90 Colloid and Surface Science Symposium Harvard University

Total Page:16

File Type:pdf, Size:1020Kb

90 Colloid and Surface Science Symposium Harvard University 90th Colloid and Surface Science Symposium Harvard University June 5-8, 2016 ABSTRACTS CSSS 1 Entangled active matter: From ants to living cells Françoise Brochard-Wyart, [email protected]. Institut Curie, Paris, France We introduce the broad field of entangled active matter, a novel class of non-equilibrium materials composed of many interacting units that individually consume energy and collectively generate motion or mechanical stresses. Unlike swarms of fish and flocks of birds, both ants and cells can support static loads. This is because both cells and ants are also entangled, so that the individual units are bound by transient links. We explore and establish analogies between aggregates of both ants and cells in analogy with soft matter physics. We first describe the mechanical properties of this entangled active matter (surface tension, elastic modulus, viscosity). We use parallel-plate compression and pipette aspiration technique. Both aggregates of cells and ants exhibit a viscoelastic response. For cells, we observe aggregate reinforcement with pressure, which may results in pulsed contractions or “shivering”. We interpret this reinforcement as a mechano-sensitive active response of the acto-myosin cortex. We then describe the spreading of cellular aggregates on rigid and soft substrates, varying both intercellular and substrate adhesion. We find both partial and complete wetting, with a precursor film forming a cellular monolayer in a liquid or gas state. We show that the spreading of aggregates of ants is very similar, with a dense precursor film on water and a gas state on a solid substrate. We model the dynamics of spreading from a balance between active cellular driving forces and permeation of cells to enter into the film. On soft substrate, the precursor film is unstable, leading to a symmetry breaking and a global motion of the aggregate as a giant keratocytes. We describe the shapes of migrating aggregates, the flow and the force field responsible of the motion. We monitored the center of mass motion and we observe stick-slip. We extend our work to hybrid nanoparticles-cellular aggregates: we show that nanoparticles, within a limited size range, can be used as a glue “nanostickers” to enable the formation of self-assembled aggregates by promoting cell–cell interactions. We find that carboxylated polystyrene NPs are more efficient than the silica NPs of the same size, which were reported to induce fast wound healing and to glue soft tissue by Leibler et al. We hope that our models applied to active entangled matter will spur further investigations into ants and cells as active materials, and inspire the fabrication of synthetic analogs. CSSS 2 Estimating colloidal attachments onto fibrous substrates: From nanoparticle functionalization to pathogen detection Tanmay Bera1, [email protected], Patrick Sisco1, Hilal Goktas2,3, Aaron Bandremer3, Andrew Fong1, Sean Linder1, Karen Gleason2, Stephen Torosian3. (1) Food and Drug Administration, Orlando, Florida, United States (2) Dept. Chem Enging, MIT, Cambridge, Massachusetts, United States (3) Winchester Engineering and Analytical Center, Food and Drug Administration, Winchester, Massachusetts, United States Colloidal attachment to functional surfaces is a phenomenon that is encountered in various applications. Their correct estimation is often regarded as being critical since it is associated to the functionality and performance of the overall system. For example, the correct estimation of bacterial attachment to a biosensor surface reveals its sensitivity and detection limits. Similarly, the number (or density) of nanoparticles binding to functionalized substrates reveals the effectiveness of the functionalization process. Such colloidal attachments are usually characterized quantitatively using analytical tools such as spectroscopy, plate counts or oxidation utilization, all of which have limitations in precision. Imaging techniques such as electron microscopy are mostly used for qualitative visualization. While there have been some examples of the quantification of colloidal interactions, along with their size characterizations, done through electron microscopy, yet they have largely been restricted to planar substrates. However, non-planar substrates such as 3D fibrous matrixes are more often used as a functional surface due to their high surface area and resemblance to real-time systems such as textiles and water/air-filters. Thus an estimation technique that quantifies colloidal attachment on such systems using standard imaging tools like electron microscopy is needed. Herein, we present an estimation method that can quantify micron to nano size colloids on 3D fibrous matrices. In this method, electron microscopy images were processed using the NIH approved ImageJ platform to estimate both nanoparticle (nano size) and bacterial (micron size) attachment of functional surfaces. The method was optimized and compared with standard analytical tools to minimize errors to less than ±10 %, and was verified for 4 strains of bacteria and 4 different geometrical shaped for metal nanoparticles. Our results also indicate that selective estimation of individual bacterial species or nanoparticle types could also be possible using this method. The estimation methods also helped us to understand both specific and non-specific bacterial attachment. It further shed light on functionalization and conjugation of nanoparticles onto different substrates which ultimately helped us design a better pathogen sensor. We believe such estimation methods will also help improve other technologically relevant applications where colloidal attachments are prevalent. CSSS 3 Influence of surface roughness on colloid retention in impinging jet experiments Jacqueline A. Rasmuson, [email protected]. Geology and Geophysics, University of Utah, Salt Lake City, Utah, United States The failure of present transport models to accurately predict colloid attachment in column and field experiments is often explained by the absence of surface roughness in these models. The need to include roughness is obvious, as real collector surfaces are never as smooth as they are in a laboratory setting. However, there lacks a consensus on whether roughness serves to enhance or impede attachment under conditions favorable or unfavorable for attachment. In order to elucidate this issue, a series of impinging jet experiments were conducted for untreated (i.e. smooth glass slides) and treated (i.e. roughened glass slides) under favorable and unfavorable geochemical conditions for a range of colloid sizes (i.e. tens of nm to several µm). These experiments allowed direct observation of particle attachment, detachment, and average near- surface velocities. The results reveal that roughness can both increase and decrease particle attachment and detachment under a given set of conditions, and highlight the need to include both DLVO and hydrodynamic effects of surface roughness in future transport models. CSSS 4 Radioactivity-induced charging: Theory, measurements, and applications Yong-ha Kim1, [email protected], Sotira Yiacoumi1, Costas Tsouris1,2. (1) Georgia Institute of Technology, Atlanta, Georgia, United States (2) Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States Because radionuclides are ubiquitous on earth, it is necessary to more accurately understand radiological phenomena of radionuclides in the environment. One such radiological phenomenon is radioactivity-induced charging. Radionuclides undergo radioactive decay which results in chemical transformation of the radionuclides through emission of energetic particles, such as alpha and beta particles. Alpha and beta particles are inherently charged; thus, products generated by alpha and beta decay of radionuclides are intrinsically charged to maintain a charge balance. Energy of the emitted particles may be transferred to neighboring molecules on the trajectory of the particles. These molecules can be ionized and then captured by materials in the surrounding environment. Materials capturing ions also become charged or discharged. Since Becquerel's discovery of radioactivity, followed by the discovery of polonium and radium by P. and M. Curie, these phenomena have been extensively studied in various science and engineering fields. This study is aimed at reviewing the progress of theoretical and experimental investigations of radioactivity-induced charging, including our own recent work. Theoretical approaches reviewed in this study include charge and force balances that have been used since the mid-1950s. Charge balance equations consist of terms describing charging mechanisms, such as self and diffusion charging. Force balance equations generally include electrodynamic forces to consider radioactivity-induced charging. Various measurement techniques to quantify radioactivity-induced charge are introduced. Advantages and disadvantages of measurement techniques of radioactivity-induced charging are discussed. Application studies of radioactivity-induced charging are also examined. CSSS 5 Modeling diffusiophoresis during CO2 dissolution into aqueous suspensions Orest Shardt1, [email protected], Sangwoo Shin1, Patrick B. Warren2, Howard A. Stone1. (1) Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, United States (2) Unilever R&D Port Sunlight, Bebington, United Kingdom Diffusiophoresis is the motion of particles due to gradients in chemical potential. This phenomenon has
Recommended publications
  • 149-Page PDF Version
    By Bradford Hatcher © 2019 Bradford Hatcher ISBN: 978-0-9824191-8-2 Download at: https://www.hermetica.info/Intervention.html or: https://www.hermetica.info/Intervention.pdf Cover Photo Credit: Found online. Appears to be a conception of an evolved Terran reptilian life form. Table of Contents Part One 5 Preface 5 Puppet Shows 7 Waldo Speaking, Part 1 11 Waldo Speaking, Part 2 17 Wilma Speaks of Spirit 24 The Eck 30 Gizmos and the Van 34 Growing Up Van 42 Some Changes are Made 49 Culling Homo Non Grata 56 Introducing the Ta 63 Terrestrial and Aquatic Ta 67 Vestan, Myco, and Raptor Ta 72 Part Two 78 Progress Report at I+20 78 Desert Colonies 80 The Final Frontier, For Now 85 The Stellar Fleet 89 Remembering Community 94 Prototypes and Lexicons 99 For the Kids 104 Cultural Evolution 112 Cultural Engineering 119 Bioengineering 124 The Commons 128 The Tour 132 Mitakuye Oyasin 137 A Partial Glossary 147 Part One It gives one a feeling of confidence to see nature still busy with experiments, still dynamic, and not through nor satisfied because a Devonian fish managed to end as a two-legged character with a straw hat. There are other things brewing and growing in the oceanic vat. It pays to know this. It pays to know that there is just as much future as there is past. The only thing that doesn't pay is to be sure of man's own part in it. There are things down there still coming ashore. Never make the mistake of thinking life is now adjusted for eternity.
    [Show full text]
  • Nanotechnology and Picotechnology to Increase Tissue Growth: a Summary of in Vivo Studies
    Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies Ece Alpaslan1 and Thomas J Webster1,2 Author information ► Copyright and License information ► Go to: Abstract The aim of tissue engineering is to develop functional substitutes for damaged tissues or malfunctioning organs. Since only nanomaterials can mimic the surface properties (ie, roughness) of natural tissues and have tunable properties (such as mechanical, magnetic, electrical, optical, and other properties), they are good candidates for increasing tissue growth, minimizing inflammation, and inhibiting infection. Recently, the use of nanomaterials in various tissue engineering applications has demonstrated improved tissue growth compared to what has been achieved until today with our conventional micron structured materials. This short report paper will summarize some of the more relevant advancements nanomaterials have made in regenerative medicine, specifically improving bone and bladder tissue growth. Moreover, this short report paper will also address the continued potential risks and toxicity concerns, which need to be accurately addressed by the use of nanomaterials. Lastly, this paper will emphasize a new field, picotechnology, in which researchers are altering electron distributions around atoms to promote surface energy to achieve similar increased tissue growth, decreased inflammation, and inhibited infection without potential nanomaterial toxicity concerns. Keywords: nanomaterials, tissue engineering, toxicity Go to: Introduction Bone tissue and other organ dysfunction can be provoked by poor eating habits, stress, age-related diseases such as osteoarthritis or osteoporosis, as well as accidents.1 To date, common procedures to restore or enhance life expectancy involve medical device insertion or organ transplantation.1 However, due to the low number of donors and its high cost, organ transplantation is limited.
    [Show full text]
  • Nanotechnology Measurement Handbook a Guide to Electrical Measurements for Nanoscience Applications Nanotechnology Measurement Handbook Nanotechnology
    NanoCov_grn.tiff 12/13/07 10:47 AM Page 1 www.keithley.com st 1Edition Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications Nanotechnology Measurement Handbook Specifications are subject to change without notice. All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other trademarks and trade names are the property of their respective companies. Keithley Instruments, Inc. Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (534-8453) www.keithley.com 1 st Edition © Copyright 2007 Keithley Instruments, Inc. No. 2819 Printed in the U.S.A. 020731KIPC Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications 1st Edition A GREATER MEASURE OF CONFIDENCE Foreword Nanotechnology research often demands skills in multiple disciplines, from phys- ics and materials science to chemistry and measurement system design. Although it would be impossible to predict all the technical innovations that nano research will offer, it’s already clear that nanoscience will be a major driver of the economy of the future. However, characterizing tomorrow’s nanoscale components and materials will be far from trivial because many of their electrical properties lie at the very edge of the measurement envelope. To unravel tiny mysteries and turn nanoscale materials and devices into commercial products, researchers must have tools with the flexibility to handle a variety of electrical measurements, including current vs. voltage (I-V) characterization, resistance, resistivity and conductivity, differential conductance, transport, and optical spectrum and energy. They must also gain an in-depth understanding of the principles and pitfalls associated with low-level electrical measurements.
    [Show full text]
  • Controlling Nanoparticle Dispersion for Nanoscopic Self-Assembly
    CONTROLLING NANOPARTICLE DISPERSIONS FOR NANOSCOPIC SELF- ASSEMBLY A Project Report presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Polymers and Coatings by Nathan Stephen Starkweather March 2013 © 2013 Nathan Stephen Starkweather ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Controlling Nanoparticle Dispersions for Nanoscopic Self- Assembly AUTHOR: Nathan Stephen Starkweather DATE SUBMITTED: March 2013 COMMITTEE CHAIR: Raymond H. Fernando, Ph.D. COMMITTEE MEMBER: Shanju Zhang, Ph.D. COMMITTEE MEMBER: Chad Immoos, Ph.D. iii ABSTRACT Controlling Nanoparticle Dispersions for Nanoscopic Self-Assembly Nathan Stephen Starkweather Nanotechnology is the manipulation of matter and devices on the nanometer scale. Below the critical dimension length of 100nm, materials begin to display vastly different properties than their macro- or micro- scale counterparts. The exotic properties of nanomaterials may trigger the start of a new technological revolution, similar to the electronics revolution of the late 20th century. Current applications of nanotechnology primarily make use of nanoparticles in bulk, often being made into composites or mixtures. While these materials have fantastic properties, organization of nano and microstructures of nanoparticles may allow the development of novel devices with many unique properties. By analogy, bulk copper may be used to form the alloys brass or bronze, which are useful materials, and have been used for thousands of years. Yet, organized arrays of copper allowed the development of printed circuit boards, a technology far more advanced than the mere use of copper as a bulk material. In the same way, organized assemblies of nanoparticles may offer technological possibilities far beyond our current understanding.
    [Show full text]
  • Arxiv:2005.01804V1 [Q-Bio.QM] 1 May 2020
    Modeling in the Time of COVID-19: STATISTICAL AND RULE-BASED MESOSCALE MODELS APREPRINT Ngan Nguyen1, Ondrejˇ Strnad1, Tobias Klein2,4, Deng Luo1, Ruwayda Alharbi1, Peter Wonka1, Martina Maritan3, Peter Mindek2,4, Ludovic Autin3, David S. Goodsell3, and Ivan Viola1 1King Abdullah University of Science and Technology (KAUST), Saudi Arabia. E-mails: {ngan.nquyen j ondrej.strnad j deng.luo j ruwayda.alharbi j peter.wonka j ivan.viola }@kaust.edu.sa. , N. Nguyen and O. Strnad are co-first authors. 2TU Wien, Austria. E-mails: {tklein j mindek}@cg.tuwien.ac.at. 3Scripps Research Institute, US. E-mail: {mmaritan j autin j goodsell}@scripps.edu. 4Nanographics GmbH May 6, 2020 ABSTRACT We present a new technique for rapid modeling and construction of scientifically accurate mesoscale biological models. Resulting 3D models are based on few 2D microscopy scans and the latest knowledge about the biological entity represented as a set of geometric relationships. Our new technique is based on statistical and rule-based modeling approaches that are rapid to author, fast to construct, and easy to revise. From a few 2D microscopy scans, we learn statistical properties of various structural aspects, such as the outer membrane shape, spatial properties and distribution characteristics of the macromolecular elements on the membrane. This information is utilized in 3D model construction. Once all imaging evidence is incorporated in the model, additional information can be incorporated by interactively defining rules that spatially characterize the rest of the biological entity, such as mutual interactions among macromolecules, their distances and orientations to other structures. These rules are defined through an intuitive 3D interactive visualization and modeling feedback loop.
    [Show full text]
  • The Nanobank Database Is Available at for Free Use for Research Purposes
    Forthcoming: Annals of Economics and Statistics (Annales d’Economie et Statistique), Issue 115/116, in press 2014 NBER WORKING PAPER SERIES COMMUNITYWIDE DATABASE DESIGNS FOR TRACKING INNOVATION IMPACT: COMETS, STARS AND NANOBANK Lynne G. Zucker Michael R. Darby Jason Fong Working Paper No. 17404 http://www.nber.org/papers/w17404 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 September 2011 Revised March 2014 The construction of Nanobank was supported under major grants from the National Science Foundation (SES- 0304727 and SES-0531146) and the University of California’s Industry-University Cooperative Research Program (PP9902, P00-04, P01-02, and P03-01). Additional support was received from the California NanoSystems Institute, Sun Microsystems, Inc., UCLA’s International Institute, and from the UCLA Anderson School’s Center for International Business Education and Research (CIBER) and the Harold Price Center for Entrepreneurial Studies. The COMETS database (also known as the Science and Technology Agents of Revolution or STARS database) is being constructed for public research use under major grants from the Ewing Marion Kauffman Foundation (2008- 0028 and 2008-0031) and the Science of Science and Innovation Policy (SciSIP) Program at the National Science Foundation (grants SES-0830983 and SES-1158907) with support from other agencies. Our colleague Jonathan Furner of the UCLA Department of Information Studies played a leading role in developing the methodology for selecting records for Nanobank. We are indebted to our scientific and policy advisors Roy Doumani, James R. Heath, Evelyn Hu, Carlo Montemagno, Roger Noll, and Fraser Stoddart, and to our research team, especially Amarita Natt, Hsing-Hau Chen, Robert Liu, Hongyan Ma, Emre Uyar, and Stephanie Hwang Der.
    [Show full text]
  • The World of Nanotechnology: an Introduction
    The World of Nanotechnology: An Introduction NACK Center www.nano4me.org The NACK Center was established at the Pennsylvania State College of Engineering, and is funded in part by a grant from the National Science Foundation. Hosted by MATEC NetWorks www.matecnetworks.org NACK Center www.nano4me.org Welcome to NACK’s Webinar Presenter Stephen J. Fonash, Ph.D. Director, Center for Nanotechnology Applications & Career Knowledge (NACK) NACK Centers Nanotechnology Applications & Career Knowledge Webinar Desired Outcomes Participant understanding of: • What is nanotechnology ? • What is so unique about the nanoscale? • Where did nanotechnology come from and why is it so “big” now? • How is nanotechnology impacting us today? • How will nanotechnology impact us in the future? NACK Center www.nano4me.org Nanotechnology What Does the Word Mean? It refers to technology based on “things” that are really, really, really small or more precisely It means technology based on particles and/or structures which have at least one dimension in the range of one billionth of a meter NACK Center www.nano4me.org How small is a Nanometer- Courtesy of NanoHorizons, Inc. NACK Center www.nano4me.org Let’s look at the “small size” ranges pictorially Let’s also get some idea of what nature makes and what man makes in these size ranges NACK Center www.nano4me.org Sizes of Some Small Naturally Occurring and Man-Made Structures Transistor of 2007 Transistors of 20-30 Years ago Drug molecule Quantum dot 1 nm 1 1 µm 1 1 mm 1 10 nm 10 10 µm 10 100 pm 100 100 µm 100 100 nm 100 Macro-scale Micro-scale Nano-scale Virus DN A tissue Human cell Individual atom Bacterium cell Protein Human hair NACK Center www.nano4me.org Note from our pictorial representation of scales that the next size range that is smaller than the nano-scale is the pico-scale NACK Center www.nano4me.org Note that neither nature nor man builds anything at this pico-scale size range.
    [Show full text]
  • Nanotechnology (1+0)
    College of Agricultural Technology Theni Dr.M.Manimaran Ph.D Soil Science NST 301 Fundamentals & Applications of Nanotechnology (1+0) Syllabus Unit 1: Basics of Nano science (4 lectures) - Introduction to nano science and technology, history, definition, classification of nanomaterials based on origin, dimension - Unique properties of nanomaterials - mechanical, magnetic, thermal, optical and electrical properties Unit 2: Synthesis of Nanomaterials (3 Lectures): Physical, Chemical and Biological synthesis of nano-materials Unit 3: Properties and Characterization of Nanomaterials (4 Lectures): Size (particle size analyzer), morphological (scanning electron microscope and transmission electron microscope), optical (UV-VIS and FT-IR) and structural (XRD) properties of nano-materials Unit 4: Application of Nanotechnology (3 Lectures) Biosensor (principle, component, types, applications) agriculture (nano-fertilizers, herbicides, nano-seed science, nano- pesticides) and food Systems (encapsulation of functional foods, nano-packaging) Unit V - Application of Nanotechnology (2 Lectures) Energy, Environment, Health and Nanotoxicology Reference Books Subramanian, K.S. et al. (2018) Fundamentals and Applications of Nanotechnology, Daya Publishers, New Delhi K.S. Subramanian, K. Gunasekaran, N. Natarajan, C.R. Chinnamuthu, A. Lakshmanan and S.K. Rajkishore. 2014. Nanotechnology in Agriculture. ISBN: 978-93-83305-20-9. New India Publishing Agency, New Delhi. Pp 1-440. T. Pradeep, 2007. NANO: The Essentials: Understanding Nanoscience and Nanotechnology. ISBN: 9780071548298. Tata McGraw-Hill Publishing Company Limited, New Delhi. Pp 1-371. M.A. Shah, T. Ahmad, 2010. Principles of Nanoscience and Nanotechnology. ISBN: 978-81-8487-072-5. Narosa Publishing House Pvt. Ltd., New Delhi Pp. 1-220. Mentor of Nanotechnology When I see children run around and cycle with the artificial limbs with lightweight prosthetics, it is sheer bliss Dr.
    [Show full text]
  • Nanotechnology Learning Modules Using Technology Assisted Science, Engineering and Mathematics
    Nanotechnology Learning Modules Using Technology Assisted Science, Engineering and Mathematics Dean Aslam and Aixia Shao Micro and Nano Technology Laboratory, Electrical and Computer Engineering Michigan State University, E. Lansing, MI 48824 [email protected] Abstract Technology Assisted Science, Engineering and Mathematics (TASEM) focuses on innovative use of technology to explain new and complicated concepts rather than on education research. The explanation of nanotechnology is challenging because nano-dimensions require high-magnification electron microscopes to see them. Hand-on learning modules are difficult if not impossible. However, if macro/micro technologies and minirobots are used to explain nano concepts in a fun way, the formal and informal learners can be engaged. For example, learners get very excited when they use a bubble maker robot to study bubbles. As they watch the skin of soap bubbles changing their color a few times before they break, their excitement and fascination is evident from the level of interest seen in over 300 learners at K12, undergraduate and graduate levels during 2005-07. This paper reveals the use of Lego creations and programmable robots for nanotechnology education for the first time using the TASEM concept. The learning starts with watching videos explaining the concepts of size followed by hands-on activities that lead to nano learning. Using digital calipers and microscopes the hands-on activities focus on studying size variations of identical Lego pieces (quality control), leaves, flowers, samples of microchips, optical fibers, human hair, and spider silk. The impact of the learning modules reported in the present study seems very high because they explain (a) technologies that are in the market today as well as the technologies that are going to be in the market in the near term, (b) how these technologies are used to build complete systems or Microsystems, and (c) what technologies will be used to build Nanosystems.
    [Show full text]
  • Cancer Nanomedicine: from Targeted Delivery to Combination Therapy
    Review Cancer nanomedicine: from targeted delivery to combination therapy 1,2,3 1 1 1,2 Xiaoyang Xu , William Ho , Xueqing Zhang , Nicolas Bertrand , and 1 Omid Farokhzad 1 Laboratory of Nanomedicine and Biomaterials, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA 2 The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3 Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA The advent of nanomedicine marks an unparalleled op- advantages of NPs have brought widespread attention to portunity to advance the treatment of various diseases, the field of nanomedicine, including their large ratio of including cancer. The unique properties of nanoparticles volume to surface area, modifiable external shell, biode- (NPs), such as large surface-to-volume ratio, small size, gradability, and low cytotoxicity [4]. Furthermore, nano- the ability to encapsulate various drugs, and tunable medicine brings us dramatically closer to realizing the full surface chemistry, give them many advantages over their promise of personalized medicine [5]. bulk counterparts. This includes multivalent surface mod- Engineered therapeutic NPs offer numerous clinical ification with targeting ligands, efficient navigation of the advantages. Surface modification with polyethylene glycol complex in vivo environment, increased intracellular traf- (PEG) protects NPs from clearance from the blood by the ficking, and sustained release of drug payload. These mononuclear phagocytic system (MPS), markedly increasing advantages make NPs a mode of treatment potentially both circulation times and drug uptake by target cells superior to conventional cancer therapies. This review [2,6].
    [Show full text]
  • The Thermodynamic Uncertainty Relation in Biochemical Oscillations Royalsocietypublishing.Org/Journal/Rsif Robert Marsland III1, Wenping Cui1,2 and Jordan M
    The thermodynamic uncertainty relation in biochemical oscillations royalsocietypublishing.org/journal/rsif Robert Marsland III1, Wenping Cui1,2 and Jordan M. Horowitz3,4,5 1Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA 2Department of Physics, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA Research 3Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Technology Square, Cambridge, MA 02139, USA 4Department of Biophysics, and 5Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Cite this article: Marsland III R, Cui W, MI 48109, USA Horowitz JM. 2019 The thermodynamic RM, 0000-0002-5007-6877; JMH, 0000-0002-9139-0811 uncertainty relation in biochemical oscillations. J. R. Soc. Interface 16: 20190098. Living systems regulate many aspects of their behaviour through periodic http://dx.doi.org/10.1098/rsif.2019.0098 oscillations of molecular concentrations, which function as ‘biochemical clocks.’ The chemical reactions that drive these clocks are intrinsically sto- chastic at the molecular level, so that the duration of a full oscillation cycle is subject to random fluctuations. Their success in carrying out their biologi- cal function is thought to depend on the degree to which these fluctuations Received: 15 February 2019 in the cycle period can be suppressed. Biochemical oscillators also require a Accepted: 2 April 2019 constant supply of free energy in order to break detailed balance and main- tain their cyclic dynamics. For a given free energy budget, the recently discovered ‘thermodynamic uncertainty relation’ yields the magnitude of period fluctuations in the most precise conceivable free-running clock.
    [Show full text]
  • Oscillating Chemical Reactions and Nonlinear Dynamics
    Oscillating Chemical Reactions and Nonlinear Dynamics R. J. Field1 and F. W. Schneider lnstitut fiir Physikalische Chemie der Universitat Wiirzburg. 9-1 1 Marcusstrape, 8700 Wurzburg, Federal Republic of Germany In 1972 one of us (RJF) (1)described in this Journal earlv Besides their considerable intrinsic allure for chemists, research into the behavidr' and significance of oscillating much of the current interest in oscillating reactions is associ- chemical reactions. Interest and activitv in this area have ated with the simultaneous explosion of interest in systems grown enormously since then in hoth depth and breadth (2- governed by nonlinear dynamcc laws (6,71. The importance Fj): the number ofoscillatins reactions knownand the sophis- ofthestudy ofnonlinear dynamics is the realization (2that tidation of understanding if them has increased dramaiical- a great deal of the complixity observed in nature does not Iv. It is now appropriate toreport againon the prosress made necessarily result from great complexity in fundamental as well as on.;he ieasons fo; these last 15 ye&~ofintense, structure.It instead may result from rather simplestructure interdisciplinary activity. if thegoverningdynamiclawsare nonlinear. This insight has ~scilla~in~chemical reactions are always complex and lead to study of such exotic subjects as fractal geometries (8, involve a large number of chemical species, which can he 9) and deterministic chaos (7) and to recognition of the categorized (as in stoichiometry 1) as reactants, products, or hroad application of these ideas in chemical, physical, and intermediates. During the usual chemical reaction, the con- biological systems. centrations of reactants constantly decrease, the concentra- The importance of oscillating chemical reactions in this tions of products constantly increase, and the concentra- regard is that they exhibit (6)a wide variety of the phenome- tions of intermediates approach low, relatively constant na now associated with nonlinear dynamic laws (6, 7).
    [Show full text]