Self-Reporting Biological Nanosystems to Study and Control Bio-Molecular

Total Page:16

File Type:pdf, Size:1020Kb

Self-Reporting Biological Nanosystems to Study and Control Bio-Molecular BIOSCOPE Final Publishable Report BIOs cope Project no. NMP4-CT-2003-505211 Project acronym BIOSCOPE Project full name Self-reporting biological nanosystems to study and control bio- molecular mechanisms on the single molecule level Instrument type SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT Priority name Priority 3: Nanotechnology and nanoscience, knowledge-based multifunctional materials, new production processes and devices (NMP) Final Publishable Report Period covered: from February 1, 2006 to January 31, 2007 Date of preparation: April 19, 2007 Start date of project: Duration: February 1, 2004 36 month Project coordinator name Dr. Tommy Nylander Project coordinator organisation name Revision 2.0 Lund University (Div. Physical Chemistry 1) Page 1 of (26) BIOSCOPE Final Publishable Report BIOs cope www.BIOSCOPE.FKEM1.LU.SE Project execution The aim with BIOSCOPE was to pioneer the development of new leading edge nanoscale research tools and methodologies that will allow unprecedented insight into bio-molecular mechanisms at biological interfaces on the molecular scale. BIOSCOPE consider the biomolecular system itself as a part of the nanoscopic instrument, which in various ways reports to the out-side world about its current local state. Thereby it will be possible to study the local effects on the molecular level when e.g. a protein interacts with a biomembrane surface or when a lipase interacts with a lipid surface. The objectives of BIOSCOPE were: • To develop instrumentation and methods for manipulation of enzymes and enzyme activity at the nanoscale providing insight into the biomolecular mechanisms on a single molecule level. • To develop novel forms of integration, at the nanoscale level, of enzymes and non-biological systems such as nanoparticles, artificial membranes, electrical field or force field traps. • To confine several enzymes to surfaces of nanoparticles or membranes on a less than 10 nm scale in order to achieve a self-organized assembly with a concerted bioaction superior to the simple sum of the same individual enzymes. The function of the nanosystems will be optimized for enzymatic action on biosubstrates. Contractors involved BIOSCOPE is a pan-European consortium where the collective resources both in terms of knowledge in physics, biology, surface and colloid chemistry, synthesis and biochemistry, as well as a combination of a range of experimental techniques reporting on nanoscale organization, theory and modelling will provide the necessary knowledge-base for the new nanoscopic research tools to study bio-molecular mechanisms at interfaces on the single molecular level. Acronym Partner Responsible Main role scientist P1 Physical Chemistry 1, Lund Dr. Tommy How to build structures from ULUND University, Lund, SWEDEN Nylander lipids and showing the structure of nanoscopic objects P2 Nano-Science Center (NSC), Prof. Thomas Showing the effect of UCPH University of Copenhagen, Björnholm enzymes on the substrate on Copenhagen, DENMARK the nanoscopic scale P3 Protein Design, Novozymes A/S, Dr. Allan Building new enzyme Novozymes Bagsvaerd, Denmark Svendsen P4 Laboratory for Photochemistry Prof. Johan Watching very fast changes KUL and Spectroscopy, Katholieke Hofkens in enzymes and changes in University of Leuven, Leuven, the enzymes environment. BELGIUM Measuring the light signal from single enzyme molecule. Page 2 of (26) BIOSCOPE Final Publishable Report Acronym Partner Responsible Main role scientist P5. Centre for Nanoscale Science, Dr. Mathias Making nanosized particles UNILIV Department of Chemistry, The Brust that control enzymes on the University of Liverpool, nanoscopic scale Liverpool, UK P6 Biophysics & Molecular Prof. Hermann Direct measurements of the PHYSLMU Materials, Ludwig-Maximilians- Gaub force a single enzyme Universität, München,Germany molecule feels P7 Institute of Biochemistry, Vilnius, Prof. Making molecules for IBLT LITHUANIA Valdemaras connecting enzymes, enzyme Razumas modification and measuring the electrical signal from enzymes P8 MEMPHYS - Center for Prof. Ole. G. Telling how the properties of SDU Biomembrane Physics, University Mouritsen the soft interface close to the of Southern Denmark Odense, enzyme affect the function of DENMARK the enzyme. Predicting and calculating enzyme and substrate interactions P9 Dep. of Organic Chemistry, Prof. Roeland J. Providing self-assembled KUN Radboud University of Nijmegen, M. Nolte supra-molecular structures THE NETHERLANDS for determining single enzyme molecule action mechanisms Co-ordinator contact details Dr. Tommy Nylander Physical Chemistry 1, Lund University, Center for Chemistry and Chemical Engineering, P.O.Box 124, S-221 00 Lund, SWEDEN Email: [email protected] Phone: +46 46 2228158; Fax: +46 46 2224413 Summary of results BIOSCOPE has provided insight of the biomolecular mechanisms on a single molecule level. This has been made using two approaches: Confocal Microscopy: This is powerful tool to study the activity of single, but it requires that the ezyme is immobilized and does not work for natural substrates. The single enzyme experiment of CalB adsorbed to a hydrophobic surface (Velonia, 2005; Flomenbom, 2005) and TLL linked to the BSA foot labelled with fluorescent probe was studied (Hazitakis, 2006). The waiting times Dt between peaks (bursts of activity) contains the kinetic information. In fact the distribution of waiting times shows non- exponential behavior (Flamenbom, 2006). The appearance of a stretched exponential function implies that the number of conformations is large. This shows that the reaction rate constant, k, is not constant with time, that is TLL shows an oscillating behavior adopting a variety of interconnecting conformations (Figure 1). In fact one might talk of an enzyme molecule that sleeps and works (Engelkamp, 2006). Wide field microscopy: This technique can be used on natural substrates and accounts for the fact that the activity of the enzyme can be affected by its diffusion and vice versa. This method requires imaging of a large area, which means loss of Page 3 of (26) BIOSCOPE Final Publishable Report resolution. The used approach in BIOSCOPE involves two lasers, one for the labelled enzyme and the labelled substrate layer, with minimal overlap in wavelength of laser wavelength and that of the emitted light (Verheijen, 2006; Hofkens, unpublished data, 2007). The movement of the single enzyme molecule could be followed by analysing the mean square displacement versus time. It was possible to follow the hydrolysis of phospholipid layer by means of fluorescence microscopy and simultaneously track single molecules of enzyme (single molecule resolution) acting on phospholipid layers and to monitor the changes in the phospholipids layers (not single molecule resolution). The results indicate that the enzyme docks on the layer for just short periods of time. Figure 1. Schematic figure of the different interconnecting conformations of TLL, which in turn have different rate constant for the hydrolysis of the substrate. BIOSCOPE has developed new concepts for integration (linkers) and reporting at the nanoscale-level of enzymes and non-biological systems. A range of variants of Thermomyces lanuginosus lipase (TLL), but also of Candida antarctica lipase B (CalB), mostly for binding signalling, either binding or action, or attachment to surfaces has been prepared. This has been essential for all the bioconjugated system produced within BIOSCOPE. These two lipases has also been the main enzymes used in the work, but some work also includes Phospholipase A2 (PLA or PLA2) In the past there has been a lack of reporter molecules that report on the activity of lipase and at the same time are amphiphilic and self-assembling as the natural substrate for lipases. This challenge has been met by BIOSCOPE by producing lipid like probes (Valincius, 2005; Ignatjev, 2005; Bulovas, 2006), supported bilayers (Simonsen, 2004) as well as well defined lipid based liquid crystalline nanoparticles (Barauskas, 2006; Popescu 2007). In many cases the synthesised substrates can be detected by electrochemical methods (redox activity) as well as optical methods such Page 4 of (26) BIOSCOPE Final Publishable Report as UV/VIS and fluorescence spectroscopy. Some of the key components of these amphiphilic and self-assembling substrates are presented in Figure 2a. Figure 2a. Examples of reporter molecules, e.g. substrates for lipase, which can report on the enzymatic activity at different type of interfaces. Apart from profluorescent substrate study of single molecule enzyme activity requires some sort of immobilization of the enzyme. Several approaches have been developed for this purpose involving Direct covalent immobilization as well as Non-specific deposition. Some of the approaches used in BIOSCOPE are summarized in Figure 2b (Dirks, 2005; Hazitakis, 2006; Engelkamp, 2006). Clickable Maleimides Clickable Enzymes-Proteins O O O O BSA S O N3 O BSA S O N3 O Clickable dyes O O CALB S CALB S N O N3 O O O O N3 O S O H H NH TLL N SH TLL N O OH Clickable Surface Clickable Surface Clickable polymers and N3 N3 block-copolymers O O O O OH OH OH OH OH N N N N HO 3 N O 3 3 O 3 75 75 75 O HSi HSi HSi HSi HSi HSi HSi O O O O N3 N3 O O O O O O O O O O O O O O O 40 40 Figure 2b. Different linker approaches that have been developed during BIOSCOPE, by KUN. They can be used both to couple to surfaces as well as to form Enzyme dimers. The two new electrochemical (amperometric) techniques to determine the lipase activity have been
Recommended publications
  • Nanotechnology Measurement Handbook a Guide to Electrical Measurements for Nanoscience Applications Nanotechnology Measurement Handbook Nanotechnology
    NanoCov_grn.tiff 12/13/07 10:47 AM Page 1 www.keithley.com st 1Edition Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications Nanotechnology Measurement Handbook Specifications are subject to change without notice. All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other trademarks and trade names are the property of their respective companies. Keithley Instruments, Inc. Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (534-8453) www.keithley.com 1 st Edition © Copyright 2007 Keithley Instruments, Inc. No. 2819 Printed in the U.S.A. 020731KIPC Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications 1st Edition A GREATER MEASURE OF CONFIDENCE Foreword Nanotechnology research often demands skills in multiple disciplines, from phys- ics and materials science to chemistry and measurement system design. Although it would be impossible to predict all the technical innovations that nano research will offer, it’s already clear that nanoscience will be a major driver of the economy of the future. However, characterizing tomorrow’s nanoscale components and materials will be far from trivial because many of their electrical properties lie at the very edge of the measurement envelope. To unravel tiny mysteries and turn nanoscale materials and devices into commercial products, researchers must have tools with the flexibility to handle a variety of electrical measurements, including current vs. voltage (I-V) characterization, resistance, resistivity and conductivity, differential conductance, transport, and optical spectrum and energy. They must also gain an in-depth understanding of the principles and pitfalls associated with low-level electrical measurements.
    [Show full text]
  • Controlling Nanoparticle Dispersion for Nanoscopic Self-Assembly
    CONTROLLING NANOPARTICLE DISPERSIONS FOR NANOSCOPIC SELF- ASSEMBLY A Project Report presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Polymers and Coatings by Nathan Stephen Starkweather March 2013 © 2013 Nathan Stephen Starkweather ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Controlling Nanoparticle Dispersions for Nanoscopic Self- Assembly AUTHOR: Nathan Stephen Starkweather DATE SUBMITTED: March 2013 COMMITTEE CHAIR: Raymond H. Fernando, Ph.D. COMMITTEE MEMBER: Shanju Zhang, Ph.D. COMMITTEE MEMBER: Chad Immoos, Ph.D. iii ABSTRACT Controlling Nanoparticle Dispersions for Nanoscopic Self-Assembly Nathan Stephen Starkweather Nanotechnology is the manipulation of matter and devices on the nanometer scale. Below the critical dimension length of 100nm, materials begin to display vastly different properties than their macro- or micro- scale counterparts. The exotic properties of nanomaterials may trigger the start of a new technological revolution, similar to the electronics revolution of the late 20th century. Current applications of nanotechnology primarily make use of nanoparticles in bulk, often being made into composites or mixtures. While these materials have fantastic properties, organization of nano and microstructures of nanoparticles may allow the development of novel devices with many unique properties. By analogy, bulk copper may be used to form the alloys brass or bronze, which are useful materials, and have been used for thousands of years. Yet, organized arrays of copper allowed the development of printed circuit boards, a technology far more advanced than the mere use of copper as a bulk material. In the same way, organized assemblies of nanoparticles may offer technological possibilities far beyond our current understanding.
    [Show full text]
  • Arxiv:2005.01804V1 [Q-Bio.QM] 1 May 2020
    Modeling in the Time of COVID-19: STATISTICAL AND RULE-BASED MESOSCALE MODELS APREPRINT Ngan Nguyen1, Ondrejˇ Strnad1, Tobias Klein2,4, Deng Luo1, Ruwayda Alharbi1, Peter Wonka1, Martina Maritan3, Peter Mindek2,4, Ludovic Autin3, David S. Goodsell3, and Ivan Viola1 1King Abdullah University of Science and Technology (KAUST), Saudi Arabia. E-mails: {ngan.nquyen j ondrej.strnad j deng.luo j ruwayda.alharbi j peter.wonka j ivan.viola }@kaust.edu.sa. , N. Nguyen and O. Strnad are co-first authors. 2TU Wien, Austria. E-mails: {tklein j mindek}@cg.tuwien.ac.at. 3Scripps Research Institute, US. E-mail: {mmaritan j autin j goodsell}@scripps.edu. 4Nanographics GmbH May 6, 2020 ABSTRACT We present a new technique for rapid modeling and construction of scientifically accurate mesoscale biological models. Resulting 3D models are based on few 2D microscopy scans and the latest knowledge about the biological entity represented as a set of geometric relationships. Our new technique is based on statistical and rule-based modeling approaches that are rapid to author, fast to construct, and easy to revise. From a few 2D microscopy scans, we learn statistical properties of various structural aspects, such as the outer membrane shape, spatial properties and distribution characteristics of the macromolecular elements on the membrane. This information is utilized in 3D model construction. Once all imaging evidence is incorporated in the model, additional information can be incorporated by interactively defining rules that spatially characterize the rest of the biological entity, such as mutual interactions among macromolecules, their distances and orientations to other structures. These rules are defined through an intuitive 3D interactive visualization and modeling feedback loop.
    [Show full text]
  • The Nanobank Database Is Available at for Free Use for Research Purposes
    Forthcoming: Annals of Economics and Statistics (Annales d’Economie et Statistique), Issue 115/116, in press 2014 NBER WORKING PAPER SERIES COMMUNITYWIDE DATABASE DESIGNS FOR TRACKING INNOVATION IMPACT: COMETS, STARS AND NANOBANK Lynne G. Zucker Michael R. Darby Jason Fong Working Paper No. 17404 http://www.nber.org/papers/w17404 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 September 2011 Revised March 2014 The construction of Nanobank was supported under major grants from the National Science Foundation (SES- 0304727 and SES-0531146) and the University of California’s Industry-University Cooperative Research Program (PP9902, P00-04, P01-02, and P03-01). Additional support was received from the California NanoSystems Institute, Sun Microsystems, Inc., UCLA’s International Institute, and from the UCLA Anderson School’s Center for International Business Education and Research (CIBER) and the Harold Price Center for Entrepreneurial Studies. The COMETS database (also known as the Science and Technology Agents of Revolution or STARS database) is being constructed for public research use under major grants from the Ewing Marion Kauffman Foundation (2008- 0028 and 2008-0031) and the Science of Science and Innovation Policy (SciSIP) Program at the National Science Foundation (grants SES-0830983 and SES-1158907) with support from other agencies. Our colleague Jonathan Furner of the UCLA Department of Information Studies played a leading role in developing the methodology for selecting records for Nanobank. We are indebted to our scientific and policy advisors Roy Doumani, James R. Heath, Evelyn Hu, Carlo Montemagno, Roger Noll, and Fraser Stoddart, and to our research team, especially Amarita Natt, Hsing-Hau Chen, Robert Liu, Hongyan Ma, Emre Uyar, and Stephanie Hwang Der.
    [Show full text]
  • THEODOR VON GROTTHUSS (1785-1822) – a TRAIL BLAZER Bruno Jaselskis, Carl E
    Bull. Hist. Chem., VOLUME 32, Number 2 (2007) 119 THEODOR VON GROTTHUSS (1785-1822) – A TRAIL BLAZER Bruno Jaselskis, Carl E. Moore, and Alfred von Smolinsk, Loyola University of Chicago Two hundred years ago Theodor Grotthuss published a This challenge engaged the best minds of science major paper entitled “Mémoire sur la décomposition de throughout Europe, in particular those working in the l’eau et des corps, qu’elle tient en dissolution a’ l’aide field of static electricity, and especially those who were de l’élecrticite galvanique.”(1) In a short time this trying to explain the mechanism of the production of document was reprinted in other journals (2, 3) and was static electricity. Out of the ferment of the times came translated into English (4). In this paper Grotthuss pre- a young novice scientist, Theodor Grotthuss, a student, sented an electrolysis concept based on physical-chemi- eager to absorb knowledge and resolute in his desire to cal phenomena rather than on the prevailing established form his own opinions and interpretations uncluttered electrostatic interpretation of the galvanic process. He with the dogma of the established thinking. perceived the battery not only as a galvanic generator but also as a polarized system composed of particles J. A. Krikštopaitis, in his interesting book written in (molecules) of opposing electrical nature. This landmark the Lithuanian language, titled “Pralenkęs Laiką” (Ahead document laid out new directions for the interpretation of of the Times), describes the life of Theodor Grotthuss and galvanic phenomena. It influenced future investigations his scientific contributions. He states (6): carried out by Sir Humphry Davy, John J.
    [Show full text]
  • Cancer Nanomedicine: from Targeted Delivery to Combination Therapy
    Review Cancer nanomedicine: from targeted delivery to combination therapy 1,2,3 1 1 1,2 Xiaoyang Xu , William Ho , Xueqing Zhang , Nicolas Bertrand , and 1 Omid Farokhzad 1 Laboratory of Nanomedicine and Biomaterials, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA 2 The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3 Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA The advent of nanomedicine marks an unparalleled op- advantages of NPs have brought widespread attention to portunity to advance the treatment of various diseases, the field of nanomedicine, including their large ratio of including cancer. The unique properties of nanoparticles volume to surface area, modifiable external shell, biode- (NPs), such as large surface-to-volume ratio, small size, gradability, and low cytotoxicity [4]. Furthermore, nano- the ability to encapsulate various drugs, and tunable medicine brings us dramatically closer to realizing the full surface chemistry, give them many advantages over their promise of personalized medicine [5]. bulk counterparts. This includes multivalent surface mod- Engineered therapeutic NPs offer numerous clinical ification with targeting ligands, efficient navigation of the advantages. Surface modification with polyethylene glycol complex in vivo environment, increased intracellular traf- (PEG) protects NPs from clearance from the blood by the ficking, and sustained release of drug payload. These mononuclear phagocytic system (MPS), markedly increasing advantages make NPs a mode of treatment potentially both circulation times and drug uptake by target cells superior to conventional cancer therapies. This review [2,6].
    [Show full text]
  • Information in Biological Systems and the Fluctuation Theorem
    Entropy 2014, 16, 1931-1948; doi:10.3390/e16041931 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Information in Biological Systems and the Fluctuation Theorem Yaşar Demirel Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 820 N. 16th Street, Lincoln, NE, 68588, USA; E-Mail: [email protected]; Tel.: 1-402-472 2745; Fax: 1-402 472 6989 Received: 17 January 2014; in revised form: 27 March 2014 / Accepted: 28 March 2014 / Published: 1 April 2014 Abstract: Some critical trends in information theory, its role in living systems and utilization in fluctuation theory are discussed. The mutual information of thermodynamic coupling is incorporated into the generalized fluctuation theorem by using information theory and nonequilibrium thermodynamics. Thermodynamically coupled dissipative structures in living systems are capable of degrading more energy, and processing complex information through developmental and environmental constraints. The generalized fluctuation theorem can quantify the hysteresis observed in the amount of the irreversible work in nonequilibrium regimes in the presence of information and thermodynamic coupling. Keywords: information theory; biological systems; fluctuation theorem; thermodynamic coupling 1. Introduction Definition and quantification of information have created broad discussions; particularly, “information theory” in living systems is an evolving field [1–14]. Evolution is an axiomatic consequence of organismic information obeying the second law of thermodynamics; as entropy increases, the information within a biological system becomes more complex and diversifies at bifurcation points [15–18]. Behavior of living systems is decomposable into functional modes and the ensemble of modes at an agent’s disposal constitutes functional repertoire. The modes may be subjected to operational signals and a mechanism that sequentially selects a mode so that it controls the functional dynamics [18,19].
    [Show full text]
  • Nano-Engineered Scaffold for Osteoarticular Regenerative Medicine
    dicine e & N om a n n a o t N e f c o h Schwinté et al., J Nanomed Nanotechnol 2015, 6:1 l n Journal of a o n l o r g u DOI: 10.4172/2157-7439.1000258 y o J ISSN: 2157-7439 Nanomedicine & Nanotechnology Review Article Open Access Nano-Engineered Scaffold for Osteoarticular Regenerative Medicine Pascale Schwinté1,2,§, Laetitia Keller1,2,§, Stéphanie Lemoine1,2, Jacques-Eric Gottenberg1, Nadia Benkirane-Jessel1,2 and Maximilien Vanleene1,2* 1INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine” laboratory, FMTS, Faculté de Médecine, F-67085 Strasbourg Cedex, France 2Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l’Hôpital, F-67000 Strasbourg, France Abstract In the last decade, regenerative medicine has benefited from the exponential development of nanomaterial sciences, tissue engineering and cell-based therapies. More and more sophisticated designed structures and surface topologies are being developed to basically mimic the extracellular matrix of native tissues such as cartilage and bone. Here we give an overview of the progress made in osteochondral lesion repair, with nano-engineered scaffolds comprising building blocks such as nanoparticles, nanotubes, layer-by-layer nano-assemblies, molecular self-assembly, nanopatterned surfaces…. This nano-engineering technology is coupled with bio-functionalization, by the use of adhesion peptides, growth factors, or deoxyribonucleic acid, to drive cell adhesion, proliferation and behavior towards tissue regeneration. In osteochondral regeneration, the challenge is the simultaneous development of chondrocytes and cartilage extracellular matrix on the one side and a well vascularized bone tissue with osteoblasts on the other side. Keywords: Biocompatible scaffolds; Osteochondral lesion; type I molecules (90% of the bone matrix protein) and apatite crystals Regenerative nanomedicine; Nanostructures; Bone; Cartilage; Tissue organized, at the nanoscale, into mineralized collagen micro-fibrils and engineering fibers.
    [Show full text]
  • Melania G. Mazzucco
    Mamoli Zorzi and Manthorne (eds.) FROM DARKNESS TO LIGHT WRITERS IN MUSEUMS 1798-1898 Edited by Rosella Mamoli Zorzi and Katherine Manthorne From Darkness to Light explores from a variety of angles the subject of museum ligh� ng in exhibi� on spaces in America, Japan, and Western Europe throughout the nineteenth and twen� eth centuries. Wri� en by an array of interna� onal experts, these collected essays gather perspec� ves from a diverse range of cultural sensibili� es. From sensi� ve discussions of Tintore� o’s unique approach to the play of light and darkness as exhibited in the Scuola Grande di San Rocco in Venice, to the development of museum ligh� ng as part of Japanese ar� s� c self-fashioning, via the story of an epic American pain� ng on tour, museum illumina� on in the work of Henry James, and ligh� ng altera� ons at Chatsworth, this book is a treasure trove of illumina� ng contribu� ons. FROM DARKNESS TO LIGHT FROM DARKNESS TO LIGHT The collec� on is at once a refreshing insight for the enthusias� c museum-goer, who is brought to an awareness of the exhibit in its immediate environment, and a wide-ranging scholarly compendium for the professional who seeks to WRITERS IN MUSEUMS 1798-1898 proceed in their academic or curatorial work with a more enlightened sense of the lighted space. As with all Open Book publica� ons, this en� re book is available to read for free on the publisher’s website. Printed and digital edi� ons, together with supplementary digital material, can also be found at www.openbookpublishers.com Cover image:
    [Show full text]
  • L CF IUPAB 0617 Programme-29.Indd
    19th IUPAB congress and 11th EBSA congress Scientific Programme Scientific programme Sunday 16 July 2017 12:30–14:00 EBSA EC First Meeting (closed) Harris Room 1 13:30–18:00 Registration Atrium 14:30–15:30 PUBLIC LECTURE Chair: Frank Gunn-Moore, University of St Andrews, UK Alzheimer’s Disease: Addressing a Twenty-First Century Plague Christopher M Dobson, University of Cambridge, UK Sponsored by Alzheimer’s Research (UK), Scottish Network Lennox Suite 16:45–17:15 Welcome Address Lennox Suite 17:15–18:00 PLENARY LECTURE Chair: Andrew Turber field, University of Oxford, UK Lennox Suite IUPAB Ramachandran Lecture: The termination of translation in bacteria and eukaryotes Venki Ramakrishnan, LMB Cambridge, UK 18:00–19:30 Welcome Reception (open to all registered delegates) Cromdale and Strathblane Halls Monday 17 July 2017 08:00–18:00 Registration Atrium 09:00–09:45 PLENARY LECTURE Chair: Ilpo Vattulainen, EBSA, University of Helsinki, Finland Lennox Suite Towards a mechanistic understanding of ribosomal function Helmut Grubmüller, Max Planck Institute for Biophysical Chemistry, Germany 09:55–12:40 SO1 – MULTISCALE BIOPHYSICS OF MEMBRANES Chairs: Claudio M Soares and John Seddon Lennox Suite 09:55 (Invited) Mechanisms of Membrane 10:25 (Invited) Structure on the 10:55 Developing ESCRT-III as a toolkit for Curvature Generation nanoscopic scale of complex bottom-up construction of eukaryote-like Tobias Baumgart, University of Pennsylvania, biomembrane mimetics artificial cells USA Georg Pabst, University of Graz, Austria Andrew Booth, University
    [Show full text]
  • New Biological Frontiers Illuminated by Molecular Sensors and Actuators JUNE 28 – JULY 1, 2015 | TAIPEI, TAIWAN
    Biophysical Society Thematic Meeting | PROGRAM AND ABSTRACTS New Biological Frontiers Illuminated by Molecular Sensors and Actuators JUNE 28 – JULY 1, 2015 | TAIPEI, TAIWAN Organizing Committee Takanari Inoue, Johns Hopkins University, USA Robert E. Campbell, University of Alberta, Canada Chia-Fu Chou, Institute of Physics, Academia Sinica, Taiwan Jin-Der Wen, National Taiwan University, Taiwan New Biological Frontiers Illuminated by Molecular Sensors and Actuators Welcome Letter June 2015 Dear Colleagues, We would like to welcome you to the BPS Thematic Meeting on New Biological Frontiers Illuminated by Molecular Sensors and Actuators. This landmark international meeting brings together 25 of the leading minds in the areas of biological fluorescence imaging, biological tool development, and implementation of optogenetics, all of which are used to resolve fundamental biological questions that otherwise cannot be addressed by conventional techniques alone. We have more than 96 participants from all over the world. The goal of this meeting is to provide the attendees with a map of the new, and largely unexplored, landscape of powerful optical and chemical tools that enable researchers at the frontier to peer into and harness biological systems with a level of control that was previously unimaginable. More specifically, the recent emergence of biosensors based on fluorescent proteins, along with optogenetic and chemical dimerization techniques, have created the ability to both visualize and perturb biochemistry in live cells. In coming years we can expect complementary technologies based on magnetic- and force-based stimulation to join optical and chemical techniques as indispensable research tools for gaining novel insights into cellular biology. Due to the multidisciplinary applications of these tools, this meeting is attracting an extremely diversified audience from the fields of biotechnology, method development, chemical biology, material science, cell biology, general chemistry and engineering, computational biology, and synthetic biology.
    [Show full text]
  • FROM DARKNESS to LIGHT WRITERS in MUSEUMS 1798-1898 Edited by Rosella Mamoli Zorzi and Katherine Manthorne
    Mamoli Zorzi and Manthorne (eds.) FROM DARKNESS TO LIGHT WRITERS IN MUSEUMS 1798-1898 Edited by Rosella Mamoli Zorzi and Katherine Manthorne From Darkness to Light explores from a variety of angles the subject of museum ligh� ng in exhibi� on spaces in America, Japan, and Western Europe throughout the nineteenth and twen� eth centuries. Wri� en by an array of interna� onal experts, these collected essays gather perspec� ves from a diverse range of cultural sensibili� es. From sensi� ve discussions of Tintore� o’s unique approach to the play of light and darkness as exhibited in the Scuola Grande di San Rocco in Venice, to the development of museum ligh� ng as part of Japanese ar� s� c self-fashioning, via the story of an epic American pain� ng on tour, museum illumina� on in the work of Henry James, and ligh� ng altera� ons at Chatsworth, this book is a treasure trove of illumina� ng contribu� ons. FROM DARKNESS TO LIGHT FROM DARKNESS TO LIGHT The collec� on is at once a refreshing insight for the enthusias� c museum-goer, who is brought to an awareness of the exhibit in its immediate environment, and a wide-ranging scholarly compendium for the professional who seeks to WRITERS IN MUSEUMS 1798-1898 proceed in their academic or curatorial work with a more enlightened sense of the lighted space. As with all Open Book publica� ons, this en� re book is available to read for free on the publisher’s website. Printed and digital edi� ons, together with supplementary digital material, can also be found at www.openbookpublishers.com Cover image:
    [Show full text]