Biology, University of Florida 32611 Email for correspondence: [email protected] Telephone number: 1-352-392-1178 Fax number: 1-352-392-3704 The author has no conflict of interest Draft © The Author(s) or their Institution(s) Canadian Journal of Zoology Page 2 of 42 McNab, B.K. Estimating the energy expenditure of endotherms at the species level. Abstract The ability to account with precision for the quantitative variation in the basal rate of metabolism (BMR) at the species level is explored in four groups of endotherms, arvicoline rodents, ducks, melaphagid honeyeaters, and phyllostomid bats. An effective analysis requires the inclusion of the factors that distinguish species and their responses to the conditions they encounter in the environment. These factors are implemented by changes in body composition and are responsible for the non-conformity of species to a scaling curve. Two concerns may limit an analysis. The factors correlatedDraft with energy expenditure often correlate with each other, which usually prevents them from being included together in an analysis, thereby preventing a complete analysis, implying the presence of factors other than mass. -
Forest Fragment Size and Microhabitat Effects on Palm Seed Predation
BIOLOGICAL CONSERVATION 131 (2006) 1– 13 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/biocon Forest fragment size and microhabitat effects on palm seed predation Marina Fleurya,b,c,*, Mauro Galettib,c aLaborato´rio de Ecologia e Restaurac¸a˜ o Florestal (LERF), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’, Universidade de Sa˜ o Paulo (ESALQ/USP), Brazil bLaborato´rio de Biologia da Conservac¸a˜ o, Grupo de Fenologia e Dispersa˜ o de Sementes, Departamento de Ecologia, Universidade Estadual Paulista (UNESP), C.P. 199, 13506-900, Rio Claro, Sa˜ o Paulo, Brazil cInstituto de Biologia da Conservac¸a˜ o (IBC), Av.P-13, 293, Rio Claro, SP, Brazil ARTICLE INFO ABSTRACT Article history: The establishment of plant species depends crucially on where the seeds are deposited. How- Received 11 January 2005 ever, since most studies have been conducted in continuous forests, not much is known about Received in revised form the effects of forest fragmentation on the maintenance of abiotic and biotic characteristics in 19 October 2005 microhabitats and their effects on seed survival. In this study, we evaluated the effects of for- Accepted 24 October 2005 est fragmentation on the predation upon the seeds of the palm Syagrus romanzoffiana in three Available online 3 April 2006 microhabitats (interior forest, forest edge and gaps) in eight fragments of semi-deciduous Atlantic forest ranging in size from 9.5 ha to 33,845 ha in southeastern Brazil. Specifically, Keywords: we examined the influence of the microhabitat structure, fauna and fragment size on the pat- Arecaceae tern of seed predation. -
Effects of Predator Satiation on Seed Predation in New Roadside Prairie Plantings
University of Northern Iowa UNI ScholarWorks Dissertations and Theses @ UNI Student Work 2016 Effects of predator satiation on seed predation in new roadside prairie plantings Jessica Riebkes University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©2016 Jessica Riebkes Follow this and additional works at: https://scholarworks.uni.edu/etd Part of the Plant Sciences Commons Recommended Citation Riebkes, Jessica, "Effects of predator satiation on seed predation in new roadside prairie plantings" (2016). Dissertations and Theses @ UNI. 277. https://scholarworks.uni.edu/etd/277 This Open Access Thesis is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Copyright by JESSICA L. RIEBKES 2016 All Rights Reserved EFFECTS OF PREDATOR SATIATION ON SEED PREDATION IN NEW ROADSIDE PRAIRIE PLANTINGS An Abstract of a Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree Master of Science Jessica Riebkes University of Northern Iowa May 2016 ABSTRACT Restoration efforts in the tallgrass prairie ecosystem are inhibited by high seed cost and as little as 10% emergence of planted, pure live seed. This study examined the portion of loss due to seed predation and sought to reduce this predation in new roadside prairie plantings. Studies document the occurrence of predation in several plant communities and across all plant families, but little is known about how to reduce the impact of seed predators, especially in a restoration setting. -
Bibliography
Bibliography Abella, S. R. 2010. Disturbance and plant succession in the Mojave and Sonoran Deserts of the American Southwest. International Journal of Environmental Research and Public Health 7:1248—1284. Abella, S. R., D. J. Craig, L. P. Chiquoine, K. A. Prengaman, S. M. Schmid, and T. M. Embrey. 2011. Relationships of native desert plants with red brome (Bromus rubens): Toward identifying invasion-reducing species. Invasive Plant Science and Management 4:115—124. Abella, S. R., N. A. Fisichelli, S. M. Schmid, T. M. Embrey, D. L. Hughson, and J. Cipra. 2015. Status and management of non-native plant invasion in three of the largest national parks in the United States. Nature Conservation 10:71—94. Available: https://doi.org/10.3897/natureconservation.10.4407 Abella, S. R., A. A. Suazo, C. M. Norman, and A. C. Newton. 2013. Treatment alternatives and timing affect seeds of African mustard (Brassica tournefortii), an invasive forb in American Southwest arid lands. Invasive Plant Science and Management 6:559—567. Available: https://doi.org/10.1614/IPSM-D-13-00022.1 Abrahamson, I. 2014. Arctostaphylos manzanita. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Fire Effects Information System (Online). plants/shrub/arcman/all.html Ackerman, T. L. 1979. Germination and survival of perennial plant species in the Mojave Desert. The Southwestern Naturalist 24:399—408. Adams, A. W. 1975. A brief history of juniper and shrub populations in southern Oregon. Report No. 6. Oregon State Wildlife Commission, Corvallis, OR. Adams, L. 1962. Planting depths for seeds of three species of Ceanothus. -
Wildlife Regulation
Province of Alberta WILDLIFE ACT WILDLIFE REGULATION Alberta Regulation 143/1997 With amendments up to and including Alberta Regulation 148/2013 Office Consolidation © Published by Alberta Queen’s Printer Alberta Queen’s Printer 5th Floor, Park Plaza 10611 - 98 Avenue Edmonton, AB T5K 2P7 Phone: 780-427-4952 Fax: 780-452-0668 E-mail: [email protected] Shop on-line at www.qp.alberta.ca Copyright and Permission Statement Alberta Queen's Printer holds copyright on behalf of the Government of Alberta in right of Her Majesty the Queen for all Government of Alberta legislation. Alberta Queen's Printer permits any person to reproduce Alberta’s statutes and regulations without seeking permission and without charge, provided due diligence is exercised to ensure the accuracy of the materials produced, and Crown copyright is acknowledged in the following format: © Alberta Queen's Printer, 20__.* *The year of first publication of the legal materials is to be completed. Note All persons making use of this consolidation are reminded that it has no legislative sanction, that amendments have been embodied for convenience of reference only. The official Statutes and Regulations should be consulted for all purposes of interpreting and applying the law. (Consolidated up to 148/2013) ALBERTA REGULATION 143/97 Wildlife Act WILDLIFE REGULATION Table of Contents Interpretation and Application 1 Establishment of certain provisions by Lieutenant Governor in Council 2 Establishment of remainder by Minister 3 Interpretation 4 Interpretation for purposes of the Act 5 Exemptions and exclusions from Act and Regulation 6 Prevalence of Schedule 1 7 Application to endangered animals Part 1 Administration 8 Terms and conditions of approvals, etc. -
Deterring Rodent Seed-Predation Using Seed-Coating Technologies Justin B
RESEARCH ARTICLE Deterring rodent seed-predation using seed-coating technologies Justin B. Taylor1,2 , Kristina L. Cass1, David N. Armond1, Matthew D. Madsen1 , Dean E. Pearson3,4 , Samuel B. St. Clair1 With many degraded environments undergoing restoration efforts, there is a growing need for the optimization of direct seed- ing practices. Seeds planted on wildlands are often consumed by rodents, leading to reduced plant establishment. Coating seeds in rodent aversive products may prevent seed-predation. We tested 10 seed-coating formulations containing products expected to deter rodents, namely: ghost and cayenne pepper powders; essential oils from bergamot, neem, and pine; methyl-nonyl- ketone, anthraquinone, activated carbon, beta-cyclodextrin, and a blank coating containing no rodent deterrents to serve as a control treatment. Each treatment was applied to Pseudoroegneria spicata (bluebunch wheatgrass) seeds. These seeds germi- nated similarly to uncoated control seeds unless the coating contained methyl-nonyl-ketone which reduced germination. When seeds were offered to Ord’s kangaroo rats (Dipodomys ordii), they strongly avoided the treatments in favor of uncoated control seeds. Notably, the blank coating, lacking active ingredients, still elicited 99% avoidance. However, these results indicated behavior when alternative food sources are readily available, a scenario rare in nature. To address this, a second feeding exper- iment was conducted to observe D. ordii’s behavior under calorie-restricted conditions. D. ordii were subjected to a fast period, then offered only one treatment. Under these conditions, many subjects chose to consume coated seeds, but to a lesser degree than subjects offered control seeds. Seeds coated in ghost pepper, neem oil, and activated carbon reduced consumption by 47–50%. -
Vertebrate Predators Have Minimal Cascading Effects on Plant Production Or Seed Predation in an Intact Grassland Ecosystem
Ecology Letters, (2011) 14: 661–669 doi: 10.1111/j.1461-0248.2011.01633.x LETTER Vertebrate predators have minimal cascading effects on plant production or seed predation in an intact grassland ecosystem Abstract John L. Maron,1* and Dean E. The strength of trophic cascades in terrestrial habitats has been the subject of considerable interest and debate. Pearson2 We conducted an 8-year experiment to determine how exclusion of vertebrate predators, ungulates alone 1Division of Biological Sciences, (to control for ungulate exclusion from predator exclusion plots) or none of these animals influenced how University of Montana, Missoula, strongly a three-species assemblage of rodent consumers affected plant productivity. We also examined MT 59812, USA whether predator exclusion influenced the magnitude of post-dispersal seed predation by mice. Both ungulates 2Rocky Mountain Research Station, and rodents had strong direct effects on graminoid biomass. However, rodent impacts on plant biomass did U.S. Forest Service, Missoula, not differ across plots with or without predators and ⁄ or ungulates. Deer mice removed more seeds from seed MT 59812, USA depots on predator exclusion plots, suggesting trait-mediated indirect effects of predators, but this short-term *Correspondence: E-mail: behavioural response did not translate into longer-term impacts on seed survival. These results suggest that [email protected] vertebrate predators do not fundamentally influence primary production or seed survival in our system. Keywords Giving up density, herbivory, indirect effects, predators, seed predation, small mammals, trait-mediated indirect effects, trophic cascade. Ecology Letters (2011) 14: 661–669 sites where wolf predation risk is high (Ripple et al. -
Evidence of Pollinator-Mediated Selection for Floral Display Height Evidence of Pollinator-Mediated Selection for Floral Display Height
EVIDENCE OF POLLINATOR-MEDIATED SELECTION FOR FLORAL DISPLAY HEIGHT EVIDENCE OF POLLINATOR-MEDIATED SELECTION FOR FLORAL DISPLAY HEIGHT By SEBASTIAN IRAZUZTA, B.Sc. A Thesis Submitted to the School of Graduate Studies In Partial Fulfilment of the Requirements For the Degree Masters of Science McMaster University ©Copyright by Sebastian Irazuzta, February 2006 1 MASTER OF SCIENCE (2006) McMaster University (Biology) Hamilton, Ontario TITLE: Evidence of pollinator-mediated selection for floral display height AUTHOR: Sebastian Irazuzta, B.Sc. (University ofToronto) SUPERVISOR: Professor S.A. Dudley NUMBER OF PAGES: xiii, 104 ii ABSTRACT Many floral characters have can affect plant fitness by altering the frequency or efficiency of pollinator visits. More frequent pollinator visitation may lead to larger pollen loads and greater outcrossing rates, which in tern may lead to greater numbers of offspring, with higher genetic variability and less inbreeding depression. Mating systems may moderate the strength of natural selection on traits that attract pollinators through its effects on inbreeding depression, and the ability to self-pollinate autogamously. Natural selection is expected to be stronger in largely outcrossing systems where inbreeding depression is high, but reduced in largely selfing systems where deleterious alleles have been purged. Here I investigate the role of floral display height in attracting pollinators, and its consequences for plant fitness in two closely related monocarpic herbs (Hesperis matronalis and Alliaria petiolata) with different mating systems. Though others have looked at height as a potential trait attracting pollinators, no one has yet clearly separated the effects of floral display height from that of plant size. I experimentally altered plant height independently of plant size by placing potted plants into either elevated or non elevated treatments and observed pollinator foraging behaviour and reproduction. -
Captive Wildlife Regulations, 2021, W-13.12 Reg 5
1 CAPTIVE WILDLIFE, 2021 W-13.12 REG 5 The Captive Wildlife Regulations, 2021 being Chapter W-13.12 Reg 5 (effective June 1, 2021). NOTE: This consolidation is not official. Amendments have been incorporated for convenience of reference and the original statutes and regulations should be consulted for all purposes of interpretation and application of the law. In order to preserve the integrity of the original statutes and regulations, errors that may have appeared are reproduced in this consolidation. 2 W-13.12 REG 5 CAPTIVE WILDLIFE, 2021 Table of Contents PART 1 PART 5 Preliminary Matters Zoo Licences and Travelling Zoo Licences 1 Title 38 Definition for Part 2 Definitions and interpretation 39 CAZA standards 3 Application 40 Requirements – zoo licence or travelling zoo licence PART 2 41 Breeding and release Designations, Prohibitions and Licences PART 6 4 Captive wildlife – designations Wildlife Rehabilitation Licences 5 Prohibition – holding unlisted species in captivity 42 Definitions for Part 6 Prohibition – holding restricted species in captivity 43 Standards for wildlife rehabilitation 7 Captive wildlife licences 44 No property acquired in wildlife held for 8 Licence not required rehabilitation 9 Application for captive wildlife licence 45 Requirements – wildlife rehabilitation licence 10 Renewal 46 Restrictions – wildlife not to be rehabilitated 11 Issuance or renewal of licence on terms and conditions 47 Wildlife rehabilitation practices 12 Licence or renewal term PART 7 Scientific Research Licences 13 Amendment, suspension, -
Chapter 10 - Nongame Wildlife Index
07/09/2015 CHAPTER 10 - NONGAME WILDLIFE INDEX Page ARTICLE I GENERAL PROVISIONS #1000 PROTECTED SPECIES 2 A. Nongame species and subspecies, including threatened or endangered wildlife are protected #1001 VACANT 3 ARTICLE II ENDANGERED WILDLIFE #1002 DESIGNATION OF SPECIES 3 A. Endangered wildlife 3 1. Fish 3 2. Birds 3 3. Mammals 3 4. Amphibians 3 ARTICLE III THREATENED WILDLIFE #1003 DESIGNATION OF SPECIES 5 A. Threatened wildlife 5 1. Fish 5 2. Birds 5 3. Mammals 5 ARTICLE IV NONGAME WILDLIFE #1004 DESIGNATION OF SPECIES 5 A. Nongame wildlife 5 1. Fish 5 2. Amphibians 6 3. Reptiles 6 4. Mollusks 7 5. Birds 8 6. Mammals 15 Basis and 17 Purpose 1 CHAPTER 10 - NONGAME WILDLIFE ARTICLE I - GENERAL PROVISIONS #1000 - PROTECTED SPECIES A. Nongame species and subspecies, including threatened or endangered wildlife are protected and their harassment, taking or possession is prohibited except as follows: 1. Under a scientific collecting license. 2. Under a rehabilitation license. 3. Under a license for zoological, educational, propagation or other special purposes. 4. Allowed species of raptors under a falconry license. 5. Bats, mice except Preble’s meadow jumping mouse (Zapus hudsonius preblei), voles, rats, porcupines, and ground squirrels may be captured or killed when creating a nuisance or causing property damage. 6. Except as provided in #015.A. of these regulations, up to four individuals of each of the following species and/or subspecies of reptiles and amphibians may be taken annually and held in captivity, provided that no more than twelve in the aggregate may be possessed at any time: Plains spadefoot Woodhouse’s toad Boreal chorus frog Painted turtle Ornate box turtle Common sagebrush lizard Ornate tree lizard Common side-blotched lizard Prairie lizard Plateau fence lizard Gophersnake Terrestrial gartersnake Plains gartersnake Common lesser earless lizard Tiger whiptail North American racer Plains hog-nosed snake a. -
Herbivory Affects Patterns of Plant Reproductive Effort and Seed Production
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Biological Sciences Biological Sciences, School of 2-2012 Herbivory affects patterns of plant reproductive effort and seed production Natalie M. West University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscidiss Part of the Biology Commons, and the Ecology and Evolutionary Biology Commons West, Natalie M., "Herbivory affects patterns of plant reproductive effort and seed production" (2012). Dissertations and Theses in Biological Sciences. 41. https://digitalcommons.unl.edu/bioscidiss/41 This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. HERBIVORY AFFECTS PATTERNS OF PLANT REPRODUCTIVE EFFORT AND SEED PRODUCTION by Natalie M. West A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Biological Sciences Under the Supervision of Professors Svata M. Louda and Brigitte Tenhumberg Lincoln, Nebraska February, 2012 HERBIVORY AFFECTS PATTERNS OF PLANT REPRODUCTIVE EFFORT AND SEED PRODUCTION Natalie M. West, Ph.D. University of Nebraska, 2012 Advisors: Svata Louda & Brigitte Tenhumberg Insect herbivory can have a major influence on plant reproduction, and potentially drive selection for strategies that reduce or resist herbivore effects. I used a combination of field experiments and ecological modeling to examine how modifications in the patterns and timing of reproductive investment might ameliorate the consequences of herbivore damage for plant reproduction.