Abstracts from the 1999 Symposium

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts from the 1999 Symposium UTAH I THE I DESERT TORTOISE COUNCIL ARIZONA NEVADA l I i I / + S v'LEI S % A|. w a CALIFORNIA PROCEEDINGS OF 1999 SYMPOSIUM DESERT TORTOISE COUNCIL PROCEEDINGS OF THE 1999 SYMPOSIUM A compilation of reports and papers presented at the twenty-fourth annual symposium of the Desert Tortoise Council, March 5-8, 1999 St. George, Utah PUBLICATIONS OF THE DESERT TORTOISE COUNCIL, INC. Members Non-members Proceedings of the 1976 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1977 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1978 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1979 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1980 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1981 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1982 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1983 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1984 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1985 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1986 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1987-91 Desert Tortoise Council Symposia $20,00 $20.00 Proceedings of the 1992 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1993 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1994 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1995 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1996 Desert Tortoise Council Symposium $10.00 $15.00 Proceedings of the 1997-98 Desert Tortoise Council Symposia $10.00 $15.00 Annotated Bibliog raphy of the Desert Tortoise, Gopherus agassizii $10.00 $15.00 Note: Please add $1.00 per copy to cover postage and handling. Foreign address add $3.00 per copy for surface mail; U.S. drafts only. Available from: Desert Tortoise Council, Inc. P.O. Box 3141 Wrightwood, CA 92397 U.S.A. These proceedings record the papers presented at the annual symposium of the Desert Tortoise Council. The Council, how­ ever, does not necessarily endorse the conclusions reached in the papers, nor can it attest to the validity or accuracy of the data Copyright © 2000 Desert Tortoise Council, Inc. ISSN 0191-3875 Desert Tortoise Council 1998-99 OmcERs Senior Co-Chair Katherine Zander Co-Chair Tim Duck Co-Chair-elect Mare Graff Recording Secretary Ed LaRue Corresponding Secretary Ed LaRue Treasurer Mike Coffeen 1998-99 BoARD MEMBERs Kristin Berry Ted Cordery Mark DePoy Tracy Goodlett Bob Keeran Ann McLuckie Glenn Stewart Robert Turner 1999 Awards Annual Award Frank Hoover Special Award Larry Foreman Editor & Layout Design Breck Bartholomew Assistant Editor Ann McLuckie Cover Design Suzanne Allan Contents Ecology and Management of Bromus tectorum Communities — James A. Young, Robert R. Blank, and William S. Longland . 1 —7 Variability in Phenology and Production of Desert Ephemerals: Implications for Predicting Resource Availability for Desert Tortoises — Paul R. Kemp and James F. Reynolds.......... 8 — 14 Regional Desert Tortoise Monitoring in the Upper Virgin River Recovery Unit — Ann M. McLuckie, Deborah L Harstad, Rick A. Fridell . 15-24 Maternal Behavior in Desert Tortoises (Gopherus agassizii) at Goffs, California — Brian T. Henen. 25-27 Facilitation and interference between annuals and shrubs in the Mojave Desert: An associa­ tion out of balance? — Claus Holzapfel and Bruce E. Mahall. 28 —30 Desert Tortoise Translocation: The effects of pre-release water availability — Kimberleigh J. Field, C. Richard Tracy, Philip A. Medica, Ronald W. Marlow, and P. Stephen Corn......,.... 30 —31 Reproduction inSonoran Desert Tortoises: 1998 Progress Report — Roy C. Averill-Murray and Christopher M. Klug. 31-34 Status of the Washington County Habitat Conservation Plan — March, 1999­ Reed Harris 34-37 Abstracts from the 1999 Symposium Attributes of Desert Tortoise Populations within Selected Areas at the National Training Cen­ ter, Fort Irwin, California — Kristin H. Berry, Glenn Goodlett, Tracy Goodlett, and Steve Boland ........ 3 8 A Look at the Reproductive Ecology of the Desert Tortoise at the Marine Corps Air Ground Combat Center, 29 Palms, California — Curtis D. Bj urlin and John A. Bissonette .......... 38 — 39 Exotic Plant Species in Desert Tortoise Habitat — Matthew L Brooks and Lesley DeFalco. 39 — 40 Effects of Exotic Grasses via Wildfire on Desert Tortoises and their Habitat — Matthew L, Brooks, Todd C. Esque, and Cecil R. Schwalbe ..................... 40 —41 Development of a Qualitative Field Diagnostic Test for Specific Anti-Mycoplasma Antibodies in Blood of Tortoises. I. Rationale and Significance — Daniel R. Brown, Mary B. Brown, and Paul A. Klein. 41 The Search for Sources of Potential Toxicants in Desert Tortoises: Results of a Pilot Project Incorporating Surficial Materials and Plants from Three Areas in Southeastern California — Maurice A. Chaffee and Kristin H. Berry. 41-42 Status of the Northern & Eastern Colorado Desert Coordinated Management Plan — Dick Crowe and Genea Warner 42-43 Interactions Between Nitrogen and Exotic Species with Implications for Habitat Restoration­ Fred Edwards, Michael F. Allen, Thomas Zi nk, and Edith B. Allen. 4344 Home Range and Movements of Hillside Residing Desert Tortoises in the Western Mojave Desert — Ty J. Gardner 44 Invasive Species: A Longstanding Environmental Problem, A New Environmental Issue­ William P. Gregg. 44 —45 Reproductive Output of Female Central Asian Tortoises (Testudo horsfieMi) — Brian T. Henen, Ken A. Nagy, Xavier Bonnet, and Frederic LaGarde 44 —45 Characterization of Proteins Extracted from Shell Scutes of California Desert Tortoises, Gopherus agassizii — Bruce L Homer, Chen Li, Kristin H. Berry, and Elliott R. Jacobson 45 — 46 Mechanisms of Coexistence Among Desert Annual Plants: Implications for Biodiversity and Ecosystem Dynamics — Nancy Huntly . 46 Herpesvirus Infection by Tortoises — Elliott R. Jacobson. 46 —47 Growth Patterns of the Desert Tortoise in an East Mojave Population — Alice E. Karl ..... 47 — 48 West Mojave Plan: Status Report — Edward L LaRue, Jr. 48 Do The Physiological Strategies of Desert Annuals Influence Their Nutrient Composition and Hence Their Value to Desert Tortoises? — Olav T. Oftedal 48A9 Interrelationships Between Annual Plants and Desert Rodents — Mary V. Price ...................... 49 Habitat Reclamation at Yucca Mountain, Nevada — Von K. Winkel. 50 1998-1999 Status Report for the Desert Tortoise Council — Katherine Zander .......................... 50 Special Report Ord Mountain Pilot Study: Recommendations for Route Designation­ Desert Tortoise Council. 51 — 73+ map Ecology and Management of Bromus fectorum Communities JAMES A. YQUNG, RQBERT R. BLANR, AND WII.LIAM S. LONGLAND USDA, Agricultural Research Service, Reno, NV, 89512 Email; j [email protected] Abstract —Cheatgrass (Bromus tectorum) is an exotic, self-invasive (establishes without direct human aid) annual that has invaded most plant communities in the Intermountain Area. It is now the dominant species on millions of hectares of formerly big sagebrush (ArtenIisia tridentata)/bunchgrass rangeland. Cheatgrass occurs, but usually is not the dominant annual grass, in the southern Great Basin and the warm deserts of the Southwest. Our purpose is to review several aspects of the ecology and management of cheatgrass, largely based upon the 40 plus years of experience our project has had with this annual grass. Cheatgrass (Bromus tectorum) is an exotic, self disturbed (Stewart and Hull, 1949). Cheatgrass became invasive annual that has become a component or out­ a self invasive species. This change for an occasional right dominant of millions of hectares of temperate ruderal species to a landscape wide, self invasive spe­ desert rangelands in the Intermountain Area. The late cies must have been due to widespread changes in the D. W. Billings (1990) considered cheatgrass to be the environment, adaptive changes in the weed itself, or a greatest cause of biotic impoverishment in the Inter­ combination of both. In a series of papers Daubenmire mountain Area. Cheatgrass is distributed throughout (e. g. 1940) clearly showed that cheatgrass is capable of the western United States and adjacent Canada and invading big sagebrush/bluebunch wheat grass Mexico. It occurs, but usually is not a dominant spe­ (Pseudoroegneria spicata)communities that were in high cies in portions of the warm deserts of the southern ecological condition and apparently never grazed by Great Basin and the Southwest. It first became estab­ domestic livestock. Under such conditions, the inva­ lished in the Intermountain Area in disturbed portions sion of cheatgrass is of little immediate ecological con­ of the big sagebrush (Arternisia tridentata)/bunchgrass sequences other than to provide a seed source in the zone (Stewart and Young, 1939; Yensen, 1981). Now advent the community suffers catastrophic disturbance. the distribution of this invasive species extends into By the time cheatgrass was well distributed in the big higher elevations in the adjacent pinyon (Pinus sp.)/ sagebrush zone, there were very few areas in high eco­ juniper (Juni perus)woodland zone and down into por­ logical condition. Much of the perennial grass portion tions of the salt desert vegetation in the lower eleva­ of the native plant communities had been severely de­ tion basins of the Great Basin (Young and Tipton, 1990). pressed, if not outright destroyed, by
Recommended publications
  • Predation by Gray Catbird on Brown Thrasher Eggs
    March 2004 Notes 101 PREDATION BY GRAY CATBIRD ON BROWN THRASHER EGGS JAMES W. RIVERS* AND BRETT K. SANDERCOCK Kansas Cooperative Fish and Wildlife Research Unit, Division of Biology, Kansas State University, Manhattan, KS 66506 (JWR) Division of Biology, Kansas State University, Manhattan, KS 66506 (BKS) Present address of JWR: Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106 *Correspondent: [email protected] ABSTRACT The gray catbird (Dumetella carolinensis) has been documented visiting and breaking the eggs of arti®cial nests, but the implications of such observations are unclear because there is little cost in depredating an undefended nest. During the summer of 2001 at Konza Prairie Bio- logical Station, Kansas, we videotaped a gray catbird that broke and consumed at least 1 egg in a brown thrasher (Toxostoma rufum) nest. Our observation was consistent with egg predation because the catbird consumed the contents of the damaged egg after breaking it. The large difference in body mass suggests that a catbird (37 g) destroying eggs in a thrasher (69 g) nest might risk injury if caught in the act of predation and might explain why egg predation by catbirds has been poorly documented. Our observation indicated that the catbird should be considered as an egg predator of natural nests and that single-egg predation of songbird nests should not be attributed to egg removal by female brown-headed cowbirds (Molothrus ater) without additional evidence. RESUMEN El paÂjaro gato gris (Dumetella carolinensis) ha sido documentado visitando y rompien- do los huevos de nidos arti®ciales, pero las implicaciones de dichas observaciones no son claras porque hay poco costo por depredar un nido sin defensa.
    [Show full text]
  • Forest Fragment Size and Microhabitat Effects on Palm Seed Predation
    BIOLOGICAL CONSERVATION 131 (2006) 1– 13 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/biocon Forest fragment size and microhabitat effects on palm seed predation Marina Fleurya,b,c,*, Mauro Galettib,c aLaborato´rio de Ecologia e Restaurac¸a˜ o Florestal (LERF), Escola Superior de Agricultura ‘‘Luiz de Queiroz’’, Universidade de Sa˜ o Paulo (ESALQ/USP), Brazil bLaborato´rio de Biologia da Conservac¸a˜ o, Grupo de Fenologia e Dispersa˜ o de Sementes, Departamento de Ecologia, Universidade Estadual Paulista (UNESP), C.P. 199, 13506-900, Rio Claro, Sa˜ o Paulo, Brazil cInstituto de Biologia da Conservac¸a˜ o (IBC), Av.P-13, 293, Rio Claro, SP, Brazil ARTICLE INFO ABSTRACT Article history: The establishment of plant species depends crucially on where the seeds are deposited. How- Received 11 January 2005 ever, since most studies have been conducted in continuous forests, not much is known about Received in revised form the effects of forest fragmentation on the maintenance of abiotic and biotic characteristics in 19 October 2005 microhabitats and their effects on seed survival. In this study, we evaluated the effects of for- Accepted 24 October 2005 est fragmentation on the predation upon the seeds of the palm Syagrus romanzoffiana in three Available online 3 April 2006 microhabitats (interior forest, forest edge and gaps) in eight fragments of semi-deciduous Atlantic forest ranging in size from 9.5 ha to 33,845 ha in southeastern Brazil. Specifically, Keywords: we examined the influence of the microhabitat structure, fauna and fragment size on the pat- Arecaceae tern of seed predation.
    [Show full text]
  • Serum Biochemical Parameters of Asian Tortoise (Agrionemys Horsfieldi)
    International Journal of Veterinary Research Serum biochemical parameters of Asian tortoise (Agrionemys horsfieldi) Pourkabir, M.1 *; Rostami, A. 2 ; Mansour, H. 1 and Tohid-Kia, M.R.1 1Department of Biochemistry, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. 2Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. Key Words: Abstract Asian tortoise; serum; biochemistry. At present, a great deal of attention is being focused on the tortoise as a domestic pet. Knowledge of the blood biochemical parameters in captivity Correspondence of this animal would be helpful for evaluations of their health. In this regard, Pourkabir, M., the serum biochemical values were measured in 12 Asian tortoises (6 males Department of Biochemistry, Faculty of Veterinary Medicine, University of and 6 females) before hibernation. Serum values of total protein (TOP) Tehran, P.O. Box: 14155-6453, Tehran, 63.19 ± 7.57 g/L, Albumin (Alb) 47.24 ± 10.66 g/L, creatinine (Crea) 57.4 ± Iran. 4.68 µmmol/L, glucose (Glc) 81.46 ± 21.88 mmol/L, urea 7.52 ± 2.74 Tel: +98(21) 61117147 mmol/L, uric acid (UA) 0.11 ± 0.028 mmol/L, aspartate transaminase Fax: +98(21) 66933222 (AST) 0.46 ± 0.017 µkal/L, alanine transaminase (ALT) 0.44 ± 0.053 Email: [email protected] µkal/L, amylase 1,157 ± 33.96 µkal/L, calcium (Ca) 2.74 ± 0.65 mmol/L, magnesium (Mg) 1.98 ± 0.24 mmol/L, and inorganic phosphorus (P) 1.26 ± Received 03 December 2009, 0.101 mmol/L were determined respectively. There were no significant Accepted 18 May 2010 differences in TOP, Alb, Glc, Crea, urea, UA, AST, ALT, amylase, Ca and P, and also Mg levels between males and females.
    [Show full text]
  • Effects of Trail Traffic on Egg-Predation by Mammal Populations in the Monteverde Cloud Forest Preserve
    Effects of trail traffic on egg-predation by mammal populations in the Monteverde Cloud Forest Preserve. Karmen Scott Department of Environmental Science, University of Oregon ABSTRACT The effects of human traffic within trails on egg predation and predatory mammal compositions between heavily trafficked trails and secluded trails were studied at the Monteverde Cloud Forest Preserve. This study was able to find differences in egg-predatory mammal compositions between these two trail types by looking at teeth impressions in eggs made of plasticine. The main predator was found to be Nasura narica (common coati) who was involved in the majority of the egg predation events and the vast majority of the nests preyed upon were on the highly trafficked trail. There were only a few predation events from other mammals such as rodents and Cebus capucinus (white-faced monkey). In this case, the abundance of tourists have altered populations of a mesopredator, Nasua narica by providing a new food source for them (garbage and tourist‟s lunches) and by affecting the rarity of their predators (boas, cats and Tayras) whom steer-clear of human populated areas and therefore steer-clear of N. narica. This dualistic relationship acting on the population of N. narica makes for an increase in the carrying capacity and, hence, further predation. This imbalanced egg- predation by N. narica on tourist trails allocates the disruption of their prey populations. Studies of the impacts of tourism have important conservation implications because tourism can have a tremendous disturbance on structure and community function. RESUMEN Los efectos del tráfico humano en la depredación de huevos en los senderos y en las composiciones de las comunidades de mamíferos depredadores entre los senderos con mucho tránsito y los senderos recluidos fueron estudiados en La Reserva del Bosque Nuboso de Monteverde.
    [Show full text]
  • Effects of Predator Satiation on Seed Predation in New Roadside Prairie Plantings
    University of Northern Iowa UNI ScholarWorks Dissertations and Theses @ UNI Student Work 2016 Effects of predator satiation on seed predation in new roadside prairie plantings Jessica Riebkes University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©2016 Jessica Riebkes Follow this and additional works at: https://scholarworks.uni.edu/etd Part of the Plant Sciences Commons Recommended Citation Riebkes, Jessica, "Effects of predator satiation on seed predation in new roadside prairie plantings" (2016). Dissertations and Theses @ UNI. 277. https://scholarworks.uni.edu/etd/277 This Open Access Thesis is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Copyright by JESSICA L. RIEBKES 2016 All Rights Reserved EFFECTS OF PREDATOR SATIATION ON SEED PREDATION IN NEW ROADSIDE PRAIRIE PLANTINGS An Abstract of a Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree Master of Science Jessica Riebkes University of Northern Iowa May 2016 ABSTRACT Restoration efforts in the tallgrass prairie ecosystem are inhibited by high seed cost and as little as 10% emergence of planted, pure live seed. This study examined the portion of loss due to seed predation and sought to reduce this predation in new roadside prairie plantings. Studies document the occurrence of predation in several plant communities and across all plant families, but little is known about how to reduce the impact of seed predators, especially in a restoration setting.
    [Show full text]
  • Egg Predation in Reedbed Nesting Greylag Geese Anser Anser in Vejlerne, Denmark
    137 EGG PREDATION IN REEDBED NESTING GREYLAG GEESE ANSER ANSER IN VEJLERNE, DENMARK JENS NYELAND KRISTIANSENl,2 Kristiansen J.N. 1998. Egg predation in reedbed nesting Greylag Geese An­ ser anser in Vejlerne, Denmark. Ardea 86: 137-145. Egg predation in Greylag Geese Anser anser nesting in reedbeds was stud­ ied at three sites in Vejlerne (NW Denmark). Overall, 34% of all clutches hatched successfully (range 26-53%), while at least 34% of all nests were abandoned. Avian predation of clutches was particularly high on one site (20%) compared to other sites (0-2%), probably as a result of better breed­ ing opportunities for crows in that area. Mammalian egg predation was low in the two sites with natural barriers in the form of water channels or with higher vegetation densities. Nests neighbouring depredated nests were more likely to be depredated. An important factor affecting egg predation by mammals was the distance of the nest to reed cutting tracks. Second, there was a tendency for successful nests to occur in areas with higher veg­ etation densities. Mammalian predators were Red Fox Vulpes vulpes and American Mink Mustela vison and/or Western Polecat M. putorius. Key words: Anser anser - egg predation - reedbed - mammalian predators lThe National Environmental Research Institute, Department of Coastal Zone Ecology, Kal¢, Grenavej 12, DK-8410 R¢nde, Denmark; 2University of Copenhagen, Zoological Institute, Department of Population Biology, Universitetsparken 15, DK-2100 Copenhagen, Denmark, e-mail: JNKris­ [email protected] INTRODUCTION mammalian predators, or hide their nests in dense vegetation to avoid detection by avian predators. The reproductive output of geese varies greatly This study examined the importance of factors af­ within and between species (Johnson et al.
    [Show full text]
  • Bibliography
    Bibliography Abella, S. R. 2010. Disturbance and plant succession in the Mojave and Sonoran Deserts of the American Southwest. International Journal of Environmental Research and Public Health 7:1248—1284. Abella, S. R., D. J. Craig, L. P. Chiquoine, K. A. Prengaman, S. M. Schmid, and T. M. Embrey. 2011. Relationships of native desert plants with red brome (Bromus rubens): Toward identifying invasion-reducing species. Invasive Plant Science and Management 4:115—124. Abella, S. R., N. A. Fisichelli, S. M. Schmid, T. M. Embrey, D. L. Hughson, and J. Cipra. 2015. Status and management of non-native plant invasion in three of the largest national parks in the United States. Nature Conservation 10:71—94. Available: https://doi.org/10.3897/natureconservation.10.4407 Abella, S. R., A. A. Suazo, C. M. Norman, and A. C. Newton. 2013. Treatment alternatives and timing affect seeds of African mustard (Brassica tournefortii), an invasive forb in American Southwest arid lands. Invasive Plant Science and Management 6:559—567. Available: https://doi.org/10.1614/IPSM-D-13-00022.1 Abrahamson, I. 2014. Arctostaphylos manzanita. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Fire Effects Information System (Online). plants/shrub/arcman/all.html Ackerman, T. L. 1979. Germination and survival of perennial plant species in the Mojave Desert. The Southwestern Naturalist 24:399—408. Adams, A. W. 1975. A brief history of juniper and shrub populations in southern Oregon. Report No. 6. Oregon State Wildlife Commission, Corvallis, OR. Adams, L. 1962. Planting depths for seeds of three species of Ceanothus.
    [Show full text]
  • Russian Tortoise (Testudo Horsfieldii) Care Compiled by Dayna Willems, DVM
    Russian Tortoise (Testudo horsfieldii) Care Compiled by Dayna Willems, DVM Brief Description The Russian Tortoise is a popular pet due to its small size and interactive personality. Native to central Asia, almost all available Russian Tortoises are wild caught as young adults (10-20 years old) and then imported for sale in the US. Unfortunately after being taken from the wild tortoises often have trouble adapting to captivity and die premature deaths from inadequate care. When scared tortoises will withdraw their body into their shell and their armored front legs will protect their head. The shell is living tissue and should never be pierced or painted. Adult size is 6-10" on average. Sexing The males will have longer tails the females and once mature the plastron (bottom part of the shell) will be concave and a longer, more pointed tail with a longer distance between vent and tail tip than the stubby tail of females where the vent is closer to the shell. Lifespan With proper care the average expected lifespan is 40-80 years on average. Caging Tortoises need large enclosures and should be in a 40 gallon tank or larger. An outdoor enclosure safe from predators or escape attempts is very beneficial when weather permits. Large containers such as Rubbermaid storage boxes or livestock troughs can also be used for enclosures successfully and inexpensively. There should be one or two things for your tortoise to hide under - half log, half buried clay pot, etc. Outdoor pens will need to be secure to keep tortoises in and predators (especially dogs) out.
    [Show full text]
  • Deterring Rodent Seed-Predation Using Seed-Coating Technologies Justin B
    RESEARCH ARTICLE Deterring rodent seed-predation using seed-coating technologies Justin B. Taylor1,2 , Kristina L. Cass1, David N. Armond1, Matthew D. Madsen1 , Dean E. Pearson3,4 , Samuel B. St. Clair1 With many degraded environments undergoing restoration efforts, there is a growing need for the optimization of direct seed- ing practices. Seeds planted on wildlands are often consumed by rodents, leading to reduced plant establishment. Coating seeds in rodent aversive products may prevent seed-predation. We tested 10 seed-coating formulations containing products expected to deter rodents, namely: ghost and cayenne pepper powders; essential oils from bergamot, neem, and pine; methyl-nonyl- ketone, anthraquinone, activated carbon, beta-cyclodextrin, and a blank coating containing no rodent deterrents to serve as a control treatment. Each treatment was applied to Pseudoroegneria spicata (bluebunch wheatgrass) seeds. These seeds germi- nated similarly to uncoated control seeds unless the coating contained methyl-nonyl-ketone which reduced germination. When seeds were offered to Ord’s kangaroo rats (Dipodomys ordii), they strongly avoided the treatments in favor of uncoated control seeds. Notably, the blank coating, lacking active ingredients, still elicited 99% avoidance. However, these results indicated behavior when alternative food sources are readily available, a scenario rare in nature. To address this, a second feeding exper- iment was conducted to observe D. ordii’s behavior under calorie-restricted conditions. D. ordii were subjected to a fast period, then offered only one treatment. Under these conditions, many subjects chose to consume coated seeds, but to a lesser degree than subjects offered control seeds. Seeds coated in ghost pepper, neem oil, and activated carbon reduced consumption by 47–50%.
    [Show full text]
  • Vertebrate Predators Have Minimal Cascading Effects on Plant Production Or Seed Predation in an Intact Grassland Ecosystem
    Ecology Letters, (2011) 14: 661–669 doi: 10.1111/j.1461-0248.2011.01633.x LETTER Vertebrate predators have minimal cascading effects on plant production or seed predation in an intact grassland ecosystem Abstract John L. Maron,1* and Dean E. The strength of trophic cascades in terrestrial habitats has been the subject of considerable interest and debate. Pearson2 We conducted an 8-year experiment to determine how exclusion of vertebrate predators, ungulates alone 1Division of Biological Sciences, (to control for ungulate exclusion from predator exclusion plots) or none of these animals influenced how University of Montana, Missoula, strongly a three-species assemblage of rodent consumers affected plant productivity. We also examined MT 59812, USA whether predator exclusion influenced the magnitude of post-dispersal seed predation by mice. Both ungulates 2Rocky Mountain Research Station, and rodents had strong direct effects on graminoid biomass. However, rodent impacts on plant biomass did U.S. Forest Service, Missoula, not differ across plots with or without predators and ⁄ or ungulates. Deer mice removed more seeds from seed MT 59812, USA depots on predator exclusion plots, suggesting trait-mediated indirect effects of predators, but this short-term *Correspondence: E-mail: behavioural response did not translate into longer-term impacts on seed survival. These results suggest that [email protected] vertebrate predators do not fundamentally influence primary production or seed survival in our system. Keywords Giving up density, herbivory, indirect effects, predators, seed predation, small mammals, trait-mediated indirect effects, trophic cascade. Ecology Letters (2011) 14: 661–669 sites where wolf predation risk is high (Ripple et al.
    [Show full text]
  • Quantifying Perceived Risk in a Small Mesocarnivore, the Bat-Eared
    Quantifying perceived risk in a small mesocarnivore, the bat-eared fox Rebecca Jane Welch Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy In the Department of Zoology and Entomology, in the Faculty of Natural and Agricultural Science at the University of the Free State January 2018 Supervisor: Professor Aliza le Roux, University of the Free State, Qwaqwa Campus General Abstract GENERAL ABSTRACT The perceived risk of predation can induce anti-predator responses such as the spatial and temporal avoidance of predators. However, such responses come with a level of cost that can potentially have implications for fitness – described as ‘non-lethal effects’. While the non-lethal effects of predators on herbivore prey are well investigated, the non-lethal impacts of predators on mesopredators/mesocarnivores are less understood. Importantly, there is reason to expect mesopredators’ anti-predator responses to be greater than those of herbivores, considering that apex predators represent both predation risk and competition. In this thesis, the effects of temporal, spatial, social and anthropogenic factors on the perceived risk of a small mesopredator, the bat-eared fox (Otocyon megalotis), were explored using both experimental and observational approaches. The anti-predator behaviours of this species are virtually undescribed and as large predators, e.g. lions (Panthera leo) and spotted hyaenas (Crocuta crocuta), were historically extirpated from the area, it was unclear if anti-predator responses would have disappeared, or still remain. Using giving-up-density (GUD) experiments, I demonstrated that bat-eared foxes experience greater perceived risk in dark conditions and lower perceived risk in the presence of humans.
    [Show full text]
  • The Effect of Top Predator Removal on the Distribution of a Mesocarnivore and Nest Survival of an Endangered Shorebird
    VOLUME 16, ISSUE 1, ARTICLE 8 Stantial, M. L., J. B. Cohen, A. J. Darrah, S. L. Farrell and B. Maslo. 2021. The effect of top predator removal on the distribution of a mesocarnivore and nest survival of an endangered shorebird. Avian Conservation and Ecology. 16(1):8. https://doi.org/10.5751/ACE-01806-160108 Copyright © 2021 by the author(s). Published here under license by the Resilience Alliance. Research Paper The effect of top predator removal on the distribution of a mesocarnivore and nest survival of an endangered shorebird Michelle L. Stantial 1 , Jonathan B. Cohen 1, Abigail J. Darrah 2, Shannon L. Farrell 1 and Brooke Maslo 3 1Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA, 2Audubon Mississippi, Coastal Bird Stewardship Program, Moss Point, Mississippi, USA, 3Rutgers, The State University of New Jersey, Department of Ecology, Evolution and Natural Resources, New Brunswick, New Jersey, USA ABSTRACT. For trophic systems regulated by top-down processes, top carnivores may determine species composition of lower trophic levels. Removal of top predators could therefore cause a shift in community composition. If predators play a role in limiting the population of endangered prey animals, removing carnivores may have unintended consequences for conservation. Lethal predator removal to benefit prey species is a widely used management strategy. Red foxes (Vulpes vulpes) are a common nest predator of threatened piping plovers (Charadrius melodus) and are often the primary target of predator removal programs, yet predation remains the number one cause of piping plover nest loss.
    [Show full text]