Yuzhnoye Advanced Space Technologies (Part1)

Total Page:16

File Type:pdf, Size:1020Kb

Yuzhnoye Advanced Space Technologies (Part1) Yuzhnoye State Design Office named after M.K.Yangel was founded in 1954 to initiate development of strategic- purpose missile-weapon complexes. More than 50 years of collaboration with PA Yuzhny Machine-Building Plant, academic, science and research, manufacturing enterprises of former Soviet Union resulted in the development and production of four generations of strategic missiles, represented by 13 modifications which formed the basis of strategic missile forces. There were also produced 7 types of world-class launch vehicles (Kosmos, Interkosmos, Cyclone-2, Cyclone-3, Zenit-2, Zenit-3SL, Dnepr). SDO YUZHNOYE’S ORGANIZATION CHART General Designer – General Director Dr. Stanislav Konyukhov First Deputy General Designer – First Deputy General Designer – First Deputy General Director – General Director General Director Chief Engineer System Design and Business Development Mr. Alexander Mashchenko Dr. Alexander Degtyarev Mr. Vladimir Vasilina Deputy General Deputy General Deputy General Deputy General Deputy General Deputy General Designer on Designer on Designer on Designer on Designer on Designer on Scientific work Propulsion testing and Management and personnel Information Systems operations Coordination Resources Dr. Perlik Mr. Shnyakin Mr. Agarkov Mr. Kuryachiy Mr. Novikov Mr. Polyakov Heads of Design Offices, Divisions and Departments Analysis and Experimental Design Analysis Design Design Division Design Design Experimental Testing Division Division Division Division Division Testing Division Division Development of Ballistics, Manufacture Development of Development of Development Structural Strength Power Supply Space Launch Aerodynamics, Vehicles and Drawings Space Systems Liquid\Solid of Actuators, of Units, Systems and Missiles Heat, Mass Documentation and satellites; Propellant Special Subsystems and Liquid Propellant Complexes for Launch Telemetry and Engines and Systems and systems of Launch Propulsion Vehicles and Communications Pyrotechnics Assemblies Vehicles and Systems Missiles Equipment Missiles Finalizing Material Design Design Preparation Division Marketing Department Division Development Supervision Division and Support and Foreign Division and Conversion Division Administration, Economic Scientific and Preparation, Operations Activities Planning, Affairs engineering Classification, Testing of Division Research Coordination of Division information; Coding, Manufacture Civil work and works, technical patent and Registration Technology, Products Experimental and economic license and Storage of Material Development Finalizing analysis and research Design Research and financial Documentation Analysis accounting SPACE-ROCKET TECHNOLOGY SYSTEM DESIGN AND DEVELOPMENT ROCKET-SPACE COMPLEXES SPACE SYSTEMS Including Including LAUNCH VEHICLES SPACECRAFT Upper Stages Platforms Fuel Systems Actuators, Mechanisms Rocket Body Sections Propulsion Systems Liquid and Solid-Propellant Rocket Engines Thermostatic Control Systems Aerodynamic Fairings Antenna-Feeder and Antenna-Waveguide Devices Actuators and Special Systems Onboard Switchgear Equipment Launch Complex and its Infrastructure Processing Complex and its Infrastructure Assembly, Integration and Test Facilities Software Support Experimental-Test Works Support of Works Performed by Participating Institutions on Ground Complexes, Propulsion Systems, Control Systems, Measurement Systems and other Systems of Rockets and Spacecraft COMPETITIVE ADVANTAGES ¾ Over 50 years of experience in designing, developing and manufacturing rocket-space and spacecraft technologies; ¾ Rich experience in International cooperation with leading European, American, Asian and Arabic aerospace companies and organizations; ¾ Wide and long-term established cooperation with the leading Ukrainian and Russian aerospace companies, organizations and representatives of other industries; ¾ Experienced in cooperation under International Standards within the frames of different International Programs; COMPETITIVE ADVANTAGES ¾ Flexible in applying and adapting standards required by a Customer/ Contractual Terms and Conditions; ¾ Possesses a complete technological cycle starting from designing spacecraft up to the launch of spacecraft using launch-vehicles of its own development; ¾ Active in developing and commercializing new space and civil application technologies; ¾ Competitive pricing policy; ¾ Open for new directions of cooperation; ¾ Reliable and experienced Partner for new and already established partnership. STANDARDS AND CERTIFICATION Quality Management - ISO 9001-2000; SDO Yuzhnoye’s Quality Management System complies with the requirements of the International Standard ISO 9001:2000, its Ukrainian (DSTU ISO 9001-2001) and Russian (GOST R ISO 9001-2001) analogues. 73 enterprise standards regulating various types of SDO Yuzhnoye’s activity; Flexible in applying and adapting Standards required by Customers/ Contractual terms and Conditions; Rich experience in cooperation with International Partners under such programs as SEA LAUNCH Program, VEGA LV Program and etc. LAUNCH FACILITIES Railroad Launch (SS-24) Cyclone 3 Air Based Launch Plesetsk Dniepropetrovsk Baikonur Cyclone 2 Platform Odyssey Dnepr Zenit 3SL Zenit 2 PROSPECTIVE LAUNCH SYSTEMS In the nearest time Yuzhnoye will be able to propose newly developed launch vehicles for providing customers with reliable launch services. The new systems are Zenit-3SLB and Zenit-2SLB (launch services will be provided by the Land Launch Joint Stock Company) and Cyclone-4 (launch services will be provided by Alcantara Cyclone Space Joint Stock Company). CYCLONE-4 Number of stages 3 Launch site: Alcantara (Brazil) Lift-off mass, t (without PL) 191 Propellant components Launch site has convenient geographical position and provides wide range of launch Oxidizer NTO azimuths Fuel UDMH Propellant mass, t Performance capability for GTO is: 1600 kg 1st Stage 121 (Alcantara, i=5.1 degrees) 2nd Stage 49 3rd Stage 9 PAYLOADPAYLOAD CAPABILITIESCAPABILITIES Vacuum thrust 6000 of engines, tf 5000 1st Stage 303 4000 2nd Stage 101.5 3rd Stage 7.9 3000 Injection accuracy Gpl, kg 2000 for Hcirc=500 km, i=90º: 1000 On altitude, km ±5 0 On inclination, deg ±0.05…0.08 2000 3000 4400 6000 8000 for GTO: On altitude, km 5.0 (perigee) Hcirc, km 100 (apogee) On inclination, deg ±0.05…0.08 MAYAK FAMILY LAUNCH VEHICLES Launch mass, t 130 185 250 320 375 # of stages/boosters 2/0 2/4 2/0 3/0 3/4 Payload mass, kg: 2800 0 Hcirc=200km, i=50 4500 6400 8800 11500 - H=150/35860 km, i=2.10 1300 1800 3000 3800 ROCKET ENGINES DEVELOPED BY YUZHNOYE More than 35 liquid rocket engines and liquid propulsion systems have been developed TheThe achieved achieved level level ofof reliability reliability ForFor L Liquiquidid Rocket Rocket En Engginesines ForFor Solid Solid propellant propellant nono less less than than RocketRocket Mo Motorstors 0,9920,992-0,999-0,999 0,9950,995-0,999-0,999 LIQUID ROCKET ENGINES RD858 AND RD859 OF THE LUNAR MODULE A highly reliable engine cluster and propulsion system are designed for the N-1 Lunar Launch System. The propulsion system ensures soft landing on the Moon surface and take- off of the Moon, and insertion of the lunar vehicle into the lunar orbit. The engine cluster includes: • RD-858, a single-chamber dual-mode main engine; • RD-859, a two-chamber single-mode backup engine. Each engine ensures two burns. High reliability of the engines was proven by a large number of ground tests. Total operating time is: • 253281 s for RD-858; • 209463 s for RD-859. Three propulsion systems were successfully flight-tested in the composition of the Earth artificial satellite. SDO YUZHNOYE IS CAPABLE OF INJECTING PAYLOADS INTO THE FLIGHT TRAJECTORY TO THE MOON OR DIRECTLY INTO THE NEAR-MOON ORBIT USING ITS LAUNCH-VEHICLES PAYLOAD CAPABILITIES ILV Payload mass, kg into near-moon to the Moon orbit Zenit – 3SL 4200 ~1000* Zenit – 3SLB 3900 ~1000* Dnepr-1 with AST-1 500 200-250 * using orbital propulsion system (DU-802) as an adjusting and inhibiting propulsion system. In case of development of propulsion system modification with increased propellant reserve (~1000 kg) the mass of payload into near-moon orbit can be increased up to ~2500 kg for Zenit-3SL ILV and up to ~2300 kg for Zenit-3SLB ILV. MAIN SPECIFICATIONS OF THE ENGINES RD858 AND RD859 Propellants NTO+UDMH Vacuum thrust, kgf – main engine from 400 to 2250 – backup engine 2045 Vacuum specific impulse, s – main engine 315 – backup engine 312 Burn time, s – main engine up to 470 – backup engine up to 400 Engine cluster mass, kg 110 Mixture ratio – main engine from 1,6 to 2,03 – backup engine 2,0 MAIN ENGINE ASSEMBLY FOR THE EUROPEAN VEGA LV The Main Engine Assembly is a part of Liquid Propulsion System for Attitude Vernier Upper Module of the European Vega Launch Vehicle. The MEA is developed under a Contract with Avio (Italy) on the basis of units from serially produced engines. Purposes of the MEA are as follows: 9Thrust generation; 9Pitch/yaw control; 9Upper Module maneuvering; 9Upper Module deorbit. Propellants NTO+UDMH Vacuum thrust, kgf 250 Vacuum specific impulse, s 315.5 Number of burns 5 DU802 PROPULSION SYSTEM Currently the Upper Stage for Ukrainian – Russian Dnepr LV has been designed and is now under intensive testing. A principally new propellants supply system was introduced with the use of Pneumopump Assembly (PPA). Utilization of PPA allows to increase power-mass characteristics, some of which cannot be reached by the existing propulsion systems. Propellants: • Oxidizer NTO • Fuel UDMH Propellants
Recommended publications
  • Intelsat, Ltd. (Exact Name of Registrant As Specified in Charter)
    SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 8-K CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 Date of report (Date of earliest event reported): August 12, 2009 Intelsat, Ltd. (Exact Name of Registrant as Specified in Charter) Bermuda 000-50262 98-0346003 (State or Other Jurisdiction (Commission File Number) (IRS Employer of Incorporation) Identification Number) Wellesley House North, 2nd Floor, 90 Pitts Bay Road, Pembroke, Bermuda HM 08 (Address of Principal Executive Offices) (Zip Code) (441) 294-1650 Registrant’s telephone number, including area code n/a (Former Address, If Changed Since Last Report) Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions (see General Instruction A.2. below): ☐ Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425) ☐ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12) ☐ Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b)) ☐ Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c)) Item 2.02 Results of Operations and Financial Condition On August 12, 2009, Intelsat, Ltd. issued a press release entitled “Intelsat Reports Second Quarter 2009 Results.” A copy of such press release is furnished as an exhibit to this Current Report on Form 8-K. Item 9.01 Financial Statements and Exhibits (d) Exhibits 99.1 Press Release dated August 12, 2009 entitled “Intelsat Reports Second Quarter 2009 Results” -2- SIGNATURE Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.
    [Show full text]
  • Space in Central and Eastern Europe
    EU 4+ SPACE IN CENTRAL AND EASTERN EUROPE OPPORTUNITIES AND CHALLENGES FOR THE EUROPEAN SPACE ENDEAVOUR Report 5, September 2007 Charlotte Mathieu, ESPI European Space Policy Institute Report 5, September 2007 1 Short Title: ESPI Report 5, September 2007 Editor, Publisher: ESPI European Space Policy Institute A-1030 Vienna, Schwarzenbergplatz 6 Austria http://www.espi.or.at Tel.: +43 1 718 11 18 - 0 Fax - 99 Copyright: ESPI, September 2007 This report was funded, in part, through a contract with the EUROPEAN SPACE AGENCY (ESA). Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “source: ESPI Report 5, September 2007. All rights reserved” and sample transmission to ESPI before publishing. Price: 11,00 EUR Printed by ESA/ESTEC Compilation, Layout and Design: M. A. Jakob/ESPI and Panthera.cc Report 5, September 2007 2 EU 4+ Executive Summary ....................................................................................... 5 Introduction…………………………………………………………………………………………7 Part I - The New EU Member States Introduction................................................................................................... 9 1. What is really at stake for Europe? ....................................................... 10 1.1. The European space community could benefit from a further cooperation with the ECS ................................................................. 10 1.2. However, their economic weight remains small in the European landscape and they still suffer from organisatorial and funding issues .... 11 1.2.1. Economic weight of the ECS in Europe ........................................... 11 1.2.2. Reality of their impact on competition ............................................ 11 1.2.3. Foreign policy issues ................................................................... 12 1.2.4. Internal challenges ..................................................................... 12 1.3.
    [Show full text]
  • Space Business Review 11, BSAT-3B Will Be Launched by an Kazakhstan on a Russian Soyuz Vehicle
    April 2008 A monthly round-up of space industry developments for the information of our clients and friends. EADS Astrium to Acquire SSTL DISH Selects SS/L for EchoStar XV EADS Astrium announced on April 7 that it On April 22, Space Systems/Loral (SS/L), had entered into an agreement with the announced a contract to build the EchoStar University of Surrey to acquire its 80% XV direct broadcast satellite for DISH stake in Surrey Satellite Technology Network Corporation. Scheduled for launch Limited (SSTL) for an estimated £40-50 in 2010, the spacecraft will be based on million. Based in the United Kingdom, SSTL SS/L’s proven 1300 platform and is designed specializes in the design and manufacture of to support the expansion of DISH Network’s small and micro satellites, including the programming and services. Giove-A test satellite for Europe's Other April Launch Services forthcoming Galileo satellite navigation On April 14, Lockheed Martin Commercial system. The transaction, which remains Launch Services successfully launched the subject to regulatory approvals, will provide ICO G1 satellite for ICO Global the financial and industrial resources Communications (Holdings) Ltd’ from Cape required for SSTL’s expansion and future Canaveral Air Force Station in Florida on an development. It is expected that SSTL will Atlas V 421 vehicle. Built by SS/L based on remain an independent UK company. its 1300 platform, ICO G1 weighed BSAT-3b Contract Awards approximately 6,634 kg at launch, is equipped On April 15, Lockheed Martin Commercial with a 12-meter S-band reflector capable of Space Systems announced its selection by ground-based beam forming that, along with a Japanese satellite operator Broadcasting complementary network of terrestrial Satellite System Corporation (B-SAT) to repeaters, will provide between 10-15 build its next broadcast satellite, designated channels of live television, enhanced BSAT-3b.
    [Show full text]
  • Photo Release -- Space Systems/Loral-Built Telstar 11N Satellite on Track with Post Launch Maneuvers
    Photo Release -- Space Systems/Loral-Built Telstar 11N Satellite On Track With Post Launch Maneuvers Solar Arrays Deployed On Schedule Following Successful Launch PALO ALTO, Calif., Feb 27, 2009 (GlobeNewswire via COMTEX News Network) -- Space Systems/Loral (SS/L), a subsidiary of Loral Space & Communications (Nasdaq:LORL) and the leading provider of commercial satellites, today announced that the Telstar 11N satellite built for Telesat, one of the world's leading fixed satellite services operators, is performing post launch maneuvers according to plan. The satellite's solar arrays deployed on schedule several hours after separation, following yesterday's successful launch aboard a Zenit-3SLB rocket from the Baikonur Space Center in Kazakhstan. Tomorrow the satellite will begin firing its thrusters to maneuver into its final geosynchronous orbit. A photo accompanying this release is available at http://www.globenewswire.com/newsroom/prs/?pkgid=5941 "We are proud to know that this high-power satellite will help make information and entertainment more accessible around the world," said John Celli, President and Chief Operating Officer of Space Systems/Loral. "Telstar 11N demonstrates the flexibility of our standard 1300 satellite platform, which in this case was engineered to accommodate a smaller launch vehicle. It is this flexibility together with long term proven reliability that have helped SS/L achieve more than 40 percent market share over the past five years." When it reaches its final geosynchronous orbit, Telstar 11N will support video and data applications in North America, Western Europe, and Africa. Space Systems/Loral designed the satellite with a unique Atlantic Ocean beam, which will help Telesat meet growing demand for mobile broadband from both commercial and government customers in shipping and aviation.
    [Show full text]
  • 2010 Commercial Space Transportation Forecasts
    2010 Commercial Space Transportation Forecasts May 2010 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) HQ-101151.INDD 2010 Commercial Space Transportation Forecasts About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Cover: Art by John Sloan (2010) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration / Commercial Space Transportation Table of Contents Executive Summary . 1 Introduction . 4 About the CoMStAC GSo Forecast . .4 About the FAA NGSo Forecast . .4 ChAracteriStics oF the CommerCiAl Space transportAtioN MArket . .5 Demand ForecastS . .5 COMSTAC 2010 Commercial Geosynchronous Orbit (GSO) Launch Demand Forecast . 7 exeCutive Summary . .7 BackGround . .9 Forecast MethoDoloGy . .9 CoMStAC CommerCiAl GSo Launch Demand Forecast reSultS .
    [Show full text]
  • Igor AFANASYEV, Dmitry VORONTSOV Cosmonautics | Event
    cosmonautics | event Andrey Morgunov Igor AFANASYEV, Dmitry VORONTSOV AANGARA’SNGARA’S FFIRSTIRST BBLASTOFFLASTOFF At 16.04 hrs Moscow time on 9 July 2014, the Plesetsk space launch centre saw the launching facility in February 2014 to the first launch of the Angara-1.2PP launch vehicle of the advanced space rocket practice its fuelling and the nose fairing was family being developed by the Khrunichev state space research and production fitted on the rocket in March. The successful ground tests were followed by the prelaunch centre. The maiden blastoff conducted as part of the Angara flight test programme preparations. was aimed at testing the solutions embodied in the design of the URM-1 and URM-2 The date of the launch was put off for versatile rocket modules and the Angara’s launch and technical facilities as well. 27 June 2014 due to extra checks required. In this connection, orbiting an actual spacecraft had not been considered, with On 9 June, Khrunichev hosted a session of an inseparable full-scale mock-up used as payload. The flight was suborbital to the Chief Designers Council, dedicated to prevent cluttering near-Earth orbit with space junk. the preparation of the Angara to its flight tests. The session pronounced the rocket fit To say the Angara’s first launch had been In spite of the hurdles, the developer, for the trials. anticipated for a long time would be an nevertheless, got in the stretch with the Angara The LV had been taken out of the assembly understatement: it was slated for 2005 under programme.
    [Show full text]
  • The European Launchers Between Commerce and Geopolitics
    The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3.
    [Show full text]
  • Uncontrolled Re-Entries of Spacecraft and Rocket Bodies: a Statistical Overview Over the Last Decade
    Uncontrolled Re-Entries of Spacecraft and Rocket Bodies: A Statistical Overview over the Last Decade Carmen Pardinia1*, Luciano Anselmoa2 a Space Flight Dynamics Laboratory, Institute of Information Science and Technologies (ISTI), National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy 1 [email protected]; 2 [email protected] * Corresponding Author Abstract More than 24,400 catalogued orbiting objects have re-entered so far into the Earth’s atmosphere since the beginning of the space age. The associated returning mass, close to 30,000 metric tons, was mainly concentrated in intact objects, i.e. payloads and spent upper stages, accounting for nearly 29% of the re- entered objects. During the 10 years from 2008 to 2017, almost 450 large intact objects have re-entered without control, with a total returning mass of approximately 900 metric tons. Since the beginning of 2018 until mid-November, nearly 86 metric tons of returned materials were associated with almost 65 uncontrolled re-entries of large intact objects, three of which with a mass exceeding 5 metric tons: the Zenit-3F second stage 2017-086D, the C-25 cryogenic upper stage 2017-031B, and the Chinese space station Tiangong-1. After an overview of the most critical historic re-entry events, the attention will be focused on the re- entries of massive objects occurred without control from 2008 to 2017, by categorizing them in terms of relevance, re-entry frequency, returned mass, distribution in inclination, overflown latitude bands, eccentricity and perigee/apogee altitudes before re-entry. Cases in which spacecraft and rocket bodies components were retrieved, and eyewitnesses sightings were reported, will be presented as well.
    [Show full text]
  • Evolved Expendable Launch Operations at Cape Canaveral, 2002-2009
    EVOLVED EXPENDABLE LAUNCH OPERATIONS AT CAPE CANAVERAL 2002 – 2009 by Mark C. Cleary 45th SPACE WING History Office PREFACE This study addresses ATLAS V and DELTA IV Evolved Expendable Launch Vehicle (EELV) operations at Cape Canaveral, Florida. It features all the EELV missions launched from the Cape through the end of Calendar Year (CY) 2009. In addition, the first chapter provides an overview of the EELV effort in the 1990s, summaries of EELV contracts and requests for facilities at Cape Canaveral, deactivation and/or reconstruction of launch complexes 37 and 41 to support EELV operations, typical EELV flight profiles, and military supervision of EELV space operations. The lion’s share of this work highlights EELV launch campaigns and the outcome of each flight through the end of 2009. To avoid confusion, ATLAS V missions are presented in Chapter II, and DELTA IV missions appear in Chapter III. Furthermore, missions are placed in three categories within each chapter: 1) commercial, 2) civilian agency, and 3) military space operations. All EELV customers employ commercial launch contractors to put their respective payloads into orbit. Consequently, the type of agency sponsoring a payload (the Air Force, NASA, NOAA or a commercial satellite company) determines where its mission summary is placed. Range officials mark all launch times in Greenwich Mean Time, as indicated by a “Z” at various points in the narrative. Unfortunately, the convention creates a one-day discrepancy between the local date reported by the media and the “Z” time’s date whenever the launch occurs late at night, but before midnight. (This proved true for seven of the military ATLAS V and DELTA IV missions presented here.) In any event, competent authorities have reviewed all the material presented in this study, and it is releasable to the general public.
    [Show full text]
  • Space Technology and Telecommunication" Cluster of the Skolkovo Foundation
    STRATEGIC DIRECTIONS AND PRIORITY AREAS OF DEVELOPMENT FOR "S PACE TECHNOLOGY AND TELECOMMUNICATION " CLUSTER OF THE SKOLKOVO FOUNDATION 2012 Strategic Directions and Priority Areas of Development for "Space Technology and Telecommunication" Cluster of the Skolkovo Foundation The present document describes the results of methodology development and evaluation of strategic directions and priority areas for "Space Technology and Telecommunication" Cluster of the Skolkovo Fund. The first iteration was obtained by ST&T expert group with assistance of leading space R&D institutes using the Federal Space Agency materials. The Strategic Directions will be subsequently specified under the foresight research based on the contract between the Skolkovo Fund and one of the leading R&D and consulting organizations in the field of space activity and its results' commercialization. The Glossary can be found at the end of the document EXECUTIVE SUMMARY: PRIORITIES ST&T Cluster ensures search for, attraction and selection of potential subjects of innovative process in the field of development and target use of spacecrafts operation and diversification of rocket and space industry potential, facilitates their cooperation and provides the environment for full cycle innovation process establishment, based on the Strategic directions and priority areas of development, initially defined by this document and regularly updated considering opinion of sci-tech and business community that is identified in process of foresight procedure. At the moment, the Cluster finds it necessary, along with comprehensive support for innovative activity of the Skolkovo Fund participants and applicants, to focus on proactive implementation of several priority areas which particularly include: Establishing national infrastructure of full cycle microsatellite technology which involves leading universities.
    [Show full text]
  • Of S.P. Korolev Rocket and Space Public Corporation Energia for 2013
    OF S.P. KOROLEV ROCKET AND SPACE PUBLIC CORPORATION ENERGIA FOR 2013 This Annual Report of S.P. Korolev Rocket and Space Public Corporation Energia (also hereinafter called “OAO RSC Energia”, “RSC Energia”, “the Corporation”) by the 2013 performance is drawn up in accordance with the RF Government Decree No 1214 as of December 31, 2010 “On Improvement of the Procedure for Management of Open Joint-Stock Companies Whose Stock is in Federal Ownership and Federal State Unitary Enterprises” with due regard for the requirements set forth in the Order issued by the RF Federal Financial Markets Service No 11-46/pz-n as of October 4, 2011 “On Approval of the Provision on Information Disclosure of Issuers of Registered Securities”. This Annual Report was preliminarily approved by RSC Energia’s Board of Directors on April 29, 2014. Minutes No10 as of May 6, 2014. Accuracy of the data contained in this Annual Report was confirmed by RSC Energia’s Auditing Committee Report as of April 17, 2014. 2 TABLE OF CONTENTS KEY PERFORMANCE INDICATORS ........................................................................... 6 ON CORPORATION ACTIVITIES ................................................................................. 8 Corporation background ................................................................................................................................8 Corporation structure (its participation in subsidiary and affiliated companies) ...........................................9 Information about purchase and sale contracts for
    [Show full text]
  • THINK LOGISTICS – SPACE LOGISTICS ! Florian Loire Strategy for Civil Launchers
    THINK LOGISTICS – SPACE LOGISTICS ! Florian Loire Strategy for civil launchers Space School - 25 June 2019 #spaceenablers 1 DISRUPTION IN THE SPACE MARKET COMPETITIVE LANDSCAPE THIS DOCUMENT AND ITS CONTENTS ARE PROPERTY OF ARIANEGROUP. IT SHALL NOT BE COMMUNICATED TO ANY THIRD PARTY WITHOUT THE OWNER’S WRITTEN CONSENT | ARIANEGROUP SAS – ALL RIGHTS RESERVED. SPACE LOGISTICS @ ESTACA - 25/06/2019 Existing Space Economy has real economic value to society Science & Meteorology …. Exploration Navigation/Positioning Earth Observation Telecommunications THIS DOCUMENT AND ITS CONTENTS ARE PROPERTY OF ARIANEGROUP. IT SHALL NOT BE COMMUNICATED TO ANY THIRD PARTY WITHOUT THE OWNER’S WRITTEN CONSENT | ARIANEGROUP SAS – ALL RIGHTS RESERVED. #space- enablers THE GOOD OLD DAYS: A FEW WELL SEGMENTED LAUNCH SERVICE MARKET SEGMENTS THIS DOCUMENT AND ITS CONTENTS ARE PROPERTY OF ARIANEGROUP. IT SHALL NOT BE COMMUNICATED TO ANY THIRD PARTY WITHOUT THE OWNER’S SPACE LOGISTICS @ ESTACA 07/12/2018 WRITTEN CONSENT | ARIANEGROUP SAS – ALL RIGHTS RESERVED. - ARIANE 5 THE EUROPEAN WORKHORSE WITH 104 LAUNCHES PERFORMED ARIANE 5 ES Fairing ARIANE 5 ECA Height: 17 m Launch weight: 760 t Ø 5.4 m Launch weight: 780 t Thrust: 1,340 t Thrust: 1,340 t Dual Launch System (SYLDA) Ø 4 m useful Last HM7B engine Still the Thrust: 6.5 t mission in benchmark 2018 Reignitable Aestus engine for GTO Thrust: 2.7 t missions 2 boosters Vulcain 2 engine Thrust: 136 t * All references to tons (t) are metric tons throughout THIS DOCUMENT AND ITS CONTENTS ARE PROPERTY OF ARIANEGROUP. IT SHALL NOT BE COMMUNICATED TO ANY THIRD PARTY WITHOUT THE OWNER’S WRITTEN CONSENT | ARIANEGROUP SASGMBH – ALL– ALL RIGHTS RIGHTS RESERVED.
    [Show full text]