Food and Drug Administration, HHS § 172.515

Total Page:16

File Type:pdf, Size:1020Kb

Food and Drug Administration, HHS § 172.515 Food and Drug Administration, HHS § 172.515 [42 FR 14491, Mar. 15, 1977, as amended at 43 FR 14644, Apr. 7, 1978; 49 FR 10104, Mar. 19, 1984; 54 FR 24897, June 12, 1989; 69 FR 24511, May 4, 2004; 72 FR 10357, Mar. 8, 2007] § 172.515 Synthetic flavoring sub- Amyl heptanoate. stances and adjuvants. Amyl hexanoate. Amyl octanoate. Synthetic flavoring substances and Anisole; methoxybenzene. adjuvants may be safely used in food in Anisyl acetate. accordance with the following condi- Anisyl alcohol; p-methoxybenzyl alcohol. tions. Anisyl butyrate (a) They are used in the minimum Anisyl formate. Anisyl phenylacetate. quantity required to produce their in- Anisyl propionate. tended effect, and otherwise in accord- Beechwood creosote. ance with all the principles of good Benzaldehyde dimethyl acetal. manufacturing practice. Benzaldehyde glyceryl acetal; 2-phenyl-m-di- (b) They consist of one or more of the oxan-5-ol. following, used alone or in combination Benzaldehyde propylene glycol acetal; 4- with flavoring substances and adju- methyl-2-phenyl-m-dioxolane. vants generally recognized as safe in Benzenethiol; thiophenol. Benzoin; 2-hydroxy-2-phenylacetophenone. food, prior-sanctioned for such use, or Benzophenone; diphenylketone. regulated by an appropriate section in Benzyl acetate. this part. Benzyl acetoacetate. Benzyl alcohol. Acetal; acetaldehyde diethyl acetal. Benzyl benzoate. Acetaldehyde phenethyl propyl acetal. Benzyl butyl ether. ′ Acetanisole; 4 -methoxyacetophenone. Benzyl butyrate. Acetophenone; methyl phenyl ketone. Benzyl cinnamate. Allyl anthranilate. Benzyl 2,3–dimethylcrotonate; benzyl methyl Allyl butyrate. tiglate. Allyl cinnamate. Benzyl disulfide; dibenzyl disulfide. Allyl cyclohexaneacetate. Benzyl ethyl ether. Allyl cyclohexanebutyrate. Benzyl formate. Allyl cyclohexanehexanoate. 3-Benzyl-4-heptanone; benzyl dipropyl ke- Allyl cyclohexaneproprionate. tone. Allyl cyclohexanevalerate. Benzyl isobutyrate. Allyl disulfide. Benzyl isovalerate. Allyl 2-ethylbutyrate. Benzyl mercaptan; a-toluenethiol. Allyl hexanoate; allyl caproate. Benzyl methoxyethyl acetal; acetaldehyde Allyl a-ionone; 1-(2,6,6-trimethyl-2-cyclo-hex- benzyl b-methoxyethyl acetal. ene-1-yl)-1,6-heptadiene-3-one. Benzyl phenylacetate. Allyl isothiocyanate; mustard oil. Benzyl propionate. Allyl isovalerate. Benzyl salicylate. Allyl mercaptan; 2-propene-1-thiol. Birch tar oil. Allyl nonanoate. Borneol; d-camphanol. Allyl octanoate. Bornyl acetate. Allyl phenoxyacetate. Bornyl formate. Allyl phenylacetate. Bornyl isovalerate. Allyl propionate. Bornyl valerate. Allyl sorbate; allyl 2,4-hexadienoate. b-Bourbonene; 1,2,3,3a,3bb,4,5,6,6ab,6ba-deca- Allyl sulfide. hydro-la-isopropyl-3aa-methyl-6-meth- Allyl tiglate; allyl trans-2-methyl-2- ylene-cyclobuta [1,2:3,4] dicyclopentene. butenoate. 2-Butanol. Allyl 10-undecenoate. 2-Butanone; methyl ethyl ketone. Ammonium isovalerate. Butter acids. Ammonium sulfide. Butter esters. Amyl alcohol; pentyl alcohol. Butyl acetate. Amyl butyrate. Butyl acetoacetate. a-Amylcinnamaldehyde. Butyl alcohol; 1-butanol. a-Amylcinnamaldehyde dimethyl acetal. Butyl anthranilate. a-Amylcinnamyl acetate. Butyl butyrate. a-Amylcinnamyl alcohol. Butyl butyryllactate; lactic acid, butyl a-Amylcinnamyl formate. ester, butyrate. a-Amylcinnamyl isovalerate. a-Butylcinnamaldehyde. Amyl formate. Butyl cinnamate. 59 VerDate Nov<24>2008 14:38 May 05, 2009 Jkt 217067 PO 00000 Frm 00069 Fmt 8010 Sfmt 8010 Y:\SGML\217067.XXX 217067 cprice-sewell on PRODPC61 with CFR § 172.515 21 CFR Ch. I (4–1–09 Edition) Butyl 2-decenoate. Citronellyl valerate. Butyl ethyl malonate. p-Cresol. Butyl formate. Cuminaldehyde; cuminal; p-isopropyl benz- Butyl heptanoate. aldehyde. Butyl hexanoate. Cyclohexaneacetic acid. Butyl p-hydroxybenzoate. Cyclohexaneethyl acetate. Butyl isobutyrate. Cyclohexyl acetate. Butyl isovalerate. Cyclohexyl anthranilate. Butyl lactate. Cyclohexyl butyrate. Butyl laurate. Cyclohexyl cinnamate. Butyl levulinate. Cyclohexyl formate. Butyl phenylacetate. Cyclohexyl isovalerate. Butyl propionate. Cyclohexyl propionate. Butyl stearate. p-Cymene. Butyl sulfide. g-Decalactone; 4-hydroxy-decanoic acid, g- Butyl 10-undecenoate. lactone. Butyl valerate. g-Decalactone; 5-hydroxy-decanoic acid, d- Butyraldehyde. lactone. Cadinene. Decanal dimethyl acetal. Camphene; 2,2-dimethyl-3-methylene- 1-Decanol; decylic alcohol. norbornane. 2-Decenal. d-Camphor. 3-Decen-2-one; heptylidene acetone. Carvacrol; 2-p-cymenol. Decyl actate. Carvacryl ethyl ether; 2-ethoxy-p-cymene. Decyl butyrate. Carveol; p-mentha-6,8-dien-2-ol. Decyl propionate. 4-Carvomenthenol; 1-p-menthen-4-ol; 4- Dibenzyl ether. terpinenol. 4,4-Dibutyl-g-butyrolactone; 4,4-dibutyl-4-hy- cis Carvone oxide; 1,6-epoxy-p-menth-8-en-2- droxy-butyric acid, g-lactone. one. Dibutyl sebacate. Carvyl acetate. Diethyl malate. Carvyl propionate. Diethyl malonate; ethyl malonate. b-Caryophyllene. Diethyl sebacate. Caryophyllene alcohol. Diethyl succinate. Caryophyllene alcohol acetate. Diethyl tartrate. b-Caryophyllene oxide; 4-12,12-trimethyl-9- 2,5-Diethyltetrahydrofuran. methylene-5-oxatricylo [8.2.0.0 4,6] dode- Dihydrocarveol; 8-p-menthen-2-ol; 6-methyl- cane. 3-isopropenylcyclohexanol. Cedarwood oil alcohols. Dihydrocarvone. Cedarwood oil terpenes. Dihydrocarvyl acetate. 1,4-Cineole. m-Dimethoxybenzene. Cinnamaldehyde ethylene glycol acetal. p-Dimethoxybenzene; dimethyl hydro- Cinnamic acid. quinone. Cinnamyl acetate. 2,4-Dimethylacetophenone. Cinnamyl alcohol; 3-phenyl-2-propen-1-ol. a,a-Dimethylbenzyl isobutyrate; phenyldi- Cinnamyl benzoate. methylcarbinyl isobutyrate. Cinnamyl butyrate. 2,6-Dimethyl-5-heptenal. Cinnamyl cinnamate. 2,6-Dimethyl octanal; isodecylaldehyde. Cinnamyl formate. 3,7-Dimethyl-1-octanol; tetrahydrogeraniol. Cinnamyl isobutyrate. a,a-Dimethylphenethyl acetate; benzyl- Cinnamyl isovalerate. propyl acetate; benzyldimethylcarbinyl ac- Cinnamyl phenylacetate. etate. Cinnamyl propionate. a,a-Dimethylphenethyl alcohol; dimethyl- Citral diethyl acetal; 3,7-dimethyl-2,6-octa- benzyl carbinol. dienal diethyl acetal. a,a-Dimethylphenethyl butyrate; benzyl- Citral dimethyl acetal; 3,7-dimethyl-2,6-octa- dimethylcarbinyl butyrate. dienal dimethyl acetal. a,a-Dimethylphenethyl formate; benzyldi- Citral propylene glycol acetal. methylcarbinyl formate. Citronellal; 3,7-dimethyl-6-octenal; rhodinal. Dimethyl succinate. Citronellol; 3,7-dimethyl-6-octen-1-ol; d-cit- 1,3-Diphenyl-2-propanone; dibenzyl ketone. ronellol. delta-Dodecalactone; 5-hydroxydodecanoic Citronelloxyacetaldehyde. acid, deltalactone. Citronellyl acetate. g-Dodecalactone; 4-hydroxydodecanoic acid g- Citronellyl butyrate. lactone. Citronellyl formate. 2-Dodecenal. Citronellyl isobutyrate. Estragole. Citronellyl phenylacetate. r-Ethoxybenzaldehyde. Citronellyl propionate. Ethyl acetoacetate. 60 VerDate Nov<24>2008 14:38 May 05, 2009 Jkt 217067 PO 00000 Frm 00070 Fmt 8010 Sfmt 8010 Y:\SGML\217067.XXX 217067 cprice-sewell on PRODPC61 with CFR Food and Drug Administration, HHS § 172.515 Ethyl 2-acetyl-3-phenylpropionate; ethyl- Formic acid benzyl acetoacetate. (2-Furyl)-2-propanone; furyl acetone. Ethyl aconitate, mixed esters. 1-Furyl-2-propanone; furyl acetone. Ethyl acrylate. Fusel oil, refined (mixed amyl alcohols). Ethyl r-anisate. Geranyl acetoacetate; trans-3,7-dimethyl-2, 6- Ethyl anthranilate. octadien-1-yl acetoacetate. Ethyl benzoate. Geranyl acetone; 6,10-dimethyl-5,9- Ethyl benzoylacetate. undecadien-2-one. a-Ethylbenzyl butyrate; a-phenylpropyl bu- Geranyl benzoate. tyrate. Geranyl butyrate. Ethyl brassylate; tridecanedioic acid cyclic Geranyl formate. ethylene glycol diester; cyclo 1,13-ethyl- Geranyl hexanoate enedioxytridecan-1,13-dione. Geranyl isobutyrate. 2-Ethylbutyl acetate. Geranyl isovalerate. 2-Ethylbutyraldehyde. Geranyl phenylacetate. 2-Ethylbutyric acid. Geranyl propionate. Ethyl cinnamate. Glucose pentaacetate. Ethyl crotonate; trans-2-butenoic acid ethyl- Guaiacol; μ-methoxyphenol. ester. Guaiacyl acetate; μ-methoxyphenyl acetate. Ethyl cyclohexanepropionate. Guaiacyl phenylacetate. Ethyl decanoate. Guaiene; 1,4-dimethyl-7-isopropenyl-D9,10- 2-Ethylfuran. octahydroazulene. Ethyl 2-furanpropionate. Guaiol acetate; 1,4-dimethyl-7-(a-hydroxy- 4-Ethylguaiacol; 4-ethyl-2-methoxyphenol. isopropyl)-d9,10-octahydroazulene acetate. Ethyl heptanoate. g-Heptalactone; 4-hydroxyheptanoic acid, g- 2-Ethyl-2-heptenal; 2-ethyl-3-butylacrolein. lactone. Ethyl hexanoate. Heptanal; enanthaldehyde. Ethyl isobutyrate. Heptanal dimethyl acetal. Ethyl isovalerate. Heptanal 1,2-glyceryl acetal. Ethyl lactate. 2,3-Heptanedione; acetyl valeryl. Ethyl laurate. 3-Heptanol. Ethyl levulinate. 2-Heptanone; methyl amyl ketone. Ethyl maltol; 2-ethyl-3-hydroxy-4H-pyran-4- 3-Heptanone; ethyl butyl ketone. one. 4-Heptanone; dipropyl ketone. Ethyl 2-methylbutyrate. cis-4-Heptenal; cis-4-hepten-1-al. Ethyl myristate. Heptyl acetate. Ethyl nitrite. Heptyl alcohol; enanthic alcohol. Ethyl nonanoate. Heptyl butyrate. Ethyl 2-nonynoate; ethyl octyne carbonate. Heptyl cinnamate. Ethyl octanoate. Heptyl formate. Ethyl oleate. Heptyl isobutyrate. Ethyl phenylacetate. Heptyl octanoate. Ethyl 4-phenylbutyrate. 1-Hexadecanol; cetyl alcohol. Ethyl 3-phenylglycidate. w-6-Hexadecenlactone; 16-hydroxy-6- Ethyl 3-phenylpropionate; ethyl hydro- hexadecenoic acid, w-lactone; cinnamate. ambrettolide. Ethyl propionate. g-Hexalactone; 4-hydroxyhexanoic acid, g-lac- Ethyl pyruvate. tone; tonkalide. Ethyl salicylate. Hexanal; caproic aldehyde. Ethyl sorbate; ethyl 2,4-hexadienoate. 2,3-Hexanedione; acetyl butyryl. Ethyl tiglate; ethyl trans-2-methyl-2-
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Commission Implementing Regulation (EU)
    21.3.2013 EN Official Journal of the European Union L 80/1 II (Non-legislative acts) REGULATIONS COMMISSION IMPLEMENTING REGULATION (EU) No 230/2013 of 14 March 2013 on the withdrawal from the market of certain feed additives belonging to the group of flavouring and appetising substances (Text with EEA relevance) THE EUROPEAN COMMISSION, submitted before that deadline for the only animal category for which those feed additives had been auth­ orised pursuant to Directive 70/524/EEC. Having regard to the Treaty on the Functioning of the European Union, (4) For transparency purposes, feed additives for which no applications for authorisation were submitted within the Having regard to Regulation (EC) No 1831/2003 of the period specified in Article 10(2) of Regulation (EC) No European Parliament and of the Council of 22 September 1831/2003 were listed in a separate part of the 2003 on additives for use in animal nutrition ( 1 ), and in Community Register of Feed Additives. particular Article 10(5) thereof, (5) Those feed additives should therefore be withdrawn from Whereas: the market as far as their use as flavouring and appetising substances is concerned, except for animal species and categories of animal species for which applications for (1) Regulation (EC) No 1831/2003 provides for the auth­ authorisation have been submitted. This measure does orisation of additives for use in animal nutrition and not interfere with the use of some of the abovemen­ for the grounds and procedures for granting such auth­ tioned additives according to other animal species or orisation. Article 10 of that Regulation provides for the categories of animal species or to other functional re-evaluation of additives authorised pursuant to Council groups for which they may be allowed.
    [Show full text]
  • Test Items for Licensing Examination Krok 1 PHARMACY
    MINISTRY OF PUBLIC HEALTH OF UKRAINE Department of human resources policy, education and science Testing Board Student ID Last name Variant ________________ Test items for licensing examination Krok 1 PHARMACY (російськомовний варіант) General Instruction Every one of these numbered questions or unfinished statements in this chapter corresponds to answers or statements endings. Choose the answer (finished statements) that fits best and fill in the circle with the corresponding Latin letter on the answer sheet. Authors of items: Abramov A.V., Aleksandrova K.V., Andronov D.Yu., Bilyk O.V., Blinder O.O., Bobyr V.V., Bobrovska O.A., Bohatyriova O.V., Bodnarchuk O.V., Boieva S.S., Bolokhovska T.O., Bondarenko Yu.I., Bratenko M.K., Buchko O.V., Cherneha H.V., Davydova N.V., Deriuhina L.I., Didenko N.O., Dmytriv A.M., Doroshkevych I.O., Dutka N.M., Dynnyk K.V., Filipova L.O., Havryliuk I.M., Herhel T.M., Hlushkova O.M., Hozhdzinsky S.M., Hrekova T.A., Hrechana O.V., Hruzevsky O.A., Hudyvok Ya.S., Hurmak I.S., Ivanets L.M., Ivanov Ye.I., Kartashova T.V., Kava T.V., Kazakova V.V., Kazmirchuk H.V., Kernychna I.Z., Khlus K.M., Khmelnykova L.I., Klebansky Ye.O., Klopotsky H.A., Klymniuk S.I., Kobylinska L.I., Koldunov V.V., Kolesnyk V.P., Kolesnikova T.O., Komlevoy O.M., Kononenko N.M., Kornijevsky Yu.Y., Kremenska L.V., Krushynska T.Yu., Kryzhanovska A.V., Kryshtal M.V., Kukurychkin Ye.R., Kuznietsova N.L., Kuzmina A.V., Lisnycha A.M., Lychko V.H., Makats Ye.F., Maly V.V., Matvijenko A.H., Menchuk K.M., Minarchenko V.M., Mikheiev A.O., Mishchenko
    [Show full text]
  • Structural Modification of Trans-Cinnamic Acid Using Colletotrichum Acutatum
    Rev. Fac. Ing. Univ. Antioquia N.° 63 pp. 20-29. Junio, 2012 Structural modification of trans-cinnamic acid using Colletotrichum acutatum Modificación estructural de ácidotrans -cinámico empleando Colletotrichum acutatum Rodrigo Velasco B.1, Jesús H. Gil G.1, 2, Carlos M. García P.1, Diego L. Durango R.1,* 1Grupo de Química de los Productos Naturales y los Alimentos. Facultad de Ciencias. Escuela de Química. Universidad Nacional de Colombia. Calle 59ª 63-020 Autopista Norte. AA 3840. Medellín, Colombia. 2Departamento de Ingeniería Agrícola y Alimentos. Facultad de Ciencias Agropecuarias. Universidad Nacional de Colombia. Calle 64 x Carrera 65 Autopista Norte. AA 3840. Medellín, Colombia. (Recibido el 18 de febrero de 2011. Aceptado el 23 de mayo de 2012) Abstract The biotransformation of trans-cinnamic acid by whole cells of the Colombian native phytopathogenic fungus Colletotrichum acutatum was studied. Initially, fungitoxicity of this compound against C. acutatum was evaluated; trans-cinnamic acid exhibited a moderate to weak toxicity against the microorganism and apparently a detoxification mechanism was present. Then, in order to study such mechanism and explore the capacity of this fungus to biotransform trans-cinnamic acid into value-added products, the microorganism was incubated with the substrate using three different culture media (Czapeck-Dox, Sabouraud and PDB) at room conditions. Using Czapeck-Dox medium, whole cultures of C. acutatum reduced trans-cinnamic acid, first to aldehydes (trans-cinnamaldehyde and 3-phenylpropanal), then to alcohols (cinnamyl alcohol and 3-phenyl-1-propanol). Subsequently, these alcohols were transformed to the corresponding acetyl esters. Nevertheless, some of these products were absent or present at different concentration when culture medium was changed.
    [Show full text]
  • Zn-Nx Sites on N-Doped Carbon for Aerobic Oxidative Cleavage
    ARTICLE https://doi.org/10.1038/s41467-021-25118-0 OPEN Zn-Nx sites on N-doped carbon for aerobic oxidative cleavage and esterification of C(CO)-C bonds ✉ ✉ Chao Xie1, Longfei Lin 2, Liang Huang 3, Zixin Wang1, Zhiwei Jiang 1, Zehui Zhang1 & Buxing Han 2 Selective cleavage of C-C bonds is very important in organic chemistry, but remains chal- lenging because of their inert chemical nature. Herein, we report that Zn/NC-X catalysts, in 1234567890():,; which Zn2+ coordinate with N species on microporous N-doped carbon (NC) and X denotes the pyrolysis temperature, can effectively catalyze aerobic oxidative cleavage of C(CO)-C bonds and quantitatively convert acetophenone to methyl benzoate with a yield of 99% at 100 °C. The Zn/NC-950 can be applied for a wide scope of acetophenone derivatives as well as more challenging alkyl ketones. Detail mechanistic investigations reveal that the catalytic performance of Zn/NC-950 can be attributed to the coordination between Zn2+ and N species to change the electronic state of the metal, synergetic effect of the Zn single sites with their surrounding N atoms, as well as the microporous structure with the high surface area and structural defects of the NC. 1 Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South- Central University for Nationalities, Wuhan, China. 2 Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China. 3 The State Key Laboratory of Refractories and Metallurgy, ✉ Wuhan University of Science and Technology, Wuhan, China.
    [Show full text]
  • Working with Hazardous Chemicals
    A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein.
    [Show full text]
  • 56 Subpart F—Flavoring Agents and Related Substances
    § 172.510 21 CFR Ch. I (4–1–12 Edition) needed to produce its intended effect (a) They are used in the minimum but not in excess of 13 parts per million quantity required to produce their in- calculated as anhydrous sodium ferro- tended physical or technical effect and cyanide. in accordance with all the principles of [42 FR 14491, Mar. 15, 1977, as amended at 58 good manufacturing practice. FR 17098, Apr. 1, 1993] (b) In the appropriate forms (plant parts, fluid and solid extracts, con- Subpart F—Flavoring Agents and centrates, absolutes, oils, gums, bal- Related Substances sams, resins, oleoresins, waxes, and dis- tillates) they consist of one or more of § 172.510 Natural flavoring substances the following, used alone or in com- and natural substances used in con- bination with flavoring substances and junction with flavors. adjuvants generally recognized as safe Natural flavoring substances and in food, previously sanctioned for such natural adjuvants may be safely used use, or regulated in any section of this in food in accordance with the fol- part. lowing conditions. Common name Scientific name Limitations Aloe ................................................................ Aloe perryi Baker, A. barbadensis Mill., A. ferox Mill., and hybrids of this sp. with A. africana Mill. and A. spicata Baker. Althea root and flowers .................................. Althea officinalis L. Amyris (West Indian sandalwood) ................. Amyris balsamifera L. Angola weed .................................................. Roccella fuciformis
    [Show full text]
  • Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC
    Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC R E S E A R C H A N D D E V E L O P M E N T EPA/600/R-06/105 September 2006 Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC By S. H. Hilal Ecosystems Research Division National Exposure Research Laboratory Athens, Georgia U.S. Environmental Protection Agency Office of Research and Development Washington, DC 20460 NOTICE The information in this document has been funded by the United States Environmental Protection Agency. It has been subjected to the Agency's peer and administrative review, and has been approved for publication. Mention of trade names of commercial products does not constitute endorsement or recommendation for use. ii ABSTRACT SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external mechanistic perturbation components. The internal perturbations quantify the interactions of the appended perturber (P) with the reaction center (C). These internal perturbations are factored into SPARC’s mechanistic components of electrostatic and resonance effects. External perturbations quantify the solute-solvent interactions (solvation energy) and are factored into H-bonding, field stabilization and steric effects. These models have been tested using 1471 reliable measured base, acid and general base-catalyzed carboxylic acid ester hydrolysis rate constants in water and in mixed solvent systems at different temperatures.
    [Show full text]
  • RIFM Fragrance Ingredient Safety Assessment, Menthyl Isovalerate CAS Registry Number 16409-46-4
    Food and Chemical Toxicology 110 (2017) S486eS495 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox Short review RIFM fragrance ingredient safety assessment, menthyl isovalerate CAS Registry Number 16409-46-4 * A.M. Api a, , D. Belsito b, D. Botelho a, D. Browne a, M. Bruze c, G.A. Burton Jr. d, J. Buschmann e, M.L. Dagli f, M. Date a, W. Dekant g, C. Deodhar a, M. Francis a, A.D. Fryer h, K. Joshi a,S.LaCavaa, A. Lapczynski a, D.C. Liebler i, D. O'Brien a, R. Parakhia a,A.Patela, T.M. Penning j, G. Ritacco a, J. Romine a, D. Salvito a, T.W. Schultz k, I.G. Sipes l, Y. Thakkar a, E.H. Theophilus a, A.K. Tiethof a, Y. Tokura m, S. Tsang a, J. Wahler a a Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA b Member RIFM Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY 10032, USA c Member RIFM Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo SE-20502, Sweden d Member RIFM Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI 58109, USA e Member RIFM Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625 Hannover, Germany f Member RIFM Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av.
    [Show full text]
  • Assessment of Free and Immobilized Kefir Culture in Simultaneous
    LWT - Food Science and Technology 76 (2017) 67e78 Contents lists available at ScienceDirect LWT - Food Science and Technology journal homepage: www.elsevier.com/locate/lwt Assessment of free and immobilized kefir culture in simultaneous alcoholic and malolactic cider fermentations Anastasios Nikolaou a, Alex Galanis a, Maria Kanellaki b, Chrysoula Tassou c, * Konstantoula Akrida-Demertzi d, Yiannis Kourkoutas a, a Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, GR-68100, Greece b Food Biotechnology Group, Section of Analytical Environmental and Applied Chemistry, Department of Chemistry, University of Patras, Patras, GR-26500, Greece c Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DEMETER, 1 S. Venizelou Str, Lykovrissi, Athens, GR-14123, Greece d Laboratory of Food Chemistry and Technology, Department of Chemistry, University of Ioannina, Dourouti, Ioannina, GR-45110, Greece article info abstract Article history: The aim of the present study was to assess application of free or immobilized kefir culture on apple Received 30 March 2016 pieces and delignified cellulosic material (DCM) in simultaneous alcoholic and malolactic cider fer- Received in revised form mentations at a wide temperature range (5e45 C). Repeated batch fermentations were continued for 12 October 2016 higher than 7 months, showing a high operational stability of the systems and were completed in less Accepted 13 October 2016 than 24 h with immobilized cells on DCM at 37 C. Malic acid conversion up to 71.5% and ethanol Available online 15 October 2016 productivity values up to 56.9 g/(Ld) were recorded, which could be adopted by the industrial sector.
    [Show full text]
  • Functional Expression of a Novel Methanol-Stable Esterase From
    Cai et al. BMC Biotechnology (2020) 20:36 https://doi.org/10.1186/s12896-020-00622-1 RESEARCH ARTICLE Open Access Functional expression of a novel methanol- stable esterase from Geobacillus subterraneus DSM13552 for biocatalytic synthesis of cinnamyl acetate in a solvent- free system Xianghai Cai1†, Lin Lin2,3†, Yaling Shen1, Wei Wei1* and Dong-zhi Wei1 Abstract Background: Esterases are widely distributed in nature and have important applications in medical, industrial and physiological. Recently, the increased demand for flavor esters has prompted the search of catalysts like lipases and esterases. Esterases from thermophiles also show thermal stability at elevated temperatures and have become enzymes of special interest in biotechnological applications. Although most of esterases catalyzed reactions are carried out in toxic and inflammable organic solvents, the solvent-free system owning many advantages such as low cost and easy downstream processing. Results: The gene estGSU753 from Geobacillus subterraneus DSM13552 was cloned, sequenced and overexpressed into Escherichia coli BL21 (DE3). The novel gene has an open reading frame of 753 bp and encodes 250-amino-acid esterase (EstGSU753). The sequence analysis showed that the protein contains a catalytic triad formed by Ser97, Asp196 and His226, and the Ser of the active site is located in the conserved motif Gly95-X-Ser97-X-Gly99 included in most esterases and lipases. The protein catalyzed the hydrolysis of pNP-esters of different acyl chain lengths, and the enzyme specific activity was 70 U/mg with the optimum substrate pNP-caprylate. The optimum pH and temperature of the recombinant enzyme were 8.0 and 60 °C respectively.
    [Show full text]
  • Comprehensive Mapping of Volatile Organic Compounds in Fruits
    International PhD Program in Biomolecular Sciences XXVII Cycle Comprehensive Mapping of Volatile Organic Compounds in Fruits Tutor Dr. Fulvio Mattivi Department of Food Quality and Nutrition, Fondazione Edmund Mach Advisor Prof. Vladimir Shulaev Department of Biological Sciences, University of North Texas Ph.D. Thesis of Manoj Shahaji Ghaste Department of Food Quality and Nutrition Fondazione Edmund Mach 2013-2014 This thesis is lovingly dedicated to my Mother. Her support, encouragement, belief and constant love have sustained me throughout my life. Declaration I, Manoj Shahaji Ghaste confirm that this is my own work and the use of all material from other sources has been properly and fully acknowledged. Thesis abstract Volatile organic compounds (VOCs) are the key aroma producers in fruits and sensory quality of fruits is widely determined by qualitative and quantitative composition of VOCs. The aroma of grape is a complex of hundreds of VOCs belonging to different chemical classes like alcohols, esters, acids, terpenes, aldehydes, furanones, pyrazines, isoprenoids and many more. VOCs play important role as they determine the flavor of grapes and wine made from it. The objective of this thesis is to study of VOCs through development of different mass spectrometry based analytical methodologies and its applications for the comprehensive investigation and construction of database of the VOCs in grapes. First part of the study was dedicated to generation of a database of grape VOCs through the screening of multiple grape varieties (n=124) representing different species, color and origin. The experiment was carried out using headspace solid-phase microextraction (HS-SPME) and gas chromatography mass spectrometry (GC-MS) based approach and according to metabolomics protocols.
    [Show full text]