The Fluid Mosaic Model States That the Molecular Arrangement Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ultrastructural Studies in Fetal I-Cell Disease
Pediat. Res. 10: 669-676 (1976) Amniocentesis fetal I-cell disease cytoplasmic inclusions fetus Ultrastructural Studies in Fetal I-cell Disease KAZUHIRO ABE, ICHIRO MATSUDA, SHINICHIRO ARASHIMA(20' TAKASHI MITSUYAMA, YOGO OKA, AND MUTSUO ISHIKAWA Departments of Anatomy, Pediatrics, and Obstetrics and Gynecology, Hokkaido University School of Medicine, Sapporo, Japan Extract I-cells from the present fetus were described in separate papers (9, 1 1 ). The skin, brain, lung, liver, and kidney from a 20-week-old fetus who was diagnosed as having fetal I-cell disease by amniocentesis at MATERIALS AND METHODS 14 weeks of gestation were examined by light and electron microscopy. In addition, cultured fibroblasts from the skin were also A pregnancy of a 21-year-old mother from a family at risk for observed microscopically. Cytoplasmic inclusions with dense poly - I-cell disease was monitored and the diagnosis of the disease was morphic contents appeared commonly in the capillary endothelial made by biochemical examination of the amniotic fluid and cells cells in the skin, lung, glomerulus of the kidney, and the epithelial obtained at 14 weeks of gestation (9). The pregnancy was cells of the proximal tubules of the kidney, and sometimes in the interrupted by therapeutic abortion at 20 weeks of gestation. The hepatocytes of the liver and the nerve and glial cells of the brain. aborted fetus was male, 160 g in weight. and revealed macroscopi- Erythropoietic cells in the liver and circulating erythrocytes con- cally normal development corresponding to the fetal age. tained dense inclusions varying in developmental stages. Fibroblasts Immediately after the abortion, tissue fragments of the abdomi- of the skin had several clear vacuoles, and cultured fibroblasts were nal skin, brain, lung, liver, and kidney from the fetus were filled with dense inclusions. -
Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal. -
Essential Function of the Alveolin Network in the Subpellicular
RESEARCH ARTICLE Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii Nicolo` Tosetti1, Nicolas Dos Santos Pacheco1, Eloı¨se Bertiaux2, Bohumil Maco1, Lore` ne Bournonville2, Virginie Hamel2, Paul Guichard2, Dominique Soldati-Favre1* 1Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; 2Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland Abstract The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule- organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid. Introduction *For correspondence: Toxoplasma gondii belongs to the phylum of Apicomplexa that groups numerous parasitic protozo- Dominique.Soldati-Favre@unige. ans causing severe diseases in humans and animals. As part of the superphylum of Alveolata, the ch Apicomplexa are characterized by the presence of the alveoli, which consist in small flattened single- membrane sacs, underlying the plasma membrane (PM) to form the inner membrane complex (IMC) Competing interest: See of the parasite. -
A Role for Crinophagy in Pancreatic Islet B-Cells Minireview Based on a Doctoral Thesis
Upsala J Med Sci 92: 99-1 13, 1987 A Role for Crinophagy in Pancreatic Islet B-cells Minireview based on a doctoral thesis Annika Schnell Landstrom Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden INTRODUCTORY REMARKS ON LYSOSOMES The lysosomes were first observed by Christian de Duve and his collaborators in December 1949 as "a cryptic form of latent acid phosphatase" (18). This observation lead to the suggestion that the enzyme could be located in a distinct group of subcellular granules, segregated from the rest of the cell by a limiting membrane. Further studies showed that these granules contained a number of acid hydrolases. The granules or bodies were thus supposed to have lytic properties and they were named lysosomes (18, 19). Soon after the discovery of the lysosome its role in cellular events such as intracellular digestion and phagocytosis was established. The presence of acid hydrolases, primarily acid phosphatase, as evidenced by enzyme cytochemistry, was the main criterium for morphological identification of a lysosome. In 1966 de Duve and Wattiaux (20) suggested a nomenclature for the lysosomal system, based in part on morphological criteria but mainly on the known functions of the lysosomes (Fig. 1). At that time the existence of some of the lysosomal particles was still under debate. The concept of primary lyso- somes, which had not yet taken part in intracellular degradation, was thus proposed. Lysosomes which had been involved in some kind of degradation were named secondary lysosomes. Depending on whether the secondary lysosomes were supposed to have been involved in either autophagy, i.e. -
Phagocytosis Dynamics Depends on Target Shape
Biophysical Journal Volume 105 September 2013 1143–1150 1143 Phagocytosis Dynamics Depends on Target Shape Debjani Paul,†‡6* Sarra Achouri,†6 Young-Zoon Yoon,† Jurgen Herre,§ Clare E. Bryant,{ and Pietro Cicuta† † ‡ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom; Department of Biosciences and Bioengineering, § { Indian Institute of Technology Bombay, Powai, Mumbai, India; Department of Medicine and Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom ABSTRACT A complete understanding of phagocytosis requires insight into both its biochemical and physical aspects. One of the ways to explore the physical mechanism of phagocytosis is to probe whether and how the target properties (e.g., size, shape, surface states, stiffness, etc.) affect their uptake. Here we report an imaging-based method to explore phagocytosis kinetics, which is compatible with real-time imaging and can be used to validate existing reports using fixed and stained cells. We measure single-event engulfment time from a large number of phagocytosis events to compare how size and shape of targets determine their engulfment. The data shows an increase in the average engulfment time for increased target size, for spherical particles. The uptake time data on nonspherical particles confirms that target shape plays a more dominant role than target size for phagocytosis: Ellipsoids with an eccentricity of 0.954 and much smaller surface areas than spheres were taken up five times more slowly than spherical targets. INTRODUCTION Macrophages can engulf a wide variety of targets, such as the degradation of phagosomal contents and the induction invading pathogens, dead cells, foreign airborne particles of the appropriate immune responses. -
Actin Nucleator Spire 1 Is a Regulator of Ectoplasmic Specialization in the Testis Qing Wen1,Nanli1,Xiangxiao 1,2,Wing-Yeelui3, Darren S
Wen et al. Cell Death and Disease (2018) 9:208 DOI 10.1038/s41419-017-0201-6 Cell Death & Disease ARTICLE Open Access Actin nucleator Spire 1 is a regulator of ectoplasmic specialization in the testis Qing Wen1,NanLi1,XiangXiao 1,2,Wing-yeeLui3, Darren S. Chu1, Chris K. C. Wong4, Qingquan Lian5,RenshanGe5, Will M. Lee3, Bruno Silvestrini6 and C. Yan Cheng 1 Abstract Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell–cell and Sertoli cell–spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood–testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell–cell interface, and the apical ES at the Sertoli–spermatid interface. Since ES dynamics (i.e., disassembly, reassembly and stabilization) are supported by actin microfilaments, which rapidly converts between their bundled and unbundled/branched configuration to confer plasticity to the ES, it is logical to speculate that actin nucleation proteins play a crucial role to ES dynamics. Herein, we reported findings that Spire 1, an actin nucleator known to polymerize actins into long stretches of linear microfilaments in cells, is an important regulator of ES dynamics. Its knockdown by RNAi in Sertoli cells cultured in vitro was found to impede the Sertoli cell tight junction (TJ)-permeability barrier through changes in the organization of F-actin across Sertoli cell cytosol. Unexpectedly, Spire 1 knockdown also perturbed microtubule (MT) organization in Sertoli cells cultured in vitro. -
Chloroplast Incorporation and Long-Term Photosynthetic Performance Through the Life Cycle in Laboratory Cultures of Elysia Timid
Chloroplast incorporation and long-term photosynthetic performance through the life cycle in laboratory cultures of Elysia timida (Sacoglossa, Heterobranchia) Schmitt et al. Schmitt et al. Frontiers in Zoology 2014, 11:5 http://www.frontiersinzoology.com/content/11/1/5 Schmitt et al. Frontiers in Zoology 2014, 11:5 http://www.frontiersinzoology.com/content/11/1/5 RESEARCH Open Access Chloroplast incorporation and long-term photosynthetic performance through the life cycle in laboratory cultures of Elysia timida (Sacoglossa, Heterobranchia) Valerie Schmitt1,2, Katharina Händeler2, Susanne Gunkel2, Marie-Line Escande3, Diedrik Menzel4, Sven B Gould2, William F Martin2 and Heike Wägele1* Abstract Introduction: The Mediterranean sacoglossan Elysia timida is one of the few sea slug species with the ability to sequester chloroplasts from its food algae and to subsequently store them in a functional state in the digestive gland cells for more than a month, during which time the plastids retain high photosynthetic activity (= long-term retention). Adult E. timida have been described to feed on the unicellular alga Acetabularia acetabulum in their natural environment. The suitability of E. timida as a laboratory model culture system including its food source was studied. Results: In contrast to the literature reporting that juvenile E. timida feed on Cladophora dalmatica first, and later on switch to the adult diet A. acetabulum, the juveniles in this study fed directly on A. acetabulum (young, non-calcified stalks); they did not feed on the various Cladophora spp. (collected from the sea or laboratory culture) offered. This could possibly hint to cryptic speciation with no clear morphological differences, but incipient ecological differentiation. -
Cell & Molecular Biology
BSC ZO- 102 B. Sc. I YEAR CELL & MOLECULAR BIOLOGY DEPARTMENT OF ZOOLOGY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY BSCZO-102 Cell and Molecular Biology DEPARTMENT OF ZOOLOGY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in Board of Studies and Programme Coordinator Board of Studies Prof. B.D.Joshi Prof. H.C.S.Bisht Retd.Prof. Department of Zoology Department of Zoology DSB Campus, Kumaun University, Gurukul Kangri, University Nainital Haridwar Prof. H.C.Tiwari Dr.N.N.Pandey Retd. Prof. & Principal Senior Scientist, Department of Zoology, Directorate of Coldwater Fisheries MB Govt.PG College (ICAR) Haldwani Nainital. Bhimtal (Nainital). Dr. Shyam S.Kunjwal Department of Zoology School of Sciences, Uttarakhand Open University Programme Coordinator Dr. Shyam S.Kunjwal Department of Zoology School of Sciences, Uttarakhand Open University Haldwani, Nainital Unit writing and Editing Editor Writer Dr.(Ms) Meenu Vats Dr.Mamtesh Kumari , Professor & Head Associate. Professor Department of Zoology, Department of Zoology DAV College,Sector-10 Govt. PG College Chandigarh-160011 Uttarkashi (Uttarakhand) Dr.Sunil Bhandari Asstt. Professor. Department of Zoology BGR Campus Pauri, HNB (Central University) Garhwal. Course Title and Code : Cell and Molecular Biology (BSCZO 102) ISBN : 978-93-85740-54-1 Copyright : Uttarakhand Open University Edition : 2017 Published By : Uttarakhand Open University, Haldwani, Nainital- 263139 Contents Course 1: Cell and Molecular Biology Course code: BSCZO102 Credit: 3 Unit Block and Unit title Page number Number Block 1 Cell Biology or Cytology 1-128 1 Cell Type : History and origin. -
Nomina Histologica Veterinaria, First Edition
NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria. -
Acanthamoeba Is an Evolutionary Ancestor of Macrophages: a Myth Or Reality? Ruqaiyyah Siddiqui Aga Khan University
eCommons@AKU Department of Biological & Biomedical Sciences Medical College, Pakistan February 2012 Acanthamoeba is an evolutionary ancestor of macrophages: A myth or reality? Ruqaiyyah Siddiqui Aga Khan University Naveed Ahmed Khan Aga Khan University Follow this and additional works at: http://ecommons.aku.edu/pakistan_fhs_mc_bbs Part of the Biochemistry Commons Recommended Citation Siddiqui, R., Khan, N. (2012). Acanthamoeba is an evolutionary ancestor of macrophages: A myth or reality?. Experimental Parasitology, 130(2), 95-97. Available at: http://ecommons.aku.edu/pakistan_fhs_mc_bbs/16 Experimental Parasitology 130 (2012) 95–97 Contents lists available at SciVerse ScienceDirect Experimental Parasitology journal homepage: www.elsevier.com/locate/yexpr Minireview Acanthamoeba is an evolutionary ancestor of macrophages: A myth or reality? ⇑ Ruqaiyyah Siddiqui a, Naveed Ahmed Khan a,b, a Aga Khan University, Stadium Road, Karachi, Pakistan b School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, England, UK article info abstract Article history: Given the remarkable similarities in cellular structure (morphological and ultra-structural features), Received 26 October 2011 molecular motility, biochemical physiology, ability to capture prey by phagocytosis and interactions with Received in revised form 17 November 2011 microbial pathogens, here we pose the question whether Acanthamoeba and macrophages are evolution- Accepted 19 November 2011 ary related. This is discussed in the light of evolution and functional aspects such as the astonishing Available online 28 November 2011 resemblance of many bacteria to infect and multiply inside human macrophages and amoebae in analo- gous ways. Further debate and studies will determine if Acanthamoeba is an evolutionary ancestor of Keywords: macrophages. Is this a myth or reality? Acanthamoeba Ó 2011 Elsevier Inc. -
The Dynamics and Function of the Endolysosomal/Lysosomal System
The Dynamics and Function of the Endolysosomal/Lysosomal System Luther John Davis University of Cambridge Homerton College This dissertation is submitted for the degree of Doctor of Philosophy September 2018 I Acknowledgements Firstly, I would like to thank Prof. J Paul Luzio for his invaluable guidance and effort towards the production and proofreading of this thesis. I would also like to thank Chloe Taylor, Ian Baines, Theo Dare, and Ashley Broom for their expertise, assistance and reassurance. I am grateful to the BBSRC and GSK for funding my project for four years. I thank Sally Gray, Nick Bright, and Lena Wartosch for their technical assistance and support. Finally I would like to express my gratitude to Matthew Gratian and Mark Bowen for training and assistance with microscopy, as well as Reiner Schulte, Chiara Cossetti, and Gabriela Grondys-Kotarba for their help with flow cytometry and cell sorting. II Preface This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. -
Vesicle Transport in Chloroplasts with Emphasis on Rab Proteins
CORE Metadata, citation and similar papers at core.ac.uk Provided by Göteborgs universitets publikationer - e-publicering och e-arkiv Vesicle Transport in Chloroplasts with Emphasis on Rab Proteins Mohamed Alezzawi Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden Abstract Chloroplasts perform photosynthesis using PSI and PSII during its light-dependent phase. Inside the chloroplast there is a membrane called thylakoid. The thylakoid membranes are an internal system of interconnected membranes that carry out the light reactions of photosynthesis. The thylakoid membranes do not produce their own lipids or proteins, so they are mainly transported from the envelope to the thylakoid for maintenance of e.g. the photosynthetic apparatus. An aqueous stroma made hinder between the envelope and thylakoid for the lipids to move between the two compartments. Vesicle transport is suggested to transport lipids to thylakoids supported by biochemical and ultra-structural data. Proteins could potentially also be transported by vesicles as cargo but this is not supported yet experimentally. However, proteins targeted to thylakoids are mediated by four pathways so far identified but it has been proposed that a vesicle transport could exist for proteins targeted to thylakoids as well similar to the cytosolic vesicle transport system. This thesis revealed similarity of vesicle transport inside the chloroplast to the cytosolic system. A novel Rab protein CPRabA5E (CP= chloroplast localized) was shown in Arabidopsis to be chloroplast localized and characterized to be important for thylakoid structure, plant development, and oxidative stress response. Moreover, CPRabA5e complemented the yeast homologues being involved in vesicle transport, and the cprabA5e mutants were affected for vesicle formation in the chloroplasts.