Research and Development of an Active Element for a Pressure Sensor on the Basis of Piezoelectric Composite Material
Total Page:16
File Type:pdf, Size:1020Kb
ELINGAS ČEKAS RESEARCH AND DEVELOPMENT OF AN ACTIVE ELEMENT FOR A PRESSURE SENSOR ON THE BASIS OF PIEZOELECTRIC COMPOSITE MATERIAL DOCTORAL DISSERTATION Kaunas 2020 KAUNAS UNIVERSITY OF TECHNOLOGY ELINGAS ČEKAS RESEARCH AND DEVELOPMENT OF AN ACTIVE ELEMENT FOR A PRESSURE SENSOR ON THE BASIS OF PIEZOELECTRIC COMPOSITE MATERIAL Doctoral Dissertation Technological sciences, Mechanical engineering (T 009) 2020, Kaunas This doctoral dissertation was prepared at Kaunas University of Technology, Faculty of Mechanical Engineering and Design, Department of Mechanical Engineering during the period of 2015–2019. The studies were supported by the Research Council of Lithuania. Scientific Supervisor: Prof. Dr. GIEDRIUS JANUŠAS (Kaunas University of Technology, Technological Sciences, Mechanical Engineering, T 009) This doctoral dissertation has been published at: http://ktu.edu Editor: Armandas Rumšas (Publishing Office “Technologija”) © E. Čekas, 2020 KAUNO TECHNOLOGIJOS UNIVERSITETAS ELINGAS ČEKAS AKTYVAUS ELEMENTO SLĖGIO JUTIKLIAMS, PAGRĮSTO PJEZOELEKTRINE KOMPOZITINE MEDŽIAGA, KŪRIMAS IR TYRIMAS Daktaro disertacija Technologijos mokslai, mechanikos inžinerija (T 009) 2020, Kaunas Disertacija rengta 2015–2019 metais Kauno technologijos universiteto mechanikos inžinerijos ir dizaino fakultete mechanikos inžinerijos katedroje. Mokslinius tyrimus rėmė ir Lietuvos mokslo taryba. Mokslinis vadovas: Prof. dr. GIEDRIUS JANUŠAS (Kauno technologijos universitetas, technologijos mokslai, mechanikos inžinerija, T 009) Interneto svetainės, kurioje skelbiama disertacija, adresas: http://ktu.edu Redagavo: Armandas Rumšas (leidykla “Technologija”) © E. Čekas, 2020 CONTENTS NOMENCLATURE ................................................................................................... 7 LIST OF FIGURES .................................................................................................... 8 LIST OF TABLES ................................................................................................... 11 INTRODUCTION .................................................................................................... 12 1. LITERATURE REVIEW ................................................................................ 16 1.1. Sensor types and their functionality ......................................................... 16 1.2. Pressure sensors ........................................................................................ 21 1.3. Transducers and actuators ........................................................................ 24 1.4. Dynamic elements of a sensor .................................................................. 27 1.5. Materials for sensing elements ................................................................. 29 1.5.1. Piezoelectric materials .................................................................... 29 1.5.2. Other smart materials ...................................................................... 30 1.5.3. Piezoelectric composites ................................................................. 32 1.6. Section conclusions .................................................................................. 37 2. PIEZOELECTRIC NANOCOMPOSITE SYNTHESIS AND ANALYSIS ... 39 2.1. Synthesis and formation of piezoelectric composite film ......................... 39 2.2. Testing methodology and tools ................................................................. 40 2.2.1. Scanning electron microscopy (SEM) ............................................ 40 2.2.2. Atomic force microscopy (AFM) ................................................... 42 2.2.3. Energy dispersive X-ray spectroscopy (EDS) ................................ 43 2.2.4. Fourier transform infrared spectroscopy (FTIR) ............................ 45 2.2.5. Keithley meter scanner ................................................................... 47 2.2.6. Laser triangulation sensor LK-G3000 and PicoScope 3424 oscilloscope ...................................................................................................... 49 2.2.7. Electronic speckle pattern interferometry system PRISM .............. 51 2.2.8. Voltage standing wave ratio (VSWR) ............................................ 53 2.2.9. Microhardness measurement .......................................................... 54 2.2.10. Micro-scratch tester MST3 .............................................................. 56 2.3. Structural Composition ............................................................................. 57 2.4. Chemical Composition ............................................................................. 57 2.5. Piezoresistive characteristics of piezoelectric composite ......................... 63 5 2.6. Microhardness of Coatings ....................................................................... 69 2.7. Section conclusions .................................................................................. 72 3. MODELLING AND ANALYSIS OF OSCILLATING MEMBRANE FOR PRESSURE SENSOR .............................................................................................. 74 3.1. Methodology and tools ............................................................................. 74 3.1.1. Mindlin-Reissner theory for thick plates ........................................ 74 3.1.2. Membrane formation ...................................................................... 75 3.1.3. Thermal embossing for microstructure imprinting ......................... 77 3.1.4. Laser Doppler vibrometer ............................................................... 79 3.2. Shape of the membrane ............................................................................ 80 3.3. Finite element model of the membrane .................................................... 81 3.4. Harmonic analysis of multilayered membrane ......................................... 84 3.5. Fabrication of multilayered membrane ..................................................... 87 3.6. Finite element model verification ............................................................. 90 3.7. Vibrational analysis of the loaded multilayered membrane ..................... 90 3.8. Optical properties of the multilayered membrane .................................... 93 3.9. Section conclusions .................................................................................. 94 GENERAL CONCLUSIONS................................................................................... 96 LIST OF PUBLICATIONS ...................................................................................... 98 REFERENCES ....................................................................................................... 101 6 NOMENCLATURE AFM – atomic force microscope BSE – backscattering electrons EDS – energy dispersive spectrometer FTIR – Fourier transform infrared spectrometer HB – Brinell hardness HK – Knoop hardness HM – Martens hardness HV – Vickers hardness IR – infrared radiation KTU – Kaunas University of Technology LED – light emitting diode LPCVD – low pressure chemical vapor deposition MEMS – microelectromechanical systems MOEMS – microoptoelectromechanical systems PIR – passive infrared sensor PLA – polyactic acid PLZT – lead lanthanum zirconate titanate PMDS – Polydimethylsiloxane PMN – lead magnesium niobite PMN-PT – lead magnesium niobite-lead titanate PVB – polyvinyl butyral PVDF – polyvinylidene fluoride PZT – lead zirconium titanate RIE – reactive ion etching SE – secondary electrons SEM – scanning electron microscope TMAH – tetramethylammonium hydroxide XRD – X-ray diffraction 7 LIST OF FIGURES Fig. 1. Scheme of a resistive flex sensor: a) Top view, b) Lateral view, c) View in the working environment [47] .................................................................................. 19 Fig. 2. Schematic representation of the working process of an ultrasonic sensor [54] .................................................................................................................................. 19 Fig. 3. Tilt sensor working principle [65] ................................................................ 20 Fig. 4. Piezoresistive pressure sensor [77] ............................................................... 22 Fig. 5. Working principle of a piezoelectric disk [78] ............................................. 23 Fig. 6. Capacitive sensor with two parallel plates [80] ............................................ 23 Fig. 7. Comb-drive electrostatic actuator [109]........................................................ 25 Fig. 8. Electrostatic harmonic motor [110] .............................................................. 25 Fig. 9. Cantilever based sensor [127] ....................................................................... 27 Fig. 10. Schematic view of a vibrating membrane working in two different environments at once ................................................................................................ 29 Fig. 11. Composite effects: a) sum, b) combinations, and c) products effects [154] 33 Fig. 12. Chemical structure of polyethersulfone ...................................................... 34 Fig. 13. Chemical structure of polydimethylsiloxane .............................................. 34 Fig. 14. Chemical structure of polyvinyl butyral ..................................................... 34 Fig. 15. Chemical structure of polypropyline ........................................................... 35 Fig. 16. Chemical structure of poly(methyl methacrylate)