The Nanobank Database Is Available at for Free Use for Research Purposes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Randal Koene Page 3
CRYONICS 4th Quarter 2019 | Vol 40, Issue 4 www.alcor.org Scholar Profile: Randal Koene page 3 Cryonics in China and Australia Cryonics and Public Skepticism: page 19 Meeting The Challenges to Our Credibility page 24 CRYONICS Editorial Board Contents Saul Kent Ralph C. Merkle, Ph.D. R. Michael Perry, Ph.D. 3 Scholar Profile: Randal Koene Accomplished neuroscientist and founder of the only dedicated Editor whole brain emulation nonprofit in existence, Dr. Randal Koene Aschwin de Wolf is no stranger to standing out. Responsible for coining the term Contributing Writers that put this niche but growing field on the map, Koene is working Ben Best hard to make humans more adaptable than ever before. In his Randal Koene R. Michael Perry, Ph.D. vision of the future, minds will be substrate-independent, with Nicole Weinstock full or even enhanced functioning on a limitless and changing Aschwin de Wolf menu of platforms. Copyright 2019 by Alcor Life Extension Foundation 19 Cryonics in China and Australia All rights reserved. Ben Reports on the emerging cryonics industry in China and the plans to create a Reproduction, in whole or part, new cryonics organization in Australia. without permission is prohibited. 24 FOR THE RECORD Cryonics magazine is published Cryonics and Public Skepticism: Meeting the Challenges to Our quarterly. Credibility Cryonics has been viewed with skepticism or hostility by some, including some Please note: If you change your scientists, ever since it started in the 1960s, even though (we like to remind the address less than a month before the naysayers) its intended basis is strictly scientific. -
Investigation Into the Re-Arrangement of Copper Foams Pre- and Post-CO2 Electrocatalysis
Article Investigation into the Re-Arrangement of Copper Foams Pre- and Post-CO2 Electrocatalysis Jennifer A. Rudd 1 , Sandra Hernandez-Aldave 1 , Ewa Kazimierska 1, Louise B. Hamdy 1 , Odin J. E. Bain 1, Andrew R. Barron 1,2,3,4 and Enrico Andreoli 1,* 1 Energy Safety Research Institute, Swansea University, Bay Campus, Swansea SA1 8EN, UK; [email protected] (J.A.R.); [email protected] (S.H.-A.); [email protected] (E.K.); [email protected] (L.B.H.); [email protected] (O.J.E.B.); [email protected] (A.R.B.) 2 Department of Chemistry, Rice University, Houston, TX 77007, USA 3 Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77007, USA 4 Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link, Gadong BE1410, Brunei * Correspondence: [email protected] Abstract: The utilization of carbon dioxide is a major incentive for the growing field of carbon capture. Carbon dioxide could be an abundant building block to generate higher-value chemical products. Herein, we fabricated a porous copper electrode capable of catalyzing the reduction of carbon dioxide into higher-value products, such as ethylene, ethanol and propanol. We investigated the formation of the foams under different conditions, not only analyzing their morphological and Citation: Rudd, J.A.; crystal structure, but also documenting their performance as a catalyst. In particular, we studied Hernandez-Aldave, S.; Kazimierska, the response of the foams to CO2 electrolysis, including the effect of urea as a potential additive to E.; Hamdy, L.B.; Bain, O.J.E.; Barron, enhance CO catalysis. -
Nanoscience and Nanotechnologies: Opportunities and Uncertainties
ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology -
Chapter 3 Green Grass, Red Blood, Blueprint
Chapter 3 Green grass, red blood, blueprint: reflections on life, self-replication, and evolution M. Ciofalo Dipartimento di Ingegneria Nucleare, Università degli Studi di Palermo, Italy. Abstract Following pioneering work by von Neumann in the late 1940s, the goal of achieving self- replication in artefacts has been pursued by a variety of approaches, involving either virtual entities like cellular automata and computer programs or, to a lesser extent, real physical devices. An ample review of the major achievements in these diverse fields is given, and their practical and theoretical relevance is discussed. Possible future developments, notably regarding nanotech- nology and space exploration, are also outlined. The most relevant theoretical problems posed by self-replication are discussed in the light of current knowledge regarding life and its origins. Living entities are semiotic systems, in which physical structures have come to perform symbolic functions. The great complexity of biomolecules and of even the most primitive organisms is not a gratuitous complication, but a necessary condition for homeostasis, self-replication and open- ended evolution in a changing environment. Such requisites will have to be matched by artificial devices if their non-trivial self-replication and autonomous development are to be attained. 1 Of crystals and colloids Wordsworth’s God had his dwelling in the light of setting suns. But the God who dwells there seems to me most probably the God of the atom, the star, and the crystal. Mine, if I have one, reveals Himself in another class of phenomena. He makes the grass green and the blood red. (J.W. Krutch, 1950, [1]) The lines in the epigraph are excerpted from the famous essay ‘The colloid and the crystal’, written in 1950 by the American literary naturalist Joseph Wood Krutch. -
Big Historical Foundations for Deep Future Speculations: Cosmic Evolution, Atechnogenesis, and Technocultural Civilization
Found Sci DOI 10.1007/s10699-015-9434-y Big Historical Foundations for Deep Future Speculations: Cosmic Evolution, Atechnogenesis, and Technocultural Civilization Cadell Last1 Ó Springer Science+Business Media Dordrecht 2015 Abstract Big historians are attempting to construct a general holistic narrative of human origins enabling an approach to studying the emergence of complexity, the relation between evolutionary processes, and the modern context of human experience and actions. In this paper I attempt to explore the past and future of cosmic evolution within a big historical foundation characterized by physical, biological, and cultural eras of change. From this analysis I offer a model of the human future that includes an addition and/or reinterpretation of technological singularity theory with a new theory of biocultural evo- lution focused on the potential birth of technological life: the theory of atechnogenesis. Furthermore, I explore the potential deep futures of technological life and extrapolate towards two hypothetical versions of an ‘Omega Civilization’: expansion and compression. Keywords Big history Á Anthropology Á Futures Á Evolution Á Singularity Á Philosophy 1 Introduction My focus is to explore the ‘deep future’ of ‘big history’ in-as-far as it can be explored given a lack of empirical data, inability to test future predictions, and an incomplete knowledge of local and global physical, biological, and cultural processes currently in operation. We can gain a new understanding of possible future trends and processes by analyzing the emerging science of cosmic evolution within the narrative architecture of big history. Although modern phenomena like technological complexification and sociopo- litical convergence receive considerable attention, few researchers approach these issues from the vantage point of 13.8 billion years of interconnected evolution. -
Nanotechnology Measurement Handbook a Guide to Electrical Measurements for Nanoscience Applications Nanotechnology Measurement Handbook Nanotechnology
NanoCov_grn.tiff 12/13/07 10:47 AM Page 1 www.keithley.com st 1Edition Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications Nanotechnology Measurement Handbook Specifications are subject to change without notice. All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other trademarks and trade names are the property of their respective companies. Keithley Instruments, Inc. Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (534-8453) www.keithley.com 1 st Edition © Copyright 2007 Keithley Instruments, Inc. No. 2819 Printed in the U.S.A. 020731KIPC Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications 1st Edition A GREATER MEASURE OF CONFIDENCE Foreword Nanotechnology research often demands skills in multiple disciplines, from phys- ics and materials science to chemistry and measurement system design. Although it would be impossible to predict all the technical innovations that nano research will offer, it’s already clear that nanoscience will be a major driver of the economy of the future. However, characterizing tomorrow’s nanoscale components and materials will be far from trivial because many of their electrical properties lie at the very edge of the measurement envelope. To unravel tiny mysteries and turn nanoscale materials and devices into commercial products, researchers must have tools with the flexibility to handle a variety of electrical measurements, including current vs. voltage (I-V) characterization, resistance, resistivity and conductivity, differential conductance, transport, and optical spectrum and energy. They must also gain an in-depth understanding of the principles and pitfalls associated with low-level electrical measurements. -
Controlling Nanoparticle Dispersion for Nanoscopic Self-Assembly
CONTROLLING NANOPARTICLE DISPERSIONS FOR NANOSCOPIC SELF- ASSEMBLY A Project Report presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Polymers and Coatings by Nathan Stephen Starkweather March 2013 © 2013 Nathan Stephen Starkweather ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Controlling Nanoparticle Dispersions for Nanoscopic Self- Assembly AUTHOR: Nathan Stephen Starkweather DATE SUBMITTED: March 2013 COMMITTEE CHAIR: Raymond H. Fernando, Ph.D. COMMITTEE MEMBER: Shanju Zhang, Ph.D. COMMITTEE MEMBER: Chad Immoos, Ph.D. iii ABSTRACT Controlling Nanoparticle Dispersions for Nanoscopic Self-Assembly Nathan Stephen Starkweather Nanotechnology is the manipulation of matter and devices on the nanometer scale. Below the critical dimension length of 100nm, materials begin to display vastly different properties than their macro- or micro- scale counterparts. The exotic properties of nanomaterials may trigger the start of a new technological revolution, similar to the electronics revolution of the late 20th century. Current applications of nanotechnology primarily make use of nanoparticles in bulk, often being made into composites or mixtures. While these materials have fantastic properties, organization of nano and microstructures of nanoparticles may allow the development of novel devices with many unique properties. By analogy, bulk copper may be used to form the alloys brass or bronze, which are useful materials, and have been used for thousands of years. Yet, organized arrays of copper allowed the development of printed circuit boards, a technology far more advanced than the mere use of copper as a bulk material. In the same way, organized assemblies of nanoparticles may offer technological possibilities far beyond our current understanding. -
Nanosystems, Edge Computing, and the Next Generation Computing Systems
sensors Review Nanosystems, Edge Computing, and the Next Generation Computing Systems Ali Passian * and Neena Imam Computing & Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA; [email protected] * Correspondence: [email protected] Received: 30 July 2019; Accepted: 16 September 2019; Published: 19 September 2019 Abstract: It is widely recognized that nanoscience and nanotechnology and their subfields, such as nanophotonics, nanoelectronics, and nanomechanics, have had a tremendous impact on recent advances in sensing, imaging, and communication, with notable developments, including novel transistors and processor architectures. For example, in addition to being supremely fast, optical and photonic components and devices are capable of operating across multiple orders of magnitude length, power, and spectral scales, encompassing the range from macroscopic device sizes and kW energies to atomic domains and single-photon energies. The extreme versatility of the associated electromagnetic phenomena and applications, both classical and quantum, are therefore highly appealing to the rapidly evolving computing and communication realms, where innovations in both hardware and software are necessary to meet the growing speed and memory requirements. Development of all-optical components, photonic chips, interconnects, and processors will bring the speed of light, photon coherence properties, field confinement and enhancement, information-carrying capacity, and the broad spectrum of light into the high-performance computing, the internet of things, and industries related to cloud, fog, and recently edge computing. Conversely, owing to their extraordinary properties, 0D, 1D, and 2D materials are being explored as a physical basis for the next generation of logic components and processors. Carbon nanotubes, for example, have been recently used to create a new processor beyond proof of principle. -
From Quantum Mechanics to Nanoparticles and Their Applications
Part 2 Learning Station XIa: From quantum mechanics to nanoparticles and their applications Quantum Spin-Off 2 LEARNING STATION XIa: FROM QUANTUM MECHANICS TO NANOPARTICLES AND THEIR APPLICATIONS Introduction ..................................................................................................................................................... 3 1. Elementary particles in nanotechnology ...................................................................................................... 3 2. Size matters .................................................................................................................................................. 4 3. Can we observe this phenomenon in a real-life experiment? ....................................................................... 4 3.a Emission spectrum of single atoms............................................................................................................... 4 3.b How can we observe the emission spectrum? ............................................................................................. 5 3.c Step-by-step instructions to make your own spectrometer ......................................................................... 5 3.d What can we observe and investigate with our spectrometer?................................................................... 9 3.e How does fluorescence spectrometry work? ............................................................................................... 9 4. Quantum dots ............................................................................................................................................. -
Molecular Nanotechnology - Wikipedia, the Free Encyclopedia
Molecular nanotechnology - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Molecular_manufacturing Molecular nanotechnology From Wikipedia, the free encyclopedia (Redirected from Molecular manufacturing) Part of the article series on Molecular nanotechnology (MNT) is the concept of Nanotechnology topics Molecular Nanotechnology engineering functional mechanical systems at the History · Implications Applications · Organizations molecular scale.[1] An equivalent definition would be Molecular assembler Popular culture · List of topics "machines at the molecular scale designed and built Mechanosynthesis Subfields and related fields atom-by-atom". This is distinct from nanoscale Nanorobotics Nanomedicine materials. Based on Richard Feynman's vision of Molecular self-assembly Grey goo miniature factories using nanomachines to build Molecular electronics K. Eric Drexler complex products (including additional Scanning probe microscopy Engines of Creation Nanolithography nanomachines), this advanced form of See also: Nanotechnology Molecular nanotechnology [2] nanotechnology (or molecular manufacturing ) Nanomaterials would make use of positionally-controlled Nanomaterials · Fullerene mechanosynthesis guided by molecular machine systems. MNT would involve combining Carbon nanotubes physical principles demonstrated by chemistry, other nanotechnologies, and the molecular Nanotube membranes machinery Fullerene chemistry Applications · Popular culture Timeline · Carbon allotropes Nanoparticles · Quantum dots Colloidal gold · Colloidal -
Arxiv:2005.01804V1 [Q-Bio.QM] 1 May 2020
Modeling in the Time of COVID-19: STATISTICAL AND RULE-BASED MESOSCALE MODELS APREPRINT Ngan Nguyen1, Ondrejˇ Strnad1, Tobias Klein2,4, Deng Luo1, Ruwayda Alharbi1, Peter Wonka1, Martina Maritan3, Peter Mindek2,4, Ludovic Autin3, David S. Goodsell3, and Ivan Viola1 1King Abdullah University of Science and Technology (KAUST), Saudi Arabia. E-mails: {ngan.nquyen j ondrej.strnad j deng.luo j ruwayda.alharbi j peter.wonka j ivan.viola }@kaust.edu.sa. , N. Nguyen and O. Strnad are co-first authors. 2TU Wien, Austria. E-mails: {tklein j mindek}@cg.tuwien.ac.at. 3Scripps Research Institute, US. E-mail: {mmaritan j autin j goodsell}@scripps.edu. 4Nanographics GmbH May 6, 2020 ABSTRACT We present a new technique for rapid modeling and construction of scientifically accurate mesoscale biological models. Resulting 3D models are based on few 2D microscopy scans and the latest knowledge about the biological entity represented as a set of geometric relationships. Our new technique is based on statistical and rule-based modeling approaches that are rapid to author, fast to construct, and easy to revise. From a few 2D microscopy scans, we learn statistical properties of various structural aspects, such as the outer membrane shape, spatial properties and distribution characteristics of the macromolecular elements on the membrane. This information is utilized in 3D model construction. Once all imaging evidence is incorporated in the model, additional information can be incorporated by interactively defining rules that spatially characterize the rest of the biological entity, such as mutual interactions among macromolecules, their distances and orientations to other structures. These rules are defined through an intuitive 3D interactive visualization and modeling feedback loop. -
Production and Functionalization of Cobalt Nanofoams for Energy Storage Energy Engineering and Management
Production and functionalization of cobalt nanofoams for energy storage Naureen Khanam Thesis to obtain the Master of Science Degree in Energy Engineering and Management Supervisors: Prof. Maria de Fátima Grilo da Costa Montemor Prof. Maria Teresa Oliveira de Moura e Silva Examination Committee Chairperson: Duarte de Mesquita e Sousa Supervisor: Prof. Maria Teresa Oliveira de Moura e Silva Members of the Committee: Prof. Raquel Alexandra Galamba Duarte Dr. Alberto Adán Más October 2019 I declare that this document is an original work of my own authorship and that it fulfils all the requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa. ii Acknowledgements Acknowledgements All praise to the Almighty, the Most Merciful. I would like to express gratitude to my supervisors Professor Fátima Montemor and Professor Maria Terresa Moura e Silva for their continuous guidance, advices and support during this work. My heartful gratitude to Dr. Alberto Adán Más for his support and all the endeavours to teach me everything from zero. I would like to thank EIT KIC InnoEnergy for providing scholarship under CFAFE program for my master study. This research work was developed under IDI&CA/SuperStore 0712045/ISEL project funded by Instituto Politécnico de Lisboa. I would like to thank this institution for offering me the scientific initiation fellowship under this project. I appreciate all the support of my colleagues for their help, support and kindness throughout this master study in two different countries. Finally, respect and love for my family and friends who helped keeping my moral spirit high during this journey from thousand miles apart.