Engineering Momentum Across Disciplines

Total Page:16

File Type:pdf, Size:1020Kb

Engineering Momentum Across Disciplines fall 2013 Engineering Momentum across disciplines. across the world.™ MIND MATTERS Brain research could one day alter the way we treat life-changing injuries and diseases inside >> Jubel Hall Announced >> Young-Shin Jun >> Student Athletes >> Gaurav Garg engineering by the undergraduate orientation numbers Contents 2013 fall 2013 281 1,345 Engineering Engineering freshmen undergraduate students 502 377 Engineering Engineering dean 4 14 masters students doctoral students Ralph Quatrano, PhD associate dean & executive editor Nick Benassi senior writer & editor 8 Beth Miller 18 26 communications designer & art direction E. Brook Haley communications manager Bridget Wiegman 22 cover selimaksan Engineering Momentum is special feature published by the School of Engineering & Applied Science 4 >> Jubel Hall at Washington University in dan gill St. Louis. Unless otherwise in every issue 2013 commencement summer weekend egg drop noted, articles may be cover story reprinted without permission with appropriate credit to 2 >> From the Dean 8 >> Mind Matters the publication, school and university. 3 >> At a Glance faculty feature correspondence School of Engineering 28 >> School News 14 >> Young-Shin Jun & Applied Science Washington University in St. Louis 30 >> Faculty News Campus Box 1163 student feature One Brookings Drive 33 >> The Last Word St. Louis, MO 63130-4899 18 >> Student Athletes email [email protected] alumni feature phone 2013 scholarship dinner (314) 935-6350 22 >> Gaurav Garg website engineering.wustl.edu alumni news 26 >> Alumni Achievement Awards FSC LOGO fall 2013 > Engineering Momentum 1 kevin lowder from the dean at a glance Charles A. Buescher Jr. (center) was honored posted oct. 8, 2013 with the 2013 Volunteer social of the Year Award for Student blogs: his service to the school and community, with media What I learned Mike Perlmutter (left), alumni advisory council in the Fullbridge president, and Dean buzz Program Ralph Quatrano (right). by Brittany Edwards “Overall, the experience of the Fullbridge Program was posted aug. 10, 2013 absolutely amazing. I was able to meet and network with What was so many interesting people, your favorite learn about business and better posted oct. 22, 2013 wustl photo understand who I am and what I engineering want for my future. This small step #1 popular post: — partaking in this program — has Dear friends, course at WUSTL made such a large impact on my life EECE students and and my future.” 2013 marks another banner year for our School » We achieved ABET re-accreditation without any and why? sponsors at the of Engineering & Applied Science, as we made deficiencies — the first time in the school’s history. First and foremost was Transport Phenomena with Dr. Sparks scholarship dinner significant progress implementing our strategic plan. » We announced a new building in our new engineering (Chemical Engineering). A true complex, thanks to the generous support of the Jubel » We increased the size and improved the diversity of our genius of a man whom we got to family. Henry A. & Elvira H. Jubel Hall will become the faculty with 20 hires, or about one-quarter of our current share individual time with each new home for our Department of Mechanical Engineering faculty, across all departments since I became dean. We Friday discussing relevant topics. & Materials Science. Read more about this exciting increased the number of women faculty members by 50 A terrific learning experience. percent within the past two years, and women account development on page 4. Kevin Egan @wustlengineers Oct . 14, 2013 for half of the faculty promotions during the past year. » Finally, we launched several new programs, such as Regional Sales Manager at Sprint We also hired the first African-American male faculty the Master of Cyber Security Management with the Rubik’s Cube member and the first two Hispanic faculty members. Olin Business School and the Discovery Competition Dr. Khomami’s transport class. Read more about the newest faculty on page 32. to promote entrepreneurial endeavors among our Never experienced a 7-hour-long Competition: midterm examination! » We made significant progress in building a sustainable undergraduate students. #WUSTL Provost infrastructure to enable cutting-edge research in energy Heather Benedict Of course, none of these achievements would be and the environment, medicine and health and security. Chemical Engineer @holdenWU vs. Rubik’s Cube While many other schools face decreasing federal possible without the steadfast commitment and CoE 462 - senior design course for 6x6 World Champion Kevin financial support, our faculty’s research awards and support from you and the entire school community. the computer engineering degree. Hays: Who won? VIDEO: expenditures continue to climb — an acknowledgement I am grateful for your contributions, and I hope you I enjoyed it since it was practical http://ow.ly/pOBKN to their innovation. This magazine includes several enjoy reading about our progress toward becoming and hands-on. examples of our faculty’s world-changing research. one of the very best engineering schools in the world. Chris Hackmann »W e continue to uphold the quality and selectivity Senior Software Development of our undergraduate students. With applications Sincerely, Engineer at Microsoft increasing for the fourth year in a row, we received more applications and were the most selective than posted aug. 26, 2013 ever before. Just as important, one-third of accepted prospective students chose our engineering school Orientation over any other. Now with 1,345 undergraduate students, Keep up to date with we have the largest, most diverse and academically Instagram talented undergraduate students we have ever had. Ralph Quatrano, PhD news and events Contest Winner Read about how our student athletes excel on and off Spencer T. Olin Professor & Dean engineering.wustl.edu the field on page 18. [email protected] Evan Kerr, the winner #wustleng2017 #wustlengineers 2 Engineering Momentum > engineering.wustl.edu fall 2013 > Engineering Momentum 3 special feature Written by beth miller “Three generations of the Jubel family have now earned or are earning the degrees from Washington University, and hen Henry A. Jubel came to the Mechanical Engineering & Materials Science to anchor jubel family I’m sure Henry Jubel would be honored United States from Germany business by this gift,” says Mark S. Wrighton, in the 1920s as a young boy, he W chancellor of Washington University in likely never imagined that he would start henry a. & elvira h. St. Louis. “Jubel Hall will be an excellent what has become a multimillion-dollar example of the foundation’s mission to international manufacturing company. 1961 support young people seeking to improve The aluminum die-casting company Spartan Aluminum Products is their lives through higher education.” he founded in 1961, Spartan Aluminum founded in Sparta, Ill. More than $150 million has already Products in Sparta, Ill., has flourished and been invested in new and renovated is now run by his son, Don Jubel, who is Engineering space over the past 10 years, honoring his late parents with a gift from JUBEL HALL part of the school’s master plan calling the Henry A. Jubel Foundation toward for a 700,000-square-foot engineering construction of the Henry A. and Elvira H. complex on the northeast corner of the Jubel Hall for the School of Engineering & Danforth Campus. Applied Science at Washington University “The addition of Jubel Hall to in St. Louis. It’s a fitting tribute to a Whitaker, Brauer and Green halls in the man who earned a bachelor’s degree in new engineering complex will enable us to mechanical engineering from Washington attract and retain the best and brightest University in 1940 with the help of a students and the most talented faculty, scholarship and wages from cutting grass, and it will provide them with the tools translating books from German to English they need to do great work,” says Ralph and from his mother, who cleaned homes. S. Quatrano, PhD, dean of the School of Jubel Hall, the new home of the Engineering & Applied Science and the Department of Mechanical Engineering Spencer T. and Ann W. Olin Professor. “A & Materials Science, will be located project such as Jubel Hall can only happen near the intersection of Brookings with the support and commitment of Drive and Hoyt Drive. As the newest many people, and we are truly grateful building in the Engineering complex at to the Henry A. Jubel Foundation and the the northeast corner of campus, it will Jubel family for making this a reality.” contain classrooms, laboratories, faculty After graduating from Washington offices and gathering and study areas. University, Henry Jubel took a position The new space will allow the department in 1941 with the Civil Service Ordnance to expand its faculty by up to 80 percent Department, from which he received the and provide the infrastructure to double highest civilian award and a cash bonus its already robust research program. In “America needs more young people who pursue of $1,000 for inventing a modification addition, it will help meet the growing of a grenade launcher that fit onto the engineering and other technical disciplines to help us demands of a top-tier program in bayonet attachment of the M-1 rifle. After mechanical engineering, the school’s compete globally. It is my hope that this new building will World War II, he went to work for Sterling second-largest major. 2013 Aluminum Products as a production create enthusiasm and attract bright students who will The gift is part of Leading Together: Spartan Light Metal Products engineer. Later, changes at Sterling led The Campaign for Washington University. has 700 employees in Illinois, serve as our leaders of tomorrow.” Mr. Jubel to purchase Sterling’s aluminum A formal groundbreaking for the new Missouri, Michigan and Tokyo. die-cut machines to establish Spartan — don jubel building will be announced at a later date.
Recommended publications
  • Nanotechnology Measurement Handbook a Guide to Electrical Measurements for Nanoscience Applications Nanotechnology Measurement Handbook Nanotechnology
    NanoCov_grn.tiff 12/13/07 10:47 AM Page 1 www.keithley.com st 1Edition Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications Nanotechnology Measurement Handbook Specifications are subject to change without notice. All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other trademarks and trade names are the property of their respective companies. Keithley Instruments, Inc. Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (534-8453) www.keithley.com 1 st Edition © Copyright 2007 Keithley Instruments, Inc. No. 2819 Printed in the U.S.A. 020731KIPC Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications 1st Edition A GREATER MEASURE OF CONFIDENCE Foreword Nanotechnology research often demands skills in multiple disciplines, from phys- ics and materials science to chemistry and measurement system design. Although it would be impossible to predict all the technical innovations that nano research will offer, it’s already clear that nanoscience will be a major driver of the economy of the future. However, characterizing tomorrow’s nanoscale components and materials will be far from trivial because many of their electrical properties lie at the very edge of the measurement envelope. To unravel tiny mysteries and turn nanoscale materials and devices into commercial products, researchers must have tools with the flexibility to handle a variety of electrical measurements, including current vs. voltage (I-V) characterization, resistance, resistivity and conductivity, differential conductance, transport, and optical spectrum and energy. They must also gain an in-depth understanding of the principles and pitfalls associated with low-level electrical measurements.
    [Show full text]
  • Controlling Nanoparticle Dispersion for Nanoscopic Self-Assembly
    CONTROLLING NANOPARTICLE DISPERSIONS FOR NANOSCOPIC SELF- ASSEMBLY A Project Report presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Polymers and Coatings by Nathan Stephen Starkweather March 2013 © 2013 Nathan Stephen Starkweather ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Controlling Nanoparticle Dispersions for Nanoscopic Self- Assembly AUTHOR: Nathan Stephen Starkweather DATE SUBMITTED: March 2013 COMMITTEE CHAIR: Raymond H. Fernando, Ph.D. COMMITTEE MEMBER: Shanju Zhang, Ph.D. COMMITTEE MEMBER: Chad Immoos, Ph.D. iii ABSTRACT Controlling Nanoparticle Dispersions for Nanoscopic Self-Assembly Nathan Stephen Starkweather Nanotechnology is the manipulation of matter and devices on the nanometer scale. Below the critical dimension length of 100nm, materials begin to display vastly different properties than their macro- or micro- scale counterparts. The exotic properties of nanomaterials may trigger the start of a new technological revolution, similar to the electronics revolution of the late 20th century. Current applications of nanotechnology primarily make use of nanoparticles in bulk, often being made into composites or mixtures. While these materials have fantastic properties, organization of nano and microstructures of nanoparticles may allow the development of novel devices with many unique properties. By analogy, bulk copper may be used to form the alloys brass or bronze, which are useful materials, and have been used for thousands of years. Yet, organized arrays of copper allowed the development of printed circuit boards, a technology far more advanced than the mere use of copper as a bulk material. In the same way, organized assemblies of nanoparticles may offer technological possibilities far beyond our current understanding.
    [Show full text]
  • Arxiv:2005.01804V1 [Q-Bio.QM] 1 May 2020
    Modeling in the Time of COVID-19: STATISTICAL AND RULE-BASED MESOSCALE MODELS APREPRINT Ngan Nguyen1, Ondrejˇ Strnad1, Tobias Klein2,4, Deng Luo1, Ruwayda Alharbi1, Peter Wonka1, Martina Maritan3, Peter Mindek2,4, Ludovic Autin3, David S. Goodsell3, and Ivan Viola1 1King Abdullah University of Science and Technology (KAUST), Saudi Arabia. E-mails: {ngan.nquyen j ondrej.strnad j deng.luo j ruwayda.alharbi j peter.wonka j ivan.viola }@kaust.edu.sa. , N. Nguyen and O. Strnad are co-first authors. 2TU Wien, Austria. E-mails: {tklein j mindek}@cg.tuwien.ac.at. 3Scripps Research Institute, US. E-mail: {mmaritan j autin j goodsell}@scripps.edu. 4Nanographics GmbH May 6, 2020 ABSTRACT We present a new technique for rapid modeling and construction of scientifically accurate mesoscale biological models. Resulting 3D models are based on few 2D microscopy scans and the latest knowledge about the biological entity represented as a set of geometric relationships. Our new technique is based on statistical and rule-based modeling approaches that are rapid to author, fast to construct, and easy to revise. From a few 2D microscopy scans, we learn statistical properties of various structural aspects, such as the outer membrane shape, spatial properties and distribution characteristics of the macromolecular elements on the membrane. This information is utilized in 3D model construction. Once all imaging evidence is incorporated in the model, additional information can be incorporated by interactively defining rules that spatially characterize the rest of the biological entity, such as mutual interactions among macromolecules, their distances and orientations to other structures. These rules are defined through an intuitive 3D interactive visualization and modeling feedback loop.
    [Show full text]
  • The Nanobank Database Is Available at for Free Use for Research Purposes
    Forthcoming: Annals of Economics and Statistics (Annales d’Economie et Statistique), Issue 115/116, in press 2014 NBER WORKING PAPER SERIES COMMUNITYWIDE DATABASE DESIGNS FOR TRACKING INNOVATION IMPACT: COMETS, STARS AND NANOBANK Lynne G. Zucker Michael R. Darby Jason Fong Working Paper No. 17404 http://www.nber.org/papers/w17404 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 September 2011 Revised March 2014 The construction of Nanobank was supported under major grants from the National Science Foundation (SES- 0304727 and SES-0531146) and the University of California’s Industry-University Cooperative Research Program (PP9902, P00-04, P01-02, and P03-01). Additional support was received from the California NanoSystems Institute, Sun Microsystems, Inc., UCLA’s International Institute, and from the UCLA Anderson School’s Center for International Business Education and Research (CIBER) and the Harold Price Center for Entrepreneurial Studies. The COMETS database (also known as the Science and Technology Agents of Revolution or STARS database) is being constructed for public research use under major grants from the Ewing Marion Kauffman Foundation (2008- 0028 and 2008-0031) and the Science of Science and Innovation Policy (SciSIP) Program at the National Science Foundation (grants SES-0830983 and SES-1158907) with support from other agencies. Our colleague Jonathan Furner of the UCLA Department of Information Studies played a leading role in developing the methodology for selecting records for Nanobank. We are indebted to our scientific and policy advisors Roy Doumani, James R. Heath, Evelyn Hu, Carlo Montemagno, Roger Noll, and Fraser Stoddart, and to our research team, especially Amarita Natt, Hsing-Hau Chen, Robert Liu, Hongyan Ma, Emre Uyar, and Stephanie Hwang Der.
    [Show full text]
  • Cancer Nanomedicine: from Targeted Delivery to Combination Therapy
    Review Cancer nanomedicine: from targeted delivery to combination therapy 1,2,3 1 1 1,2 Xiaoyang Xu , William Ho , Xueqing Zhang , Nicolas Bertrand , and 1 Omid Farokhzad 1 Laboratory of Nanomedicine and Biomaterials, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA 2 The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3 Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA The advent of nanomedicine marks an unparalleled op- advantages of NPs have brought widespread attention to portunity to advance the treatment of various diseases, the field of nanomedicine, including their large ratio of including cancer. The unique properties of nanoparticles volume to surface area, modifiable external shell, biode- (NPs), such as large surface-to-volume ratio, small size, gradability, and low cytotoxicity [4]. Furthermore, nano- the ability to encapsulate various drugs, and tunable medicine brings us dramatically closer to realizing the full surface chemistry, give them many advantages over their promise of personalized medicine [5]. bulk counterparts. This includes multivalent surface mod- Engineered therapeutic NPs offer numerous clinical ification with targeting ligands, efficient navigation of the advantages. Surface modification with polyethylene glycol complex in vivo environment, increased intracellular traf- (PEG) protects NPs from clearance from the blood by the ficking, and sustained release of drug payload. These mononuclear phagocytic system (MPS), markedly increasing advantages make NPs a mode of treatment potentially both circulation times and drug uptake by target cells superior to conventional cancer therapies. This review [2,6].
    [Show full text]
  • Information in Biological Systems and the Fluctuation Theorem
    Entropy 2014, 16, 1931-1948; doi:10.3390/e16041931 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Information in Biological Systems and the Fluctuation Theorem Yaşar Demirel Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 820 N. 16th Street, Lincoln, NE, 68588, USA; E-Mail: [email protected]; Tel.: 1-402-472 2745; Fax: 1-402 472 6989 Received: 17 January 2014; in revised form: 27 March 2014 / Accepted: 28 March 2014 / Published: 1 April 2014 Abstract: Some critical trends in information theory, its role in living systems and utilization in fluctuation theory are discussed. The mutual information of thermodynamic coupling is incorporated into the generalized fluctuation theorem by using information theory and nonequilibrium thermodynamics. Thermodynamically coupled dissipative structures in living systems are capable of degrading more energy, and processing complex information through developmental and environmental constraints. The generalized fluctuation theorem can quantify the hysteresis observed in the amount of the irreversible work in nonequilibrium regimes in the presence of information and thermodynamic coupling. Keywords: information theory; biological systems; fluctuation theorem; thermodynamic coupling 1. Introduction Definition and quantification of information have created broad discussions; particularly, “information theory” in living systems is an evolving field [1–14]. Evolution is an axiomatic consequence of organismic information obeying the second law of thermodynamics; as entropy increases, the information within a biological system becomes more complex and diversifies at bifurcation points [15–18]. Behavior of living systems is decomposable into functional modes and the ensemble of modes at an agent’s disposal constitutes functional repertoire. The modes may be subjected to operational signals and a mechanism that sequentially selects a mode so that it controls the functional dynamics [18,19].
    [Show full text]
  • Nano-Engineered Scaffold for Osteoarticular Regenerative Medicine
    dicine e & N om a n n a o t N e f c o h Schwinté et al., J Nanomed Nanotechnol 2015, 6:1 l n Journal of a o n l o r g u DOI: 10.4172/2157-7439.1000258 y o J ISSN: 2157-7439 Nanomedicine & Nanotechnology Review Article Open Access Nano-Engineered Scaffold for Osteoarticular Regenerative Medicine Pascale Schwinté1,2,§, Laetitia Keller1,2,§, Stéphanie Lemoine1,2, Jacques-Eric Gottenberg1, Nadia Benkirane-Jessel1,2 and Maximilien Vanleene1,2* 1INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine” laboratory, FMTS, Faculté de Médecine, F-67085 Strasbourg Cedex, France 2Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l’Hôpital, F-67000 Strasbourg, France Abstract In the last decade, regenerative medicine has benefited from the exponential development of nanomaterial sciences, tissue engineering and cell-based therapies. More and more sophisticated designed structures and surface topologies are being developed to basically mimic the extracellular matrix of native tissues such as cartilage and bone. Here we give an overview of the progress made in osteochondral lesion repair, with nano-engineered scaffolds comprising building blocks such as nanoparticles, nanotubes, layer-by-layer nano-assemblies, molecular self-assembly, nanopatterned surfaces…. This nano-engineering technology is coupled with bio-functionalization, by the use of adhesion peptides, growth factors, or deoxyribonucleic acid, to drive cell adhesion, proliferation and behavior towards tissue regeneration. In osteochondral regeneration, the challenge is the simultaneous development of chondrocytes and cartilage extracellular matrix on the one side and a well vascularized bone tissue with osteoblasts on the other side. Keywords: Biocompatible scaffolds; Osteochondral lesion; type I molecules (90% of the bone matrix protein) and apatite crystals Regenerative nanomedicine; Nanostructures; Bone; Cartilage; Tissue organized, at the nanoscale, into mineralized collagen micro-fibrils and engineering fibers.
    [Show full text]
  • L CF IUPAB 0617 Programme-29.Indd
    19th IUPAB congress and 11th EBSA congress Scientific Programme Scientific programme Sunday 16 July 2017 12:30–14:00 EBSA EC First Meeting (closed) Harris Room 1 13:30–18:00 Registration Atrium 14:30–15:30 PUBLIC LECTURE Chair: Frank Gunn-Moore, University of St Andrews, UK Alzheimer’s Disease: Addressing a Twenty-First Century Plague Christopher M Dobson, University of Cambridge, UK Sponsored by Alzheimer’s Research (UK), Scottish Network Lennox Suite 16:45–17:15 Welcome Address Lennox Suite 17:15–18:00 PLENARY LECTURE Chair: Andrew Turber field, University of Oxford, UK Lennox Suite IUPAB Ramachandran Lecture: The termination of translation in bacteria and eukaryotes Venki Ramakrishnan, LMB Cambridge, UK 18:00–19:30 Welcome Reception (open to all registered delegates) Cromdale and Strathblane Halls Monday 17 July 2017 08:00–18:00 Registration Atrium 09:00–09:45 PLENARY LECTURE Chair: Ilpo Vattulainen, EBSA, University of Helsinki, Finland Lennox Suite Towards a mechanistic understanding of ribosomal function Helmut Grubmüller, Max Planck Institute for Biophysical Chemistry, Germany 09:55–12:40 SO1 – MULTISCALE BIOPHYSICS OF MEMBRANES Chairs: Claudio M Soares and John Seddon Lennox Suite 09:55 (Invited) Mechanisms of Membrane 10:25 (Invited) Structure on the 10:55 Developing ESCRT-III as a toolkit for Curvature Generation nanoscopic scale of complex bottom-up construction of eukaryote-like Tobias Baumgart, University of Pennsylvania, biomembrane mimetics artificial cells USA Georg Pabst, University of Graz, Austria Andrew Booth, University
    [Show full text]
  • New Biological Frontiers Illuminated by Molecular Sensors and Actuators JUNE 28 – JULY 1, 2015 | TAIPEI, TAIWAN
    Biophysical Society Thematic Meeting | PROGRAM AND ABSTRACTS New Biological Frontiers Illuminated by Molecular Sensors and Actuators JUNE 28 – JULY 1, 2015 | TAIPEI, TAIWAN Organizing Committee Takanari Inoue, Johns Hopkins University, USA Robert E. Campbell, University of Alberta, Canada Chia-Fu Chou, Institute of Physics, Academia Sinica, Taiwan Jin-Der Wen, National Taiwan University, Taiwan New Biological Frontiers Illuminated by Molecular Sensors and Actuators Welcome Letter June 2015 Dear Colleagues, We would like to welcome you to the BPS Thematic Meeting on New Biological Frontiers Illuminated by Molecular Sensors and Actuators. This landmark international meeting brings together 25 of the leading minds in the areas of biological fluorescence imaging, biological tool development, and implementation of optogenetics, all of which are used to resolve fundamental biological questions that otherwise cannot be addressed by conventional techniques alone. We have more than 96 participants from all over the world. The goal of this meeting is to provide the attendees with a map of the new, and largely unexplored, landscape of powerful optical and chemical tools that enable researchers at the frontier to peer into and harness biological systems with a level of control that was previously unimaginable. More specifically, the recent emergence of biosensors based on fluorescent proteins, along with optogenetic and chemical dimerization techniques, have created the ability to both visualize and perturb biochemistry in live cells. In coming years we can expect complementary technologies based on magnetic- and force-based stimulation to join optical and chemical techniques as indispensable research tools for gaining novel insights into cellular biology. Due to the multidisciplinary applications of these tools, this meeting is attracting an extremely diversified audience from the fields of biotechnology, method development, chemical biology, material science, cell biology, general chemistry and engineering, computational biology, and synthetic biology.
    [Show full text]
  • Self-Reporting Biological Nanosystems to Study and Control Bio-Molecular
    BIOSCOPE Final Publishable Report BIOs cope Project no. NMP4-CT-2003-505211 Project acronym BIOSCOPE Project full name Self-reporting biological nanosystems to study and control bio- molecular mechanisms on the single molecule level Instrument type SPECIFIC TARGETED RESEARCH OR INNOVATION PROJECT Priority name Priority 3: Nanotechnology and nanoscience, knowledge-based multifunctional materials, new production processes and devices (NMP) Final Publishable Report Period covered: from February 1, 2006 to January 31, 2007 Date of preparation: April 19, 2007 Start date of project: Duration: February 1, 2004 36 month Project coordinator name Dr. Tommy Nylander Project coordinator organisation name Revision 2.0 Lund University (Div. Physical Chemistry 1) Page 1 of (26) BIOSCOPE Final Publishable Report BIOs cope www.BIOSCOPE.FKEM1.LU.SE Project execution The aim with BIOSCOPE was to pioneer the development of new leading edge nanoscale research tools and methodologies that will allow unprecedented insight into bio-molecular mechanisms at biological interfaces on the molecular scale. BIOSCOPE consider the biomolecular system itself as a part of the nanoscopic instrument, which in various ways reports to the out-side world about its current local state. Thereby it will be possible to study the local effects on the molecular level when e.g. a protein interacts with a biomembrane surface or when a lipase interacts with a lipid surface. The objectives of BIOSCOPE were: • To develop instrumentation and methods for manipulation of enzymes and enzyme activity at the nanoscale providing insight into the biomolecular mechanisms on a single molecule level. • To develop novel forms of integration, at the nanoscale level, of enzymes and non-biological systems such as nanoparticles, artificial membranes, electrical field or force field traps.
    [Show full text]
  • Nano Brochure Copy
    Nanotechnology in the San Francisco Bay Area: Dawn of a New Age Nanotechnology in the San Francisco Bay Area: Dawn of a New Age This report was produced by the Bay Area Science and Innovation Consortium (BASIC), an action-oriented collaboration of the region’s major research universities, national laboratories, independent research institutions, and research and development-driven businesses and organizations. Project Manager: Cheryl Fragiadakis, Lawrence Berkeley National Laboratory Writer: Lynn Yarris Designer: Dennis McKee With special appreciation to the following who assisted in the preparation of this report: Mark Alper, Lawrence Berkeley National Laboratory (Berkeley Lab) Yigal Blum, SRI International Grace Chou, SRI International Hans Coufal, IBM’s Almaden Research Center Nancy Garcia, Sandia National Laboratories Jonathan Goldstein, Integrated Nanosystems, Inc. Ty Jagerson, Palo Alto Research Center Tom Kalil, UC Berkeley Ted Kamins, Hewlett-Packard Dan Krotz, Berkeley Lab David Lackner, NASA Ames Research Center Dawn Levy, Stanford University Hari Manoharan, Stanford University Maya Meyyappan, NASA Ames Research Center Alexandra Navrotsky, UC Davis Anne Stark, Lawrence Livermore National Laboratory And special thanks to Mike Ross, IBM’s Almaden Research Center, and Pam Patterson, Berkeley Lab, for their editorial contributions. BASIC Bay Area Science and Innovation Consortium Advancing the Bay Area’s Leadership in Science, Technology, and Innovation Cover Cover: The next big thing in technology is going to be very very small. Nanotechnology offers the promise of manufacturing materials and products at the atomic and molecular levels, as shown by this depiction of a carbon nanotube. Economists are predicting a trillion dollar global market for nanoproducts within the next ten years.
    [Show full text]
  • The Renaissance Man
    NANO BIO SCIENCE: BACK TO THE RENAISSANCE MAN J. Ricardo Arias-González Madrid Institute of Advanced Studies in Nanoscience (IMDEA-Nanoscience) and National Centre of Biotechnology, CSIC. Physics and biology have been courting each other throughout the last century, and are celebrating their engagement in this century, a match arranged by Nano Bio Science. Molecular and Cell Biophysics are basically a modern conception of life sciences at the nanoscopic scale. The revolution brought about by microelectronics had a great impact in its time and its influence still surprises us today. We have not yet reached such a critical moment in nanotechnology, but from a scientific point of view, both revolutions are rooted in very different ways. Microelectronics, though highly influential in society at large, is limited to a very small part of science: the area of electronics, which does not even make up an area of knowledge in the discipline of physics. Nanotechnology, on the contrary, is expanding in such a way that it tends to involve all scientific disciplines. This is why a scientist working in nanotechnology must of necessity have wide-ranging up-to-date general knowledge; apart of course from specialist knowledge of the problems he deals with. The Renaissance man, as well as having the desire to recover all the knowledge of the classical and mediaeval world, sought to understand and interrelate it. Galileo, with his famous principle of relativity, engaged in an incredible endeavour for that time: to connect concepts in physics, the most highly developed natural science at that time. It was an age when the scientific mindset started to accept the idea of continuity in knowledge: everything must be related, even though at the moment we may not understand how.
    [Show full text]