Domestic Hybrid Heat Pumps

Total Page:16

File Type:pdf, Size:1020Kb

Domestic Hybrid Heat Pumps Evidence Gathering – Low Carbon Heating Technologies Domestic Hybrid Heat Pumps November 2016 Domestic Hybrid Heat Pumps Evidence Gathering – Low Carbon Heating Technologies Domestic hybrid heat pumps Prepared for BEIS by: The Carbon Trust and Rawlings Support Services The views expressed in this report are those of the authors, and do not necessarily reflect those of the Department of Business, Energy and Industrial Strategy. Acknowledgements The Carbon Trust would also like to thank the following contributors for their valuable input: Steve Addis, Lochinvar; Paul Aitchison, Panasonic; Richard Baines, Black Country Housing Group; John Barker-Brown, Kensa; Matthew Beard, Affinity Sutton; Rob Borruso, KCFC; Justin Broadbent, ISO Energy; Andy Buchan, TEEC; Guy Cashmore, Kensa; Stewart Clements, HHIC; Mitchell Cogger, Worcester Bosch; Bob Critoph, Warwick University; Zoe Davies, North West Leicestershire District Council; Craig Dolan, Vaillant; Tom Dollard, Pollard Thomas Edwards; Tony Evanson, Ocean Air; Andrew Faulkner, Samsung; John Felgate, Stiebel Eltron; Dan Fletcher, GHE Solar; Tom Garrigan, BSRIA (testing); Colin Goode, Fujitsu; Matthew Grieves, Sovereign Housing; Will Griffiths, BRE (SAP); Simon Groombridge, Calorex; Christian Hadley, Dimplex; Lara Hayim, Circle Housing Group; Mike Hefford, Remeha; Neil Hewitt, Ulster University; Karen Hilton, Fyne Homes; Rebecca Hogg, BSRIA (testing); John Holden, BRE; Andy Hooper, Hitachi; Graham Hutton, Linden Homes; Hugh Jones, Viessmann; Bevan Jones, Catalyst Housing; Louise Kew, E.ON; Edward Leddy-Owen, Rykneld Homes; Kevin Lowe, British Gas; Lee Mason, DHP UK; Mike Nankivell, Space Airconditioning/Heat Pump Association; Kevin Pacey, Environmental Site Supplies; Guy Ransom, Finn Geotherm; Dale Saunders, Taylor Wimpey; Christian Schober, Innasol; Nikhilkumar Shah, Ulster University; Michael Swainson, BRE (testing); Jon Terry, E.ON; Mark Thompson, InnovateUK; James Timbs-Harrison, Mitsubishi Electric; Thomas Vazakas, RPS Engineers; Nic Wincott, Neo Energy AB; Graham Wright, Daikin; Makoto Yasuda, Yanmar. 1 Domestic Hybrid Heat Pumps Evidence Gathering – Low Carbon Heating Technologies © Crown copyright 2016 You may re-use this information (not including logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit www.nationalarchives.gov.uk/doc/open-government- licence/ or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected]. Any enquiries regarding this publication should be sent to us at [email protected] 2 Domestic Hybrid Heat Pumps Acronyms CCC Committee on climate change COP Coefficient of performance BEIS Department of Business, Energy and Industrial Strategy DHW domestic hot water ErP Energy related products (Ecodesign) EVI Enhanced vapour injection GWP Global warming potential HARP Home-heating appliance register of performance LPG Liquefied petroleum gas MCS Microgeneration certification scheme SAP Standard assessment procedure SCOP Seasonal coefficient of performance SEER Seasonal energy efficiency SPER Seasonal primary energy ratio SPF Seasonal performance factor SSCEE Seasonal space cooling energy efficiency SSHEE Seasonal space heating energy efficiency VDI Verein Deutscher Ingenieure 3 Domestic Hybrid Heat Pumps Contents Acronyms ................................................................................................................................... 3 1. Executive summary ............................................................................................................. 8 2. Introduction and context .................................................................................................. 11 3. Methodology .................................................................................................................... 13 4. Current State of the Art ................................................................................................... 17 5. Market and Product Review ............................................................................................. 27 6. Standards Review ............................................................................................................. 39 7. System Performance ......................................................................................................... 45 8. Costs ................................................................................................................................. 59 9. Barriers and Drivers to Deployment................................................................................. 68 10. Gap Analysis .................................................................................................................. 79 Annex A – list of standards ..................................................................................................... 83 Annex B – Standard heat pump barriers ................................................................................ 86 4 Domestic Hybrid Heat Pumps 7 Domestic Hybrid Heat Pumps 1. Executive summary Introduction Most low carbon pathways suggest that heat pumps will play a large role in decarbonising the UK economy. The Committee on Climate Change (CCC) has suggested that the overall cost-effective uptake of heat pumps in UK homes could reach 2.3 million by 20301. This study was undertaken by the Carbon Trust for the Department of Business, Energy and Industrial Strategy (BEIS) to inform their evidence base on domestic hybrid heat pumps. The purpose is to help explore the role hybrid heat pumps may play in the market and inform future UK policy intervention relating to low carbon heating technologies. This study was conducted from September 2015 to December 2015 using desk- based research, interviews with experts and stakeholders, and a stakeholder workshop. Experts from 40 organisations were interviewed across both the demand and supply side. The Technology A hybrid heat pump system is defined here as an electric air to water or ground to water heat pump combined with a gas boiler; a means of inputting the heat into an existing heat distribution system; and a dedicated control system to switch between the two sources. There are 2 types of product considered: Hybrid package heat pumps – sold as a single package, including heat pump unit, gas boiler and intelligent controller. Hybrid add-on heat pumps – sold as a heat pump unit with an intelligent controller which can be retrofitted to an existing gas boiler. A hybrid heat pump system can meet the full heating and hot water needs of a domestic property. The boiler is used to reach higher temperatures needed to provide domestic hot water, whilst the heat pump can provide base load low temperature heating at a lower cost and using less energy. An intelligent hybrid heat pump system can optimise running costs, energy efficiency or carbon emissions of the heating system by switching between the two sources. 1 Sectoral scenarios for the Fifth Carbon Budget, Technical report, Committee on Climate Change, Nov 2015 8 Domestic Hybrid Heat Pumps Current state of market and future market potential Hybrid heat pumps have a wide range of potential applications. When used in conjunction with existing high temperature radiators, the boiler can top up the space heating. They can be combined with an existing boiler and water tank, or with a combi boiler, reducing costs. They can also be suitable for installation in new build properties. There are many domestic hybrid heat pump products currently available on the market in the UK. However, many of the manufacturers do not directly market their heat pumps as hybrids, but simply include ‘hybrid compatible’ or ‘hybrid function’ in a list of many features. Hybrid heat pumps currently have about 18% of heat pump market share (however, this includes simple bivalent heat pumps). Stakeholders were positive about the future of hybrid heat pumps due to the reducing cost differential between hybrids and alternative technologies, but they currently remain a niche market. The estimated potential annual market is 100,000 to 210,000 units. Costs and performance The current cost of replacing a gas boiler with a hybrid heat pump can be around three times higher. The price of hybrid air source heat pumps ranges from under £2,000 to over £7,000 depending on the size, type and make of product. The fully installed price identified in this study is consistent with studies focussed on standard heat pumps, ranging from £4,000 to £11,300 for air source products. In terms of running costs, most stakeholders agreed that hybrid heat pumps make little saving compared to a good quality, well-installed gas-fired condensing boiler, for example 0-5% cost savings, although they can achieve good carbon savings. It is difficult to provide a definite indicator of performance for hybrid systems as a whole as there are no specific performance standards for electrically driven hybrid heat pumps. Published performance data is for the heat pump component only. At A7/W55 (ambient air source at 7°C and water output at 55°C), the Coefficient of Performance (COP) for the products looked at varied significantly, with a range of 2.17 to 3.23. The average Seasonal Space Heating Energy Efficiency (SSHEE) at 55°C was 119% and varied from 104% to 133%. Information gathered from a number of trials has shown that hybrid heat pumps generally perform well, however particular care is needed with controls. It is hard
Recommended publications
  • 1 Introduction Agata Godula-Jopek
    1 1 Introduction Agata Godula-Jopek We find ourselves on the cusp of a new epoch in history, where every pos- sibility is still an option. Hydrogen, the very stuff of the stars and our own sun, is now being seized by human ingenuity and harnessed for human ends. Charting the right course at the very beginning of the journey is essential if we are to make the great promise of a hydrogen age a viable reality for our children and a worthy legacy for the generations that will come after us. Jeremy Rifkin [1]. Hydrogen is being considered as an important future energy carrier, which means it can store and deliver energy in a usable form. At standard temperature and pressure (0 ∘C and 1013 hPa), hydrogen exists in a gaseous form. It is odourless, colourless, tasteless, non-toxic and lighter than air. The stoichiometric fraction of hydrogen in air is 29.53 vol%. Abundant on earth as an element, hydrogen is present everywhere, being the simplest element in the universe representing 75 wt% or 90 vol% of all matter. As an energy carrier, hydrogen is not an energy source itself; it can only be produced from other sources of energy, such as fossil fuels, renewable sources or nuclear power by different energy conversion processes. Exothermic combustion reaction with oxygen forms water (heat of combustion 1.4 × 108 Jkg−1) and no greenhouse gases containing carbon are emitted to the atmosphere. Selected physical properties of hydrogen based on Van Nostrand are presented in Table 1.1 [2]. The energy content of hydrogen is 33.3 kWh kg−1, corresponding to 120 MJ kg−1 (lower heating value, LHV), and 39.4 kWh kg−1, corresponding to 142 MJ kg−1 (upper heating value, UHV).
    [Show full text]
  • Biofuel Technology Handbook
    BioFuel Technology Handbook 2007 Dominik Rutz Rainer Janssen This handbook is WIP Renewable Energies published by: Sylvensteinstr. 2 81369 München Germany www.wip-munich.de [email protected] Copyright: © WIP Renewable Energies Autors: Dipl.-Ing. Dominik Rutz M.Sc. Dr. Rainer Janssen Version: 1. Version, February 2007 Project: Biofuel Marketplace www.biofuelmarketplace.com With the support of: Contract No. EIE/05/022/SI2.420009 Content Content 1. Introduction .............................................................................................. 9 PART A: COMMON ASPECTS OF BIOFUELS..........................11 2. Potential of Biomass ...............................................................................12 3. Biofuel Policies........................................................................................16 3.1. Biofuel Policy in the EU................................................................................................... 16 3.2. Biofuel Standardization.................................................................................................... 18 3.3. International Trade of Biofuels........................................................................................ 19 3.3.1 Trade of Biodiesel and Related Products................................................................................... 20 3.3.2 Trade of Bioethanol ................................................................................................................... 20 4. Biofuel Life Cycle ...................................................................................23
    [Show full text]
  • Assessment of Hydrogen Opportunities in Manitoba’S Transportation Sector August 2002
    An Assessment of Global Hydrogen Transportation Technologies and Implications for Manitoba’s Transportation Sector Transportation: Vehicles and Refueling Working Group Prepared for: Province of Manitoba Transportation & Government Services Written by: Doug Duncan, Strategy & Business Development Advisor Connie van Rosmalen, Research Associate The Transport Institute August 2002 Assessment of Hydrogen Opportunities in Manitoba’s Transportation Sector August 2002 Acknowledgements The contributions of Natural Resources Canada to this study are gratefully acknowledged. This report has been financially supported by the Manitoba Department of Transportation and Government Services. The views expressed do not necessarily represent those of the Department. The Department provides no warranties as to the validity or accuracy of the information presented herein. 2 Assessment of Hydrogen Opportunities in Manitoba’s Transportation Sector August 2002 TABLE OF CONTENTS ACKNOWLEDGEMENTS ....................................................................................2 EXECUTIVE SUMMARY ......................................................................................5 1.0 INTRODUCTION ............................................................................................7 2.0 MARKET DRIVERS BEHIND HYDROGEN VEHICLES ................................8 3.0 GLOBAL FUEL CELL INDUSTRY STATUS................................................11 3.1 THE PLAYERS ..............................................................................................11
    [Show full text]
  • CNG Or Compressed Natural
    (F)1736 29 March 2018 Study on the cost-effectiveness of natural gas (CNG or compressed natural gas) used as fuel in cars Article 15/14, §2, subparagraph 2, 2° indent, of Law of 12 April 1965 on the transport of gas products and others by pipelines Non-confidential CREG – rue de l’Industrie 26-38, 1040 Brussels, Belgium T +32 2 289 76 11 – F + 32 2 289 76 09 – [email protected] – www.creg.be TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................... 2 EXECUTIVE SUMMARY ............................................................................................................................. 4 INTRODUCTION ....................................................................................................................................... 5 1. CHARACTERISTICS ............................................................................................................................ 6 1.1. AVAILABILITY ........................................................................................................................... 6 1.2. USES AND NAMES .................................................................................................................... 6 1.3. ENVIRONMENT AND PHYSICS ................................................................................................. 7 1.4. CNG VS LPG & LNG .................................................................................................................. 7 1.5. FOSSIL
    [Show full text]
  • Biodiesel Production from Wastes: Process Development and Quality Control
    Biodiesel Production from Wastes: Process Development and Quality Control Joana Maia Moreira Dias 2010 BIODIESEL PRODUCTION FROM WASTES: PROCESS DEVELOPMENT AND QUALITY CONTROL Porto, August 2010 BIODIESEL PRODUCTION FROM WASTES: PROCESS DEVELOPMENT AND QUALITY CONTROL Dissertation presented by JOANA MAIA MOREIRA DIAS for the degree of DOCTOR OF PHILOSOPHY IN ENVIRONMENTAL ENGINEERING to the Faculty of Engineering, University of Porto Thesis supervised by Professor Maria da Conceição Machado Alvim Ferraz (Chemical Engineering Department) Professor Manuel Afonso Magalhães Fonseca Almeida (Metallurgical and Materials Engineering Department) To my family and friends, for always believing in me ACKNOWLEDGEMENTS My sincere thanks to my Supervisor Maria da Conceição Machado Alvim Ferraz and my Co- supervisor Manuel Afonso Magalhães Fonseca Almeida for making this study possible, providing scientific and technical support in all phases of the work and specially for personal support always believing in my capacities, being present at all times and giving me the needed strength to carry on when difficulties appeared. Thanks to Fundação para a Ciência e a Tecnologia (Grant SFRD/BD/22293/2005) and Project QREN 3491: Fat-Value -Valorização de Subprodutos de Carne, for financial support of the work. I would also like to thank to the Chemical Engineering Department, namely to the Laboratory for Process, Environmental and Energy Engineering, and to the Metallurgical and Materials Engineer- ing department for providing the resources needed to perform the work. Also, thanks to all the professors that kindly provided help during the work, namely Maria do Carmo Pereira, Fernando Gomes Martins, Arminda Alves, Margarida Bastos and Lúcia Santos from FEUP and Beatriz Oliveira and Susana Casal from the Pharmacy Faculty of Oporto University.
    [Show full text]
  • Development of Electrode Architectures for Miniaturized Biofuel Cells Aleksandar Karajic
    Development of electrode architectures for miniaturized biofuel cells Aleksandar Karajic To cite this version: Aleksandar Karajic. Development of electrode architectures for miniaturized biofuel cells. Chemical Physics [physics.chem-ph]. Université de Bordeaux, 2015. English. NNT : 2015BORD0305. tel- 01424143 HAL Id: tel-01424143 https://tel.archives-ouvertes.fr/tel-01424143 Submitted on 2 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE A L’UNIVERSITÉ DE BORDEAUX ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES Par Aleksandar Karajić POUR OBTENIR LE GRADE DE DOCTEUR SPÉCIALITÉ : Chimie-Physique Development of electrode architectures for miniaturized biofuel cells Directeurs de thèse : Prof. Alexander Kuhn et Dr. Nicolas Mano Soutenue le : 15.12.2015. Devant la commission d’examen formée de : M. BARTLETT N. Philip Professeur, Université de Southampton Rapporteur M. WALCARIUS Alain Directeur de recherche, CNRS, Nancy Rapporteur M. MIHI Agustín Chercheur, Université de Rovira i Virgili Tarragona Examinateur M. RAVAINE Serge Professeur, Université de Bordeaux Examinateur M. KUHN Alexander Professeur, INP - Bordeaux Directeur de thèse M. MANO Nicolas Directeur de recherche, CNRS, Bordeaux Co- directeur de thèse Acknowledgements This work has been done in the laboratories of Institute of Molecular Sciences (ISM) and Research Center Paule Pascal (CRPP) at the University of Bordeaux.
    [Show full text]
  • Design of an Innovative Natural Gas Two-Stroke Engine
    INTERNATIONAL DESIGN CONFERENCE - DESIGN 2016 Dubrovnik - Croatia, May 16 - 19, 2016. DESIGN OF AN INNOVATIVE NATURAL GAS TWO-STROKE ENGINE P. Diwisch, C. Dinkel, F. Rieg and B. Alber-Laukant Keywords: split-single two-stroke engine, CFD, FEM, simulation, exhaust emission 1. Introduction High-speed two-stroke engines in the field of small hand-operated devices, Jet Skis, snowmobiles, motorboats and ultralight aircrafts have a large market share. In Asia, two-stroke engines are predominantly applied in motorcycles [Meinig 2001]. Due to rising demand on exhaust emissions, two- stroke engines are less and less employed despite considerable advantages. In contrast to four-stroke engines, two-stroke engines fire at each crankshaft revolution. Thus, besides a more even progression of torque a bisection of the mean effective pressure is achieved. As a result, higher power density as well as minor construction volume can be obtained. Concerning the prospective usage of two-stroke engines the progress in adherence to emission standards will be decisive. This would also enable the development of further areas of application. Hence, possible applications of two-stroke engines include the usage as a range extender in electric vehicles to increase their range and customer acceptance as well as the usage in combined heat and power stations (CHP). Therefore, the Chair for Engineering Design and CAD, under the direction of Prof. Dr.-Ing. Rieg at the University of Bayreuth, focuses on the constructive improvement of scavenging caused fuel consumption and thus hydrocarbon exhaust emissions concerning two-stroke engines. The realization consists of two phases. During the first stage the selection of a suitable concept for a two-stroke engine takes place.
    [Show full text]
  • Overview on Detailed Information for Each of the 9 Topics
    European Biofuels Technology Platform – Support for Advanced Biofuels Stakeholders Overview on detailed information for each of the 9 topics Deliverable Number: D.2.5 Due date: 31/08/2016 Actual submission date: 31/08/2016 Work package: 2. Biofuels sector monitoring Task(s): 2.3. Production of detailed information Lead beneficiary for this deliverable: BE2020 Editor: Authors: Dina Bacovsky, Stephanie Holzleitner, Monika Enigl Dissemination level Grant Agreement no.: FP7-609607 Call identifier: FP7-ENERGY-2013-IRP Information submitted on behalf of EBTP-SABS Birger Kerckow - Coordinator- Fachagentur Nachwachsende Rohstoffe e.V. (FNR) [email protected] Tel.: +49 (0) 3843 – 69 30 – 125 Fax: +49 (0) 3843 – 69 30 – 102 This project has received funding from the European Union’s Seventh Programme for research technological development and demonstration under grant agreement No 609607 European Biofuels Technology Platform – Support for Advanced Biofuels Stakeholders Deliverable D.2.5 Overview on detailed information for each of the 9 topics FINAL I PROJECT PARTNERS FNR – Fachagentur Nachwachsende Rohstoffe e.V., Germany CPL – CPL Scientific Publishing Services Ltd, UK BE2020 – BIOENERGY 2020+ GmbH, Austria INCE – CEI – Iniziativa Centro Europea, Italy II EXECUTIVE SUMMARY This deliverable displays the detailed information available on biofuels at the EBTP website as per 25 July 2016. The topics addressed are biomass resources, fuel production, fuels, fuel end-use, markets/policies/regulations, and sustainability. Biomass feedstocks used for the production of biofuels include dedicated feedstocks such as sugar and starch crops, oil crops, lignocellulosic crops, algae and aquatic biomass, residues, such as forestry residues, agricultural residues, waste oils and fats, MSW, other organic residues and waste gases.
    [Show full text]
  • United States Patent Patented Apr
    3,376,266? United States Patent Patented Apr. 2, 1968 1 2 is a bivalent radical resulting from the addition of a hy 3,376,266 drogen atom to the nitrogen atom of each of the iso POLYURETHANES PRGDUCED FROM LZ-DIVINYL ETHYLENE GLYCOL cyanate groups of an arylene diisocyanate; ml is an integer Erhard F. Hoegger and James Herbert Werntz, Wilming greater than zero; n is an integer including zero; and the ton, Dei., assignors to E. I. du Pont de Nemours and ~—O-—G-—O—— radicals being 80 to 100 percent of the Company, Wilmington, Del., a corporation of Delaware total of the —O—G—-O— and —O—~B-O— radicals N0 Drawing. Filed Mar. 2, 1964, Ser. No. 348,752 present in said polyurethanes. 5 Claims. (Cl. 260-775) The preparation of these polyurethanes comprises re acting 1,2-divinyl ethylene glycol and a saturated ‘ali 10 phatic glycol with a substantially equimolar amount of ABSTRACT 0F THE DISCLQSURE an arylene diisocyanate, wherein the said 1,2~divinyl Tough, ?lm-forming polyurethanes produced from 1,2 ethylene glycol is 80-100 molar percent of the total gly divinyl ethylene glycol, and optionally a saturated ali col being reacted. However, the preparation may be phatic glycol, and arylene diisocyanates. The process of carried out by any one of several process variations: (a) preparing the above polymers by reacting the monomers glycol(s), alone or in solution, may be added to the di at a temperature between 0° C. and 100° C. for a time isocyanate solution; (b) glycol(s) and diisocyanate can su?icient to obtain a polymer of ?lm-forming molecular be added simultaneously to a solvent; (c) both the weight.
    [Show full text]
  • Analysis of Published Hydrogen Vehicle Safety Research
    DOT HS 811 267 February 2010 Analysis of Published Hydrogen Vehicle Safety Research DISCLAIMER This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade names, manufacturers’ names, or specific products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 811 267 4. Title and Subtitle 5. Report Date Analysis of Published Hydrogen Vehicle Safety Research February 2010 6. Performing Organization Code NHTSA/NVS-312 7. Author(s) 8. Performing Organization Report Stephanie Flamberg, Susan Rose, Denny Stephens – Battelle Memorial Institute No. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Battelle Memorial Institute 11. Contract or Grant No. 505 King Avenue DTNH22-08-D-00080 Columbus, Ohio 43201 12. Sponsoring Agency Name and Address 13. Type of Report and Period National Highway Traffic Safety Administration Covered 1200 New Jersey Avenue SE. Final Washington, DC 20590 14. Sponsoring Agency Code 15. Supplementary Notes 16. Abstract Hydrogen-fueled vehicles (HFVs) offer the promise of providing safe, clean, and efficient transportation in a setting of rising fuel prices and tightening environmental regulations.
    [Show full text]
  • Research on Unregulated Pollutants from Alcohol-Fuelled Vehicles
    Acknowledgements Acknowledgements The IEA-AMF Organization is grateful to the following countries and their representatives for their support in providing research to develop this report: Finland – Päivi Aakko-Saksa, Timo Murtonen, Piritta Roslund, Päivi Koponen and Jukka Nuottimäki, VTT; Panu Karjalainen, Topi Rönkkö, TUT; Hilkka Timonen, Sanna Saarikoski, Risto Hillamo, FMI; Canada – Jill Hendren and Debbie Rosenblatt (Environment and Climate Change Canada) and Natural Resources Canada (PERD) and Transport Canada (eTV); China – Zhang Fan and Tian Donglian (China Automotive Technology & Research Center); Sweden —Peter Ahlvik and Lars Eriksson (Ecotraffic on contract from the Swedish Transport Administration); Israel –Gideon Goldwine (Technion), Eran Sher (Technion), JRC VELA lab staff, Dr. Bracha Halaf (Ministry of Energy and Water Resources); Contents Contents Chapter 1 Introduction .................................................................... 1 1.1 Project background................................................................ 1 1.2 Main research content and report structure ............................. 3 Chapter 2 Literature Review of Unregulated Pollutants Emissions ... 6 2.1 Pollutants characteristics from vehicle exhaust emissions ....... 6 2.2 Previous research on unregulated emissions in vehicle exhaust ............................................................................... 11 Chapter 3 Test Matrix and Analysis Methods ................................. 27 3.1 Canada ...............................................................................
    [Show full text]
  • Fact Sheets on Alternative Fuels in Member States
    Clean Transport - Support to the Member States for the implementation of the Directive on the Deployment of Alternative Fuels Infrastructure Fact Sheets on Alternative Fuels in Member States Fact Sheets on Alternative Fuels in Member States This document has been prepared for the European Commission. However, it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Prepared by: D’Appolonia S.p.A. Ramboll TM Leuven January 2016 - 2 Fact Sheets on Alternative Fuels in Member States January 2016 - 3 Fact Sheets on Alternative Fuels in Member States Table of Contents 1 INTRODUCTION .......................................................................................... 11 2 AUSTRIA ..................................................................................................... 16 2.1 STATISTICAL DATA ............................................................................... 16 2.2 ELECTRICITY ........................................................................................ 18 2.3 HYDROGEN .......................................................................................... 18 2.4 CNG .................................................................................................... 18 2.5 LNG FOR ROAD TRANSPORT ................................................................... 18 2.6 LNG FOR WATERBORNE TRANSPORT ....................................................... 18 2.7 LPG (LIQUEFIED PETROLEUM GAS) ........................................................
    [Show full text]