Synthetic Reaction of Cellvibrio Gilvus Cellobiose Phosphorylase

Total Page:16

File Type:pdf, Size:1020Kb

Synthetic Reaction of Cellvibrio Gilvus Cellobiose Phosphorylase J. Biochem. 112,,40-44 (1992) Synthetic Reaction of Cellvibrio gilvus Cellobiose Phosphorylase Motomitsu Kitaoka,* Takashi Sasaki,** and Haj ime Taniguchi** *Nippon Petrochemicals Co., Ltd., Tsukuba, Ibaraki 300-26; and **National Food Research Institute, Tsukuba, Ibaraki 305 Received for publication, January 13, 1992 The synthetic reactions of the cellobiose phosphorylase from Cellvibrio gilvus were investigated in detail. It was found that, besides D-glucose, some sugars having substitution or deletion of the hydroxyl group at C2 or C6 of the D-glucose molecule could serve as a glucosyl acceptor, though less effectively than D-glucose. The enzyme showed higher activity with 6-D-glucose than with the ƒ¿-anomer as an acceptor. This result indicates that it recognizes the anomeric hydroxyl group not involved directly in the reaction. ƒÀ - D-Cellobiose was also phosphorolyzed faster than the ƒ¿-anomer. Substrate inhibition was observed with D-glucose, 6-deoxy-D-glucose, or D-glucosamine as an acceptor, with D-glucose being most inhibiting. This inhibition was studied in detail and it was found that D-glucose competes with a-D-glucose-l-phosphate for its binding site. A model of competi tive substrate inhibition was proposed, and the experimental data fit well to the theoretical values that were calculated in accordance with this model. Cellobiose phosphorylase [EC 2.4.1.20] is one of the formed during the enzymatic reaction. That of the synthetic enzymes phosphorolyzing glucosides. It catalyzes revers reaction was determined by measuring the amount of P, ible phosphorolysis of D-cellobiose into D-glucose and ƒ¿- liberated from G-1-P with an acceptor. D-glucose-1-phosphate (G-1-P) with inversion of the ano The amount of G-1-P was measured by using the phos meric configuration. It is present in Clostridium thermocel phoglucomutase-glucose-6-phosphate dehydrogenase sys lum (1), Ruminococcus flavefaciens (2), Cellvibrio gilvus tem (12). D-Glucose was measured by means of the glucose (3), Fomes annosus (4), and Cellulomonas (5, 6). Alexan oxidase-peroxidase method with mutarotase (13) using the der partially purified the enzyme from C. thermocellum (7) Glucose C Test Wako (Wako Pure Chemicals, Osaka). Pi in and synthesized several disaccharides from G-1-P and the presence of G-1-P was measured selectively by the acceptor sugars using the enzyme preparation (8). We method of Lowry and Lopez (14). reported a convenient synthetic method for D-glucosyl- Kinetic Parameters•\Kinetic parameters were calcu- D-xylose from G-1-P and D-xylose using C. gilvus cells as an ated from the experimental results following the Gauss- immobilized cellobiose phosphorylase (9). We purified the Newton method described by Cleland (15) using computer enzyme from C. gilvus to an electrophoretically homogene programs written in BASIC. ous state and reported its properties (10). We also found that its reaction proceeded through an ordered bi bi RESULTS AND DISCUSSION mechanism (11). In the present paper, an extensive kinetic study on the synthetic reaction of this enzyme is reported. Substrate Specificity of the Synthetic Reaction•\Table I indicates relative initial velocities obtained with various MATERIALS AND METHODS sugars as a glucosyl acceptor. Derivatives at C1 of the D-glucose molecule such as methyl-D-glucosides and Materials•\ƒ¿-D-Glucose-1-phosphate (G-1-P) dipotas 1,5-anhydro-D-glucitol did not serve as an acceptor. Iso sium salt, ƒÀ-D-glucose, and ƒÀ-D-cellobiose were purchased mers at C3 (D-allose), C4 (D-galactose), and C5 (L-idose) from Sigma (St. Louis, USA). ƒ¿-D-Cellobiose (containing did not serve as an acceptor. In contrast, some of the C2 about 5% of the ƒÀ-anomer) was obtained by ethanol derivatives (D-mannose, 2-deoxy-D-glucose, and D-gluco precipitation from a D-cellobiose solution. All other chemi samine) and C6 ones (6-deoxy-D-glucose and D-xylose) cals used in the experiments were of reagent grade. could act as an acceptor, although less effectively than Cellobiose phosphorylase was purified from C. gilvus cells D-glucose. These results indicate that the configurations of by the method described by Kitaoka et al. (11). the D-glucose molecule at C1, C3, C4, and C5 are strictly Assay Methods-Reactions of the cellobiose phospho required. Apart from D-glucose derivatives, ketose, pen rylase were carried out at 37•Ž in 50mM Tris-HCl buffer tose (except D-xylose), D-glucono-ƒÂ-lactone, and sugar (pH 7.0) containing 5mM MgCl, and 0.02% bovine serum alcohols had no acceptor activity. Essentially the same albumin as a stabilizer of the enzyme. One unit of the specificity for the acceptor molecule was reported with the activity was defined as the amount of the enzyme which partially purified enzyme from C. thermocellum (7). produces 1ƒÊmol of D-glucose or G-1-P per min with 10mM The acceptor specificity for the C2 derivatives is signifi D-cellobiose and 10mM inorganic phosphate (Pi) under the cantly different from that reported for a maltose phospho above conditions. The initial rate of the phosphorolysis was rylase (16). The cellobiose phosphorylase can accept an assayed by measuring the amount of G-1-P or D-glucose axial hydroxyl group at C2 (D-mannose) whereas it cannot 40 J. Biochem. Synthetic Reaction of Cellobiose Phosphorylase 41 accept bulky substitution at the C2 hydroxyl group (N-ace the case of the maltose phosphorylase, deletion (2-deoxy- tyl-D-glucosamine). On the other hand, the maltose phos D-glucose), substitution with an amino group (D-gluco phorylase cannot accept the former whereas it can accept samine) or substitution with a bulky group (N-acetyl- the latter. Furthermore, the deletion of the C2 hydroxyl D-glucosamine) did not decrease the initial rates. Cellobiose group (2-deoxy-D-glucose) or substitution with an amino phosphorylase, therefore, must have a recognition site for group (D-glucosamine) resulted in a significant decrease in the initial rate in the case of cellobiose phosphorylase. In TABLE I. Substrate specificity in the synthetic reaction. Values are indicated as ƒÊmol/min•EU. For experimental details, see the text. •\, under 0.03. TABLE 11. Apparent kinetic parameters of various substrates. Values were calculated at the following concentrations: a2-10mM, b5-100mM, c5-20mM, and d2.5-50mM. Fig. 2. The ƒÒ-[s] plots of the various substrates. •œ, D-glucose; •› , 6-deoxy-D-glucose; •£, D-mannose; •¢, 2-deoxy-D-glucose; •¡, D-glucosamine; • , D-xylose. Solid lines are calculated curves using the Michaelis-Menten equation. Fig. 1. Time course of the reactions with the substrates of both anomeric types. •›, ƒ¿-D-glucose; •œ, ƒÀ-D-glucose; •¢, ƒ¿-D-cellobiose; •£ , ƒÀ-D-cellobiose. Solid and broken lines indicate synthetic and phosphorolytic reactions, respectively. The synthetic reaction was carried out using 1mM ƒ¿- or ƒÀ-D-glucose with 10mM G-1-P, and was Fig. 3. The ƒÒ-[Glc] plot at various [G-1-P]. Initial concentra followed by measuring the amount of liberated P,. The phosphorolytic tions of G-1-P are: •£, 1mM; • , 2mM; •¡, 5mM; •›, 10mM; •œ, 20 reaction was done using 1mM ƒ¿- or ƒÀ-D-cellobiose with 10mM Pi, mM. Lines are theoretical ones. and was followed by measuring the amount of D-glucose produced. Vol. 112, No. 1, 1992 42 M. Kitaoka et al. the equatorial hydroxyl group at C2. On the other hand, (2-deoxy-D-glucose) fold, but substitution with an amino maltose phosphorylase does not appear to have this type of group increased the value only 6-fold (D-glucosamine). This recognition site, but has a structure which causes steric suggests that the amino group of D-glucosamine plays a hindrance to the axial hydroxyl group at C2. certain role in binding with the enzyme. As was already The apparent kinetic parameters for the sugars which shown in Table I, 6-deoxy-D-glucose is a good acceptor, had an acceptor activity were determined at 10mM G-1-P, after D-glucose. Table II indicates that it has a slightly as shown in Table II. These values were calculated from the higher Vmax value than that of D-glucose though its Km value experimental data using the concentration ranges indicated is about 10 times as high as that of D-glucose. Thus, the C6 in the legend, i. e. the ranges where substrate inhibition is hydroxyl group of the D-glucose molecule is thought to be negligible. It is clear that D-glucose has the lowest Km value involved only in binding of the substrate. However, loss of among the tested sugars. Compared to D-glucose, the other the hydroxymethyl group (D-xylose) resulted in a signifi five sugars have generally lower Vmaxvalues and remark- cant increase in Km and decrease in Vmax, indicating that the ably higher Km values. This indicates that the hydroxyl hydroxymethyl group is important for both binding and groups at C2 and C6 of the D-glucose molecule play more of catalysis. a role in binding of D-glucose to the active site of the enzyme Recognition of the Reducing End-Neither methyl-D- than in catalysis. Comparison of the parameters for 2- glucosides nor 1,5-anhydro-D-glucitol (1-deoxy-D-gluco deoxy- and for 6-deoxy-D-glucose revealed that the hydrox pyranose) served as an acceptor, suggesting that the yl group at C2 is much more important than that of C6. enzyme recognizes the reducing hydroxyl group of the Substitution of a proton for the C2 equatorial hydroxyl acceptor D-glucose molecule. So the reaction rates were group increased the Km values 50- (D-mannose) or 80- followed in the presence of 10mM G-1-P and 1mM of either ƒ¿- or ƒÀ-D-glucose.
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • Enzymatic Glycosylation of Small Molecules
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Groningen University of Groningen Enzymatic Glycosylation of Small Molecules Desmet, Tom; Soetaert, Wim; Bojarova, Pavla; Kren, Vladimir; Dijkhuizen, Lubbert; Eastwick- Field, Vanessa; Schiller, Alexander; Křen, Vladimir Published in: Chemistry : a European Journal DOI: 10.1002/chem.201103069 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2012 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Desmet, T., Soetaert, W., Bojarova, P., Kren, V., Dijkhuizen, L., Eastwick-Field, V., ... Křen, V. (2012). Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts. Chemistry : a European Journal, 18(35), 10786-10801. https://doi.org/10.1002/chem.201103069 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
    [Show full text]
  • New Computational Approaches for Investigating the Impact of Mutations on the Transglucosylation Activity of Sucrose Phosphorylase Enzyme
    Thesis submitted to the Université de la Réunion for award of Doctor of Philosophy in Sciences speciality in bioinformatics New computational approaches for investigating the impact of mutations on the transglucosylation activity of sucrose phosphorylase enzyme Mahesh VELUSAMY Thesis to be presented on 18th December 2018 in front of the jury composed of Mme Isabelle ANDRE, Directeur de Recherche CNRS, INSA de TOULOUSE, Rapporteur M. Manuel DAUCHEZ, Professeur, Université de Reims Champagne Ardennes, Rapporteur M. Richard DANIELLOU, Professeur, Université d'Orléans, Examinateur M. Yves-Henri SANEJOUAND, Directeur de Recherche CNRS, Université de Nantes, Examinateur Mme Irène MAFFUCCI, Maître de Conférences, Université de Technologie de Compiègne, Examinateur Mme Corinne MIRAL, Maître de Conférences HDR, Université de Nantes, Examinateur M. Frédéric CADET, Professeur, Université de La Réunion, Co-directeur de thèse M. Bernard OFFMANN, Professeur, Université de Nantes, Directeur de thèse ெ்்ந்ி ிைு்ூுத் ெ்யாம் ெ்த உதி்ு ையகு் ானகு் ஆ்ற் அிு. -ிு்ு் ுதி் அ்ப் ுுக், எனு த்ைத ேுாி, தா் க்ூி, அ்ண் ு்ு்ுமா், த்ைக பா்பா, ஆ்தா ுு்மா், ீனா, அ்ண் ்ுக், ெபிய்பா, ெபிய்மா ம்ு் உுுைணயா் இு்த அைண்ு ந்ப்கு்ு் எனு மனமா்்த ந்ி. இ்த ஆ்ி்ைக ுுைம அை3த்ு ுுுத்்காரண், எனு ஆ்ி்ைக இய்ுன் ேபராிிய் ெப்னா்் ஆஃ்ேம். ப்ேு துண்கி் நா் மனதாு், ெபாுளாதார அளிு் க்3்ி் இு்தேபாு, என்ு இ்ெனாு த்ைதயாகே இு்ு எ்ைன பா்்ு்ெகா்3ா். ுி்பாக, எனு ூ்றா் ஆ்ு இுிி், அ்்ு எ்ளோ தி்ப்3 க3ைமக் ம்ு் ிர்ிைனக் இு்தாு், அைத்ெபாு்பு்தாு, அ் என்ு ெ்த ெபாுளாதார உதி, ப்கைB்கழக பிு ம்ு் இதர ி்ாக ்ப்த்ப்3 உதிகு்ு எ்ன ைகமா்ு ெகாு்தாு் ஈ3ாகாு.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]
  • Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community During the Anaerobic Digestion of Hydrolyzed Corncob
    energies Article Taxonomic Binning Approaches and Functional Characteristics of the Microbial Community during the Anaerobic Digestion of Hydrolyzed Corncob Luz Breton-Deval 1 , Ilse Salinas-Peralta 1 , Jaime Santiago Alarcón Aguirre 2, Belkis Sulbarán-Rangel 2,* and Kelly Joel Gurubel Tun 2,* 1 Catedras Conacyt, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; [email protected] (L.B.-D.); [email protected] (I.S.-P.) 2 Department of Water and Energy, University of Guadalajara Campus Tonalá, Tonalá 45425, Mexico; [email protected] * Correspondence: [email protected] (B.S.-R.); [email protected] (K.J.G.T.); Tel.: +52-33-2000-2300 (K.J.G.T.) Abstract: Maize forms the basis of Mexican food. As a result, approximately six million tons of corncob are produced each year, which represents an environmental issue, as well as a potential feedstock for biogas production. This research aimed to analyze the taxonomic and functional shift in the microbiome of the fermenters using a whole metagenome shotgun approach. Two strategies were used to understand the microbial community at the beginning and the end of anaerobic digestion: (i) phylogenetic analysis to infer the presence and coverage of clade-specific markers to assign taxonomy and (ii) the recovery of the individual genomes from the samples using the binning of the assembled scaffolds. The results showed that anaerobic digestion brought some noticeable changes and the main microbial community was composed of Corynebacterium variable, Desulfovibrio desulfuricans, Vibrio furnissii, Shewanella spp., Actinoplanes spp., Pseudoxanthomonas spp., Saccharomonospora azurea, Citation: Breton-Deval, L.; Agromyces spp., Serinicoccus spp., Cellulomonas spp., Pseudonocardia spp., Rhodococcus rhodochrous, Salinas-Peralta, I.; Alarcón Aguirre, Sphingobacterium spp.
    [Show full text]
  • Protein & Peptide Letters
    696 Send Orders for Reprints to [email protected] Protein & Peptide Letters, 2017, 24, 696-709 REVIEW ARTICLE ISSN: 0929-8665 eISSN: 1875-5305 Impact Factor: 1.068 Glycan Phosphorylases in Multi-Enzyme Synthetic Processes BENTHAM Editor-in-Chief: SCIENCE Ben M. Dunn Giulia Pergolizzia, Sakonwan Kuhaudomlarpa, Eeshan Kalitaa,b and Robert A. Fielda,* aDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; bDepartment of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam -784028, India Abstract: Glycoside phosphorylases catalyse the reversible synthesis of glycosidic bonds by glyco- A R T I C L E H I S T O R Y sylation with concomitant release of inorganic phosphate. The equilibrium position of such reac- tions can render them of limited synthetic utility, unless coupled with a secondary enzymatic step Received: January 17, 2017 Revised: May 24, 2017 where the reaction lies heavily in favour of product. This article surveys recent works on the com- Accepted: June 20, 2017 bined use of glycan phosphorylases with other enzymes to achieve synthetically useful processes. DOI: 10.2174/0929866524666170811125109 Keywords: Phosphorylase, disaccharide, α-glucan, cellodextrin, high-value products, biofuel. O O 1. INTRODUCTION + HO OH Glycoside phosphorylases (GPs) are carbohydrate-active GH enzymes (CAZymes) (URL: http://www.cazy.org/) [1] in- H2O O GP volved in the formation/cleavage of glycosidic bond together O O GT O O + HO O + HO with glycosyltransferase (GT) and glycoside hydrolase (GH) O -- NDP OPO3 NDP -- families (Figure 1) [2-6]. GT reactions favour the thermody- HPO4 namically more stable glycoside product [7]; however, these GS R enzymes can be challenging to work with because of their O O + HO current limited availability and relative instability, along R with the expense of sugar nucleotide substrates [7].
    [Show full text]
  • In Vitro and in Vivo Exploration of the Cellobiose and Cellodextrin Phosphorylases Panel in Ruminiclostridium Cellulolyticum: Im
    Liu et al. Biotechnol Biofuels (2019) 12:208 https://doi.org/10.1186/s13068-019-1549-x Biotechnology for Biofuels RESEARCH Open Access In vitro and in vivo exploration of the cellobiose and cellodextrin phosphorylases panel in Ruminiclostridium cellulolyticum: implication for cellulose catabolism Nian Liu1, Aurélie Fosses1, Clara Kampik1, Goetz Parsiegla2, Yann Denis3, Nicolas Vita1, Henri‑Pierre Fierobe1 and Stéphanie Perret1* Abstract Background: In anaerobic cellulolytic micro‑organisms, cellulolysis results in the action of several cellulases gathered in extracellular multi‑enzyme complexes called cellulosomes. Their action releases cellobiose and longer cellodex‑ trins which are imported and further degraded in the cytosol to fuel the cells. In Ruminiclostridium cellulolyticum, an anaerobic and cellulolytic mesophilic bacteria, three cellodextrin phosphorylases named CdpA, CdpB, and CdpC, were identifed in addition to the cellobiose phosphorylase (CbpA) previously characterized. The present study aimed at characterizing them, exploring their implication during growth on cellulose to better understand the life‑style of cellulolytic bacteria on such substrate. Results: The three cellodextrin phosphorylases from R. cellulolyticum displayed marked diferent enzymatic char‑ acteristics. They are specifc for cellodextrins of diferent lengths and present diferent kcat values. CdpC is the most active enzyme before CdpA, and CdpB is weakly active. Modeling studies revealed that a mutation of a conserved histidine residue in the phosphate ion‑binding pocket in CdpB and CdpC might explain their activity‑level diferences. The genes encoding these enzymes are scattered over the chromosome of R. cellulolyticum and only the expression of the gene encoding the cellobiose phosphorylase and the gene cdpA is induced during cellulose growth. Char‑ acterization of four independent mutants constructed in R.
    [Show full text]
  • Recent Advances in Enzymatic Synthesis of β-Glucan and Cellulose
    Scotland's Rural College Recent advances in enzymatic synthesis of -glucan and cellulose Bulmer, Gregory S.; de Andrade, Peterson; Field, Robert A.; van Munster, Jolanda M. Published in: Carbohydrate Research DOI: 10.1016/j.carres.2021.108411 Print publication: 01/10/2021 Document Version Publisher's PDF, also known as Version of record Link to publication Citation for pulished version (APA): Bulmer, G. S., de Andrade, P., Field, R. A., & van Munster, J. M. (2021). Recent advances in enzymatic synthesis of -glucan and cellulose. Carbohydrate Research, 508, [108411]. https://doi.org/10.1016/j.carres.2021.108411 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Carbohydrate Research 508 (2021) 108411 Contents lists available at ScienceDirect Carbohydrate Research journal homepage: www.elsevier.com/locate/carres Recent advances in enzymatic synthesis of β-glucan and cellulose Gregory S.
    [Show full text]
  • アミロース製造に利用する酵素の開発と改良 Phosphorylase and Muscle Phosphorylase B
    125 J. Appl. Glycosci., 54, 125―131 (2007) !C 2007 The Japanese Society of Applied Glycoscience Proceedings of the Symposium on Amylases and Related Enzymes, 2006 Developing and Engineering Enzymes for Manufacturing Amylose (Received December 5, 2006; Accepted January 5, 2007) Michiyo Yanase,1,* Takeshi Takaha1 and Takashi Kuriki1 1 Biochemical Research Laboratory, Ezaki Glico Co., Ltd. (4 ―6 ―5, Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan) Abstract: Amylose is a functional biomaterial and is expected to be used for various industries. However at present, manufacturing of amylose is not done, since the purification of amylose from starch is very difficult. It has been known that amylose can be produced in vitro by using α-glucan phosphorylases. In order to ob- tain α-glucan phosphorylase suitable for manufacturing amylose, we isolated an α-glucan phosphorylase gene from Thermus aquaticus and expressed it in Escherichia coli. We also obtained thermostable α-glucan phos- phorylase by introducing amino acid replacement onto potato enzyme. α-Glucan phosphorylase is suitable for the synthesis of amylose; the only problem is that it requires an expensive substrate, glucose 1-phosphate. We have avoided this problem by using α-glucan phosphorylase either with sucrose phosphorylase or cellobiose phosphorylase, where inexpensive raw material, sucrose or cellobiose, can be used instead. In these combined enzymatic systems, α-glucan phosphorylase is a key enzyme. This paper summarizes our work on engineering practical α-glucan phosphorylase for industrial processes and its use in the enzymatic synthesis of essentially linear amylose and other glucose polymers. Key words: amylose, glucose polymer, α-glucan phosphorylase, glycogen debranching enzyme, protein engi- neering α-1,4 glucan is the major form of energy reserve from Enzymes for amylose synthesis.
    [Show full text]
  • Ep 1 117 822 B1
    Europäisches Patentamt (19) European Patent Office & Office européen des brevets (11) EP 1 117 822 B1 (12) EUROPÄISCHE PATENTSCHRIFT (45) Veröffentlichungstag und Bekanntmachung des (51) Int Cl.: Hinweises auf die Patenterteilung: C12P 19/18 (2006.01) C12N 9/10 (2006.01) 03.05.2006 Patentblatt 2006/18 C12N 15/54 (2006.01) C08B 30/00 (2006.01) A61K 47/36 (2006.01) (21) Anmeldenummer: 99950660.3 (86) Internationale Anmeldenummer: (22) Anmeldetag: 07.10.1999 PCT/EP1999/007518 (87) Internationale Veröffentlichungsnummer: WO 2000/022155 (20.04.2000 Gazette 2000/16) (54) HERSTELLUNG VON POLYGLUCANEN DURCH AMYLOSUCRASE IN GEGENWART EINER TRANSFERASE PREPARATION OF POLYGLUCANS BY AMYLOSUCRASE IN THE PRESENCE OF A TRANSFERASE PREPARATION DES POLYGLUCANES PAR AMYLOSUCRASE EN PRESENCE D’UNE TRANSFERASE (84) Benannte Vertragsstaaten: (56) Entgegenhaltungen: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU WO-A-00/14249 WO-A-00/22140 MC NL PT SE WO-A-95/31553 (30) Priorität: 09.10.1998 DE 19846492 • OKADA, GENTARO ET AL: "New studies on amylosucrase, a bacterial.alpha.-D-glucosylase (43) Veröffentlichungstag der Anmeldung: that directly converts sucrose to a glycogen- 25.07.2001 Patentblatt 2001/30 like.alpha.-glucan" J. BIOL. CHEM. (1974), 249(1), 126-35, XP000867741 (73) Patentinhaber: Südzucker AG Mannheim/ • BUTTCHER, VOLKER ET AL: "Cloning and Ochsenfurt characterization of the gene for amylosucrase 68165 Mannheim (DE) from Neisseria polysaccharea: production of a linear.alpha.-1,4-glucan" J. BACTERIOL. (1997), (72) Erfinder: 179(10), 3324-3330, XP002129879 • GALLERT, Karl-Christian • DE MONTALK, G. POTOCKI ET AL: "Sequence D-61184 Karben (DE) analysis of the gene encoding amylosucrase • BENGS, Holger from Neisseria polysaccharea and D-60598 Frankfurt am Main (DE) characterization of the recombinant enzyme" J.
    [Show full text]
  • The Decomposition of Starch Through Phosphorolysis by Streptoccus
    The decomposition of starch through phosphorolysis by Streptoccus bovis by Richard N Ushijima A THESIS Submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of Master of Science in Bacteriology at Montana State College Montana State University © Copyright by Richard N Ushijima (1957) Abstract: The possibility of starch utilization by Streptococcus bovis through a starch phosphorylase was investigated. large quantities of cells were grown on a starch medium, and the cells were harvested by centrifugation. The cell-free enzyme extract was prepared by grinding the cells with glass beads in a micro-Waring blendor. Starch phosphorylase was detected in the reaction mixture containing soluble starch, inorganic phosphate, enzyme preparation, and sodium hydrosulfite. Since a maltose phosphorylase was also found, the formation of maltose was prevented by adjusting the mixture to pH 8.6, which inhibited alpha amylase activity. The experiments also revealed the presence of a phosphoglueomutase, which converts glucose-l-phosphate to glucose-6-phosphate, a product uti-lizable through the glycolytic pathways. I THE''DECOMPOSITION' OF' STARCH THROUGH ' ^ PHOSPHOROLYSIS BI STREPTOCOCCUS'BOVIS by RICHARD N„ USHIJHja A THESIS Submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of Master of Science in Bacteriology at Montana State College Approved^ Headj Major Department Chairman, Examining Committee Hi Bozeman, Montana <ii ‘‘il.j ' ') I' V r L u 5 A- CCg J- " 2 ' TABLE OF CONTENTS ACKNOWLEDGMENTS 3 ABSTRACT U INTRODUCTION 5 METHODS AND MATERIALS 0\ CN Os Culture Preparation of large cultures Preparation of cell-free bacterial extracts IO Phosphorus determination 11 Chromatography 12 Glucose determination 12 EXPERIMENTAL RESULTS lh Phosphorylase ill Amylase 15> Starch phosphorylase 20 Phosphoglucomutase 2h DISCUSSION 2? SUMMARY 31 LITERATURE CITED 32 123688 ACKmimEDGMEHTS The author takes this opportunity to express his gratitude to Dr, R» H.
    [Show full text]
  • Bba 65434 Seed Germination Studies Ii. Pathways for Starch Degradation
    BIOCHIMICA ET BIOPHYSICA ACTA 87 BBA 65434 SEED GERMINATION STUDIES II. PATHWAYS FOR STARCH DEGRADATION IN GERMINATING PEA SEEDLINGS RICHARD R. SWAIN* AND EUGENE E. DEKKER Department of Biological Chemistry, The University of Michigan, Ann Arbor, Mich. (U.S.A .) (Received January ioth, 1966) SUMMARY Amylase activity is present in extracts of the axis tissue of etiolated pea seedlings. Several lines of evidence establish that this starch-hydrolyzing activity is due to the presence of a fl-amylase (a-I,4-glucan maltohydrolase, EC 3.2.1.2); the properties of this enzyme are reported. Maltase (EC 3.2.1.2o) activity is also present in extracts of the same tissues. Since a-amylase (EC 3.2.1.1) activity appears in the germinating cotyledon, the following hydrolytic pathway for the degradation of starch to glucose is present in the pea seedling: a-amylase soluble fl-amylase a-glucosidase starch > oligosaccharides > maltose > glucose The importance of this pathway is considered in relation to the alternative route for starch catabolism, namely, the phosphorolytic pathway involving the enzyme phosphorylase (EC 2.4.1.1). INTRODUCTION In mammals, glycogen is the storage polysaccharide of liver and muscle tissue. At present, two rather different enzymic routes for glycogen breakdown, at least ill liver tissue, have been elucidated. The one involves the so-called "phosphorylase pathway" for glucose production and requires a sequential participation of the enzymes phosphorylase (EC 2.4.I.I), phosphoglucomutase (EC 2.7.5.I ), and glucose- 6-phosphatase (EC 3.1.3.9) (ref. I). More recently, RUTTER AND BROSEMER~ reported another route for glucose formation from glycogen in liver.
    [Show full text]