Department of the Interior U.S. Geological Survey New Information Resources of the U.S. Geological Survey Library System Number
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Timeline of Natural History
Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it. -
Summits on the Air – ARM for the USA (W7A
Summits on the Air – ARM for the U.S.A (W7A - Arizona) Summits on the Air U.S.A. (W7A - Arizona) Association Reference Manual Document Reference S53.1 Issue number 5.0 Date of issue 31-October 2020 Participation start date 01-Aug 2010 Authorized Date: 31-October 2020 Association Manager Pete Scola, WA7JTM Summits-on-the-Air an original concept by G3WGV and developed with G3CWI Notice “Summits on the Air” SOTA and the SOTA logo are trademarks of the Programme. This document is copyright of the Programme. All other trademarks and copyrights referenced herein are acknowledged. Document S53.1 Page 1 of 15 Summits on the Air – ARM for the U.S.A (W7A - Arizona) TABLE OF CONTENTS CHANGE CONTROL....................................................................................................................................... 3 DISCLAIMER................................................................................................................................................. 4 1 ASSOCIATION REFERENCE DATA ........................................................................................................... 5 1.1 Program Derivation ...................................................................................................................................................................................... 6 1.2 General Information ..................................................................................................................................................................................... 6 1.3 Final Ascent -
The Bushveld Igneous Complex
The Bushveld Igneous Complex THE GEOLOGY OF SOUTH AFRICA’S PLATINUM RESOURCES By C. A. Cousins, MSC. Johannesburg Consolidated Investment Company Limited A vast composite body of plutonic and volcanic rock in the central part of the Transvaal, the Bushveld igneous complex includes the platinum reef worked by Rustenburg Platinum Mines Limited and constituting the world’s greatest reserve of the platinum metals. This article describes the geological and economic aspects of this unusually interesting formation. In South Africa platinum occurs chiefly in square miles. Two of these areas lie at the the Merensky Reef, which itself forms part of eastern and western ends of the Bushveld and the Bushveld igneous complex, an irregular form wide curved belts, trending parallel to oval area of some 15,000 square miles occupy- the sedimentary rocks which they overlie, and ing a roughly central position in the province dipping inwards towards the centre of the of the Transvaal. A geological map of the Bushveld at similar angles. The western belt area, which provides the largest known has a flat sheet-like extension reaching the example of this interesting type of formation, western boundary of the Transvaal. The is shown on the facing page. third area extends northwards and cuts out- The complex rests upon a floor of sedi- side the sedimentary basin. Its exact relation- mentary rocks of the Transvaal System. This ship to the other outcrops within the basin floor is structurally in the form of an immense has not as yet been solved. oval basin, three hundred miles long and a As the eastern and western belts contain hundred miles broad. -
Peak List Please Send Updates Or Corrections to Lat/Lon to Mike Heaton
Operation On Target Arizona Peak List Please send updates or corrections to Lat/Lon to Mike Heaton Description Comment Latitude Longitude Elevation "A" Mountain (Tempe) ASU campus by Sun Devil Stadium 33.42801 -111.93565 1495 AAA Temp Temp Location 33.42234 -111.8227 1244 Agassiz Peak @ Snow Bowl Tram Stop (No access to peak) 35.32587 -111.67795 12353 Al Fulton Point 1 Near where SR260 tops the Rim 34.29558 -110.8956 7513 Al Fulton Point 2 Near where SR260 tops the rim 34.29558 -110.8956 7513 Alta Mesa Peak For Alta Mesa Sign-up 33.905 -111.40933 7128 Apache Maid Mountain South of Stoneman Lake - Hike/Drive? 34.72588 -111.55128 7305 Apache Peak, Whetstone Mountain Tallest Peak, Whetstone Mountain 31.824583 -110.429517 7711 Aspen Canyon Point Rim W. of Kehl Springs Point 34.422204 -111.337874 7600 Aztec Peak Sierra Ancha Mountains South of Young 33.8123 -110.90541 7692 Battleship Mountain High Point visible above the Flat Iron 33.43936 -111.44836 5024 Big Pine Flat South of Four Peaks on County Line 33.74931 -111.37304 6040 Black (Chocolate) Mountain, CA Drive up and park, near Yuma 33.055 -114.82833 2119 Black Butte, CA East of Palm Springs - Hike 33.56167 -115.345 4458 Black Mountain North of Oracle 32.77899 -110.96319 5586 Black Rock Mountain South of St. George 36.77305 -113.80802 7373 Blue Jay Ridge North end of Mount Graham 32.75872 -110.03344 8033 Blue Vista White Mtns. S. of Hannagan Medow 33.56667 -109.35 8000 Browns Peak (Four Peaks) North Peak of Four Peaks Range 33.68567 -111.32633 7650 Brunckow Hill NE of Sierra Vista, AZ 31.61736 -110.15788 4470 Bryce Mountain Northwest of Safford 33.02012 -109.67232 7298 Buckeye Mountain North of Globe 33.4262 -110.75763 4693 Burnt Point On the Rim East of Milk Ranch Point 34.40895 -111.20478 7758 Camelback Mountain North Phoenix Mountain - Hike 33.51463 -111.96164 2703 Carol Spring Mountain North of Globe East of Highway 77 33.66064 -110.56151 6629 Carr Peak S. -
The Uranium Potential of the Bushveld Igneous Complex
(GEA748| June 1987 THE URANIUM POTENTIAL OF THE BUSHVELD IGNEOUS COMPLEX A CRITICAL REAPPRAISAL Investigators: MAG Andreoli R J Hart H J Brynard F A G M Camisani-Calzolari ATOMIC ENERGY CORPORATION OF SOUTH AFRICA LIMITED PRETORIA THIS DOCUMENT MAY NOT BE COPIED IN ANY WAY WHATSOEVER PER 158 GEA 748 ATOMIC ENERGY CORPORATION/UNIVERSITY OF PRETORIA WORKING GROUP ON URANIUM IN THE BUSHVELD COMPLEX Progress Report No. 4 THE URANIUM POTENTIAL OF THE BUSHVELD IGNEOUS COMPLEX A CRITICAL REAPPRAISAL Investigators: MAG Andreoli R J Hart H J Beynard F A G M Camisani-Calzolari POSTAL ADDRESS: Department of Geotechnology P 0 Box 582 PELINDABA PRETORIA June 1987 0001 ISBN 0 86960 848 7 PER-158 GEA-748 ATOMIC ENERGY CORPORATION/UNIVERSITY OF PRETORIA WORKING GROUP ON URANIUM IN THE BUSHVELD COMPLEX Progress Report No. 4 THE URANIUM POTENTIAL OF THE BUSHVELD IGNEOUS COMPLEX A CRITICAL REAPPRAISAL Investigators: MAG Andreoli R J Hart H J Brynard F A G M Camisani-Calzolari DEPARTMENT OF GEOTECHNOLOGY ATOMIC ENERGY CORPORATION OF SOUTH AFRICA LIMITED P 0 BOX 582, PRETORIA (0001) June 1987 ISBN 086960 848 7 PER-158- i - CONTENTS Page Samevatting/Abstract vi LIST OF ABBREVIATIONS ii-iii LIST OF TABLES iv LIST OF FIGURES v 1 INTRODUCTION 1 2 ON THE POSSIBILITY OF A GIANT OLYMPIC DAM-TYPE DEPOSIT JN THE BUSHVELD COMPLEX 3 3 THE WATERBERG COVER: A TARGET FOR UNCOMFORMITY-TYPE DEPOSITS? 19 4 ADDITIONAL TARGETS FOR URANIUM EXPLORATION 25 5 DISCUSSION & RECOMMENDATIONS 27 6 ACKNOWLEDGEMENTS 30 7 REFERENCES 30 LIST OP IBBEKVIAÏIOIIS All allanite amp amphibole -
Abstract Booklet
DSI-NRF CIMERA Annual COLLOQUIUM 26-27 NOVEMBER 2020 ABSTRACT BOOKLET Image: Transvaal Supergroup, banded iron formation, Kuruman Kop, Northern Cape. 26-27 November 2020 ONLINE & IN PERSON School of Tourism and Hospitality (STH) University of Johannesburg Auckland Park Bunting Road Campus 2 Dear All, Dear All, We would like to extend a warm welcome to the annual DSI-NRF CIMERA Colloquium, hosted by the University of We would like to extend a warm welcome to the annual DSI-NRF CIMERA Colloquium, hosted by the University of Johannesburg. Johannesburg. DSI-NRF Centre of Excellence (CoE) for Integrated Mineral and Energy Resource Analysis (CIMERA) is hosted by the Department DSI-NRF Centre of Excellence (CoE) for Integrated Mineral and Energy Resource Analysis (CIMERA) is hosted by the Department of Geology at the University of Johannesburg (UJ), and co-hosted by the School of Geosciences at the University of the of Geology at the University of Johannesburg (UJ), and co-hosted by the School of Geosciences at the University of the DearWitwatersrand All, (Wits). DSI-NRF CIMERA is a virtual centre of research that concentrates existing research excellence, capacity Witwatersrand (Wits). DSI-NRF CIMERA is a virtual centre of research that concentrates existing research excellence, capacity Weand extend resources a warm welcome to enable to the researchersannual DSI-NRF toCIMERA collaborate Colloquium, across hosted disciplinesby the University and of Johannesburg. institutions on long-term projects of economic and/ or and resources to enable researchersThe to Colloquiumcollaborate will acrossrun as a hybriddisciplines event this and year, institutions triggered by the on COVID-19 long-term pandemic projects lockdown of economic situation and and/ or societal benefit in geology, that are locally relevant and internationally competitive. -
Timeline of Natural History
Timeline of natural history Main articles: History of the Earth and Geological his- chondrules,[1] are a key signature of a supernova ex- tory of Earth plosion. See also: Geologic time scale and Timeline of evolution- ary history of life • 4,567±3 Ma: Rapid collapse of hydrogen molecular For earlier events, see Timeline of the formation of the cloud, forming a third-generation Population I star, Universe. the Sun, in a region of the Galactic Habitable Zone This timeline of natural history summarizes signifi- (GHZ), about 25,000 light years from the center of the Milky Way Galaxy.[2] • 4,566±2 Ma: A protoplanetary disc (from which Earth eventually forms) emerges around the young Sun, which is in its T Tauri stage. • 4,560–4,550 Ma: Proto-Earth forms at the outer (cooler) edge of the habitable zone of the Solar Sys- tem. At this stage the solar constant of the Sun was only about 73% of its current value, but liquid wa- ter may have existed on the surface of the Proto- Earth, probably due to the greenhouse warming of high levels of methane and carbon dioxide present in the atmosphere. Early bombardment phase begins: because the solar neighbourhood is rife with large planetoids and debris, Earth experiences a number of giant impacts that help to increase its overall size. Visual representation of the history of life on Earth as a spiral 2 Hadean Eon cant geological and biological events from the formation of the Earth to the rise of modern humans. Times are listed in millions of years, or megaanni (Ma). -
Resources in the Upper Zone of the Bushveld Complex, South Africa
Papers and Proceedings of the Royal Society of Tasmania, Volume 150(1), 2016 15 Fe-Ti-V-(P) RESOURCES IN THE UPPER ZONE OF THE BUSHVELD COMPLEX, SOUTH AFRICA by L.A. Fischer and Q. Yuan (with four text-figures and two plates) Fischer, L.A. & Yuan, Q. 2016 (31:viii): Fe-Ti-V-(P) resources in the Upper Zone of the Bushveld Complex, South Africa. Papers and Proceedings of the Royal Society of Tasmania 150(1): 15–22. https://doi.org/10.26749/rstpp.150.1.15 ISSN 0080-4703. Institut für Mineralogie, Leibniz Universität Hannover, 30167 Hannover, Germany, and School of Physical Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia (LAF*); Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China, and Department of Geology, University of Liege, 4000 Sart Tilman, Belgium (QY). *Author for correspondence. Email: [email protected] The Bushveld Complex in South Africa is the largest layered intrusion on Earth. Its upper part is known for huge resources of iron, tita- nium, vanadium and phosphorus. Associated with the layered character of the rocks, these resources are enriched at certain levels of the intrusion, which makes it important to understand the formation processes of those layers. In this paper we give an introduction and overview of recent debates and challenges. Key Words: layered intrusion, Bushveld, resources. INTRODUCTION Fe, Ti, V and P never or only rarely occur as native elements in nature. Minerals, rich in one or more of these Iron (Fe), titanium (Ti) and vanadium (V) are important elements are mined and their components are extracted. -
Annual Report 2011
Natural and Agricultural Sciences Annual Report 2011 Natural and Agricultural Sciences Annual Report 2011 Contact Details Dean Prof Neil Heideman +27 (0)51 401 2322 [email protected] Vice-Dean Prof. Corli Witthuhn +27 (0) 51 4013855 [email protected] Faculty Manager Mr Johan Kruger +27 (0)51 401 2409 Issued by [email protected] Faculty of Natural and Agricultural Sciences Marketing Manager University of the Free State Ms Elfrieda Lotter Editorial Compilation +27 (0)51 4012531 [email protected] Betta van Huyssteen Physical Address Language Revision Room 9A, Biology Building, Main Campus, Bloemfontein Betta van Huyssteen Stella Mcgill Postal Address Revision of Bibliographical Data University of the Free State PO Box 339 Mercia Coetzee Bloemfontein Design, Layout South Africa 9300 Chrysalis Advertising & Publishing Fax: +27 (0)51 401 3728 Printing E-mail: [email protected] Oranje Drukkery • Printers Faculty website: www.ufs.ac.za/natagri Table of Contents Preface 5 Research Clusters 6 Agricultural Sciences 13 Agricultural Economics 14 Animal, Wildlife and Grassland Sciences 20 Plant Sciences 30 Soil, Crop and Climate Sciences 40 Building Sciences 49 Architecture 50 Quantity Surveying and Construction Management 56 Urban and Regional Planning 62 Natural Sciences 67 Chemistry 68 Computer Science and Informatics 86 Consumer Science 94 Genetics 100 Geography 108 Geology 116 Mathematical Statistics and Actuarial Science 126 Mathematics and Applied Mathematics 132 Microbial, Biochemical and Food Biotechnology 136 Physics 150 Zoology -
South Africa's Coalfields – a 2014 Perspective
South Africa's coalfields – a 2014 perspective 1Hancox, P. John and 2,3Götz, Annette E. 1University of the Witwatersrand, School of Geosciences, Private Bag 3, 2050 Wits, South Africa; [email protected] 2University of Pretoria, Department of Geology, Private Bag X20, Hatfield, 0028 Pretoria, South Africa; [email protected] 3Kazan Federal University, 18 Kremlyovskaya St., Kazan 420008, Republic of Tatarstan, Russian Federation Highlights • South Africa’s Coalfields are presented. • The role of Gondwanan coals as palaeoclimate archives is stated. • Future research fields include palynology, sequence stratigraphy, basin fill. Abstract For well over a century and a half coal has played a vital role in South Africa’s economy and currently bituminous coal is the primary energy source for domestic electricity generation, as well as being the feedstock for the production of a substantial percentage of the country’s liquid fuels. It furthermore provides a considerable source of foreign revenue from exports. Based on geographic considerations, and variations in the sedimentation, origin, formation, distribution and quality of the coals, 19 coalfields are generally recognised in South Africa. This paper provides an updated review of their exploration and exploitation histories, general geology, and coal seam nomenclature and coal qualities. Within the various coalfields autocyclic variability is the norm rather than the exception, whereas allocyclic variability is much less so, and allows for the correlation of genetically related sequences. During the mid-Jurassic break up of Gondwana most of the coals bearing successions were intruded by dolerite. These intrusions are important as they may cause devolatilisation and burning of the coal, create structural disturbances and related seam correlation problems, and difficulties in mining operations. -
Implicit Geomodelling of the Merensky and UG2 Reefs of the Bushveld Complex from Open-Source Data: Implications for the Complex’S Structural History
minerals Article Implicit Geomodelling of the Merensky and UG2 Reefs of the Bushveld Complex from Open-Source Data: Implications for the Complex’s Structural History Ben Stoch 1,2,*, Ian James Basson 1,2 and Jodie A. Miller 1 1 Department of Earth Sciences, Stellenbosch University, Private Bag X1, Matieland 7601, South Africa; [email protected] (I.J.B.); [email protected] (J.A.M.) 2 Tect Geological Consulting, Unit 3 Metrohm House, 20 Gardner Williams Avenue, Paardevlei, Somerset West 7130, South Africa * Correspondence: [email protected] Received: 28 September 2020; Accepted: 29 October 2020; Published: 1 November 2020 Abstract: The Bushveld Complex (BC) is the world’s largest source of platinum group metals. Extensive studies on the complex have focused on its geochemistry, magma and platinum group mineral genesis, mineral characterization and intrusion mechanisms. However, relatively little work has been undertaken on the overall 3D geometry of the complex, which detracts from the adequate contextualization of such studies. Furthermore, the absence of a broader 3D model of the complex does not permit the identification of structural trends and mineralization patterns. This contribution details the construction of 3D implicitly-modelled Merensky and UG2 Reefs across the Rustenburg Layered Suite of the BC, using Seequent’s Leapfrog software. Multiple open-source and public-domain data sources and modelling workflows were explored to account for disparities in data resolution, data spacing and clustering, and the resolution of model -
An Overview of Energy Minerals in the Springbok Flatsbasin, South Africa: Implications for Geochemical and Geophysical Exploration
AN OVERVIEW OF ENERGY MINERALS IN THE SPRINGBOK FLATSBASIN, SOUTH AFRICA: IMPLICATIONS FOR GEOCHEMICAL AND GEOPHYSICAL EXPLORATION By LEBOGANG LEDWABA A dissertation submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE (Exploration Geology) MSc Exploration Geology Programme Geology Department Rhodes University P.O. Box 94 Grahamstown 6140 South Africa November 2014 ACKNOWLEDGEMENTS Thanks to the Council for Geoscience for funding my studies and for giving me the opportunity to study further. To my colleagues especially Emmanuel Chirenje, thank you for the support and encouragement. To the administrator of the MSc Programme, Mrs. Ashley Goddard I sincerely thank you for your support and the effort you put in making sure that I have a comfortable stay in Grahamstown. To the Programme Director Professor Yong Yao thanks for the guidance throughout the studies and supervising this thesis. To all the lectures that took their precious time and effort to ensure that me and my classmate get lectured throughout the programme I thank you as well because without all of you the exploration programme wouldn’t be possible. To my classmate, this has been a pleasant journey with great memories and unforgettable moments, thanks to all of you for your kindness. ii DECLARATION I, Lebogang John Ledwaba, declare this dissertation to be my own work. It is submitted in fulfillment of the Degree of Master of Science at the University of Rhodes. It has not been submitted before for any degree or examination in any other University or tertiary institution. Signature of the candidate: ……Lebogang Ledwaba…………………………………. Date: …01 December 2014…………………………………………………………… iii Dedicated to my late father Lesetja Daniel Ledwaba and my mother Khomotso Martha Ledwaba, thanks for the support and for funding my fees throughout the years.