Model Characteristics and Properties of Nanorobots in the Bloodstream Michael Makoto Zimmer

Total Page:16

File Type:pdf, Size:1020Kb

Model Characteristics and Properties of Nanorobots in the Bloodstream Michael Makoto Zimmer Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2005 Model Characteristics and Properties of Nanorobots in the Bloodstream Michael Makoto Zimmer Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY FAMU-FSU COLLEGE OF ENGINEERING MODEL CHARACTERISTICS AND PROPERTIES OF NANOROBOTS IN THE BLOODSTREAM By MICHAEL MAKOTO ZIMMER A Thesis submitted to the Department of Industrial and Manufacturing Engineering in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester 2005 The members of the Committee approve the Thesis of Michael M. Zimmer defended on April 4, 2005. ___________________________ Yaw A. Owusu Professor Directing Thesis ___________________________ Rodney G. Roberts Outside Committee Member ___________________________ Reginald Parker Committee Member ___________________________ Chun Zhang Committee Member Approved: _______________________ Hsu-Pin (Ben) Wang, Chairperson Department of Industrial and Manufacturing Engineering _______________________ Chin-Jen Chen, Dean FAMU-FSU College of Engineering The Office of Graduate Studies has verified and approved the above named committee members. ii For the advancement of technology where engineers make the future possible. iii ACKNOWLEDGEMENTS I want to give thanks and appreciation to Dr. Yaw A. Owusu who first gave me the chance and motivation to pursue my master’s degree. I also want to give my thanks to my undergraduate team who helped in obtaining information for my thesis and helped in setting up my experiments. Many thanks go to Dr. Hans Chapman for his technical assistance. I want to acknowledge the whole Undergraduate Research Center for Cutting Edge Technology (URCCET) for their support and continuous input in my studies. I also want to acknowledge the professors on my committee for their time and support. I must give gratitude to all the organizations and the U.S. Department of Education, Washington, DC, that funded URCCET to make this all possible. Lastly, I give all the appreciation from my heart to my family, friends, and love ones. iv TABLE OF CONTENTS List of Tables ................................................................................................ viii List of Figures ................................................................................................ ix Abstract ...................................................................................................... xii Chapter 1 Introduction..................................................................................... 1 1.1 Overview into Nanotechnology.......................................................... 1 1.2 Problem Description ........................................................................... 2 1.3 Project Rationale................................................................................. 3 1.4 Project Objectives ............................................................................... 3 1.5 Benefit of Research ............................................................................. 5 Chapter 2 Literature Survey............................................................................ 6 2.1 Robotics and Nanorobotics ................................................................ 6 2.2 Ideas of Nanotechnology and Nanorobotics ..................................... 7 2.2.1 Positional Assemblers and Self-Replication ............................ 7 2.2.2 Views for Nanorobotics ............................................................. 10 2.3 Current Nanorobotics Research........................................................ 12 2.4 Issues against Current Micro Robots for this Research.................. 15 2.5 Miniature Model Submarine ............................................................. 17 2.6 Physiology of the Circulatory System ............................................... 19 2.6.1 The Blood.................................................................................... 19 2.6.2 Blood Vessels .............................................................................. 21 2.7 Transport Phenomena of the Human Bloodstream......................... 22 2.7.1 Blood Flow .................................................................................. 23 2.7.2 Velocity of Blood ........................................................................ 23 2.7.3 Pressure of Blood ....................................................................... 24 2.7.4 Viscosity of Blood....................................................................... 24 2.8 Analysis of Shear Stress, Viscosity, and Vessel Dynamics .............. 25 Chapter 3 Methodology.................................................................................... 29 3.1 Introduction......................................................................................... 29 3.2 Design of Simulation Model ............................................................... 29 3.2.1 Anatomy of Bloodstream........................................................... 29 v 3.2.2 Selection of Mobile Robot for the Research ............................ 30 3.2.3 Design of Apparatus and Elements for the Simulation .......... 30 3.3 Design Calculations for the Simulated Model.................................. 32 3.4 Trouble Shooting and Modifications................................................. 34 3.5 Testing with the Mobile Robot........................................................... 34 3.6 Tests for Blood Elements.................................................................... 34 3.7 Scaling Issues....................................................................................... 35 Chapter 4 Design of Experiments.................................................................... 36 4.1 Design Matrix...................................................................................... 36 4.2 Particle Testing.................................................................................... 37 4.2.1 Styrofoam.................................................................................... 38 4.2.2 Grains and Cereal...................................................................... 38 4.3 Design Matrix Setup and Testing Procedure ................................... 39 4.3.1 Test Run Steps............................................................................ 40 4.4 Issues and Modifications .................................................................... 41 Chapter 5 Data Collection Analyses................................................................ 44 5.1 Testing Results .................................................................................... 44 Chapter 6 Concluding Remarks and Recommendations for Further Research........................................................................................... 55 6.1 Concluding Remarks .......................................................................... 55 6.1.1 Bloodstream vs. Scaled Model .................................................. 55 6.1.2 Comparative Study of Mobile Robot vs. Nanorobot .............. 56 6.1.3 Summary of Concluding Remarks........................................... 58 6.2 Recommendations for Further Research.......................................... 59 APPENDICES ................................................................................................ 61 A Experiment Charts.............................................................................. 61 B Test Run Tables................................................................................... 63 C Completed Experiment Charts.......................................................... 70 D Design of Experiment Chart .............................................................. 74 E Residuals Plots..................................................................................... 76 F One Factor and Interaction Plots ...................................................... 78 G Speed vs. Viscosity Graphs................................................................. 83 vi REFERENCES ................................................................................................ 85 BIOGRAPHICAL SKETCH ........................................................................... 87 vii LIST OF TABLES Table 2.1: Values of cellular elements in human blood................................. 21 Table 2.2: Characteristics of various blood vessels ....................................... 22 Table 4.1: Sample of Design Chart for Mobile Robot Testing ..................... 36 Table 5.1: Design of experiment partial chart................................................ 44 Table 5.2: ANOVA chart for response Speed ................................................ 47 Table 6.1: Bloodstream and Scaled Model comparison ................................ 58 viii LIST OF FIGURES Figure 1.1: Cell Repair Machine .................................................................... 4 Figure 1.2: Seek-and-Destroy ......................................................................... 4 Figure 1.3: The Artery Cleaner ...................................................................... 4 Figure 2.1: The Stewart Platform ................................................................... 9 Figure 2.2: The Double Tripod ....................................................................... 9 Figure 2.3: John von Neumann’s self-replicating
Recommended publications
  • Human to Robot Whole-Body Motion Transfer
    Human to Robot Whole-Body Motion Transfer Miguel Arduengo1, Ana Arduengo1, Adria` Colome´1, Joan Lobo-Prat1 and Carme Torras1 Abstract— Transferring human motion to a mobile robotic manipulator and ensuring safe physical human-robot interac- tion are crucial steps towards automating complex manipu- lation tasks in human-shared environments. In this work, we present a novel human to robot whole-body motion transfer framework. We propose a general solution to the correspon- dence problem, namely a mapping between the observed human posture and the robot one. For achieving real-time imitation and effective redundancy resolution, we use the whole-body control paradigm, proposing a specific task hierarchy, and present a differential drive control algorithm for the wheeled robot base. To ensure safe physical human-robot interaction, we propose a novel variable admittance controller that stably adapts the dynamics of the end-effector to switch between stiff and compliant behaviors. We validate our approach through several real-world experiments with the TIAGo robot. Results show effective real-time imitation and dynamic behavior adaptation. Fig. 1. Transferring human motion to robots while ensuring safe human- This constitutes an easy way for a non-expert to transfer a robot physical interaction can be a powerful and intuitive tool for teaching assistive tasks such as helping people with reduced mobility to get dressed. manipulation skill to an assistive robot. The classical approach for human motion transfer is I. INTRODUCTION kinesthetic teaching. The teacher holds the robot along the Service robots may assist people at home in the future. trajectories to be followed to accomplish a specific task, However, robotic systems still face several challenges in while the robot does gravity compensation [6].
    [Show full text]
  • Autonomous Mobile Robots Annual Report 1985
    The Mobile Robot Laboratory Sonar Mapping, Imaging and Navigation Visual Navigation Road Following i Motion Control The Robots Motivation Publications Autonomous Mobile Robots Annual Report 1985 Mobile Robot Laboratory CM U-KI-TK-86-4 Mobile Robot Laboratory The Robotics Institute Carncgie Mcllon University Pittsburgh, Pcnnsylvania 15213 February 1985 Copyright @ 1986 Carnegie-Mellon University This rcscarch was sponsored by The Office of Naval Research, under Contract Number NO00 14-81-K-0503. 1 Table of Contents The Mobile Robot Laboratory ‘I’owards Autonomous Vchiclcs - Moravcc ct 31. 1 Sonar Mapping, Imaging and Navigation High Resolution Maps from Wide Angle Sonar - Moravec, et al. 19 A Sonar-Based Mapping and Navigation System - Elfes 25 Three-Dirncnsional Imaging with Cheap Sonar - Moravec 31 Visual Navigation Experiments and Thoughts on Visual Navigation - Thorpe et al. 35 Path Relaxation: Path Planning for a Mobile Robot - Thorpe 39 Uncertainty Handling in 3-D Stereo Navigation - Matthies 43 Road Following First Resu!ts in Robot Road Following - Wallace et al. 65 A Modified Hough Transform for Lines - Wallace 73 Progress in Robot Road Following - Wallace et al. 77 Motion Control Pulse-Width Modulation Control of Brushless DC Motors - Muir et al. 85 Kinematic Modelling of Wheeled Mobile Robots - Muir et al. 93 Dynamic Trajectories for Mobile Robots - Shin 111 The Robots The Neptune Mobile Robot - Podnar 123 The Uranus Mobile Robot, a First Look - Podnar 127 Motivation Robots that Rove - Moravec 131 Bibliography 147 ii Abstract Sincc 13s 1. (lic Mobilc I<obot IAoratory of thc Kohotics Institute 01' Crrrncfiic-Mcllon IInivcnity has conduclcd hsic rcscarcli in aTCiiS crucial fur ;iiitonomoiis robots.
    [Show full text]
  • The Autonomous Underwater Vehicle Initiative – Project Mako
    Published at: 2004 IEEE Conference on Robotics, Automation, and Mechatronics (IEEE-RAM), Dec. 2004, Singapore, pp. 446-451 (6) The Autonomous Underwater Vehicle Initiative – Project Mako Thomas Bräunl, Adrian Boeing, Louis Gonzales, Andreas Koestler, Minh Nguyen, Joshua Petitt The University of Western Australia EECE – CIIPS – Mobile Robot Lab Crawley, Perth, Western Australia [email protected] Abstract—We present the design of an autonomous underwater vehicle and a simulation system for AUVs as part II. AUV COMPETITION of the initiative for establishing a new international The AUV Competition will comprise two different competition for autonomous underwater vehicles, both streams with similar tasks physical and simulated. This paper describes the competition outline with sample tasks, as well as the construction of the • Physical AUV competition and AUV and the simulation platform. 1 • Simulated AUV competition Competitors have to solve the same tasks in both Keywords—autonomous underwater vehicles; simulation; streams. While teams in the physical AUV competition competition; robotics have to build their own AUV (see Chapter 3 for a description of a possible entry), the simulated AUV I. INTRODUCTION competition only requires the design of application Mobile robot research has been greatly influenced by software that runs with the SubSim AUV simulation robot competitions for over 25 years [2]. Following the system (see Chapter 4). MicroMouse Contest and numerous other robot The competition tasks anticipated for the first AUV competitions, the last decade has been dominated by robot competition (physical and simulation) to be held around soccer through the FIRA [6] and RoboCup [5] July 2005 in Perth, Western Australia, are described organizations.
    [Show full text]
  • Design and Optimization of an Electromagnetic Railgun
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2018 DESIGN AND OPTIMIZATION OF AN ELECTROMAGNETIC RAILGUN Nihar S. Brahmbhatt Michigan Technological University, [email protected] Copyright 2018 Nihar S. Brahmbhatt Recommended Citation Brahmbhatt, Nihar S., "DESIGN AND OPTIMIZATION OF AN ELECTROMAGNETIC RAILGUN", Open Access Master's Report, Michigan Technological University, 2018. https://doi.org/10.37099/mtu.dc.etdr/651 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Controls and Control Theory Commons DESIGN AND OPTIMIZATION OF AN ELECTROMAGNETIC RAIL GUN By Nihar S. Brahmbhatt A REPORT Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Electrical Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2018 © 2018 Nihar S. Brahmbhatt This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Electrical Engineering. Department of Electrical and Computer Engineering Report Advisor: Dr. Wayne W. Weaver Committee Member: Dr. John Pakkala Committee Member: Dr. Sumit Paudyal Department Chair: Dr. Daniel R. Fuhrmann Table of Contents Abstract ........................................................................................................................... 7 Acknowledgments........................................................................................................... 8 List of Figures ................................................................................................................
    [Show full text]
  • Electric Motors
    SPECIFICATION GUIDE ELECTRIC MOTORS Motors | Automation | Energy | Transmission & Distribution | Coatings www.weg.net Specification of Electric Motors WEG, which began in 1961 as a small factory of electric motors, has become a leading global supplier of electronic products for different segments. The search for excellence has resulted in the diversification of the business, adding to the electric motors products which provide from power generation to more efficient means of use. This diversification has been a solid foundation for the growth of the company which, for offering more complete solutions, currently serves its customers in a dedicated manner. Even after more than 50 years of history and continued growth, electric motors remain one of WEG’s main products. Aligned with the market, WEG develops its portfolio of products always thinking about the special features of each application. In order to provide the basis for the success of WEG Motors, this simple and objective guide was created to help those who buy, sell and work with such equipment. It brings important information for the operation of various types of motors. Enjoy your reading. Specification of Electric Motors 3 www.weg.net Table of Contents 1. Fundamental Concepts ......................................6 4. Acceleration Characteristics ..........................25 1.1 Electric Motors ...................................................6 4.1 Torque ..............................................................25 1.2 Basic Concepts ..................................................7
    [Show full text]
  • Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Angewandte Mechanik Design and Realization of a Humanoid Robot for Fast and Autonomous Bipedal Locomotion Entwurf und Realisierung eines Humanoiden Roboters für Schnelles und Autonomes Laufen Dipl.-Ing. Univ. Sebastian Lohmeier Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Udo Lindemann Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. habil. Heinz Ulbrich 2. Univ.-Prof. Dr.-Ing. Horst Baier Die Dissertation wurde am 2. Juni 2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 21. Oktober 2010 angenommen. Colophon The original source for this thesis was edited in GNU Emacs and aucTEX, typeset using pdfLATEX in an automated process using GNU make, and output as PDF. The document was compiled with the LATEX 2" class AMdiss (based on the KOMA-Script class scrreprt). AMdiss is part of the AMclasses bundle that was developed by the author for writing term papers, Diploma theses and dissertations at the Institute of Applied Mechanics, Technische Universität München. Photographs and CAD screenshots were processed and enhanced with THE GIMP. Most vector graphics were drawn with CorelDraw X3, exported as Encapsulated PostScript, and edited with psfrag to obtain high-quality labeling. Some smaller and text-heavy graphics (flowcharts, etc.), as well as diagrams were created using PSTricks. The plot raw data were preprocessed with Matlab. In order to use the PostScript- based LATEX packages with pdfLATEX, a toolchain based on pst-pdf and Ghostscript was used.
    [Show full text]
  • Smart Sensors and Small Robots
    IEEE Instrumentation and Measurement Technology Conference Budapest, Hungary, May 21-23, 2001. Smart Sensors and Small Robots Mel Siegel Robotics Institute Carnegie Mellon University Pittsburgh, PA 15213-2605, USA Phone: +1 412 268 88025, Fax: +1 412 268 5569 Email: [email protected], URL: http://www.cs.cmu.edu/~mws Abstract – Robots are machines that sense, think, act and (more Thinking: Cognition is a prerequisite for adaptability, with- recently) communicate. Sensing, thinking, and communicating out which no real machine could operate for any significant have all been greatly miniaturized as a consequence of continuous progress in integrated circuit design and manufacturing technol- time in any real environment. No predetermined plan could ogy. More recent progress in MEMS (micro electro mechanical realistically anticipate every feature of the environment - and systems) now holds out promise for comparable miniaturization of if it could, the mission might be utilitarian, but it would the heretofore-retarded third member of the sense-think-act- hardly be interesting, as what would be its purpose if there communicate quartet. More speculatively, initial experiments toward microbiological approaches to robotics suggest possibilities were no new knowledge to be gained? Anyway, even a toy for even further miniaturization, perhaps eventually extending mission in a completely known environment would soon fail down to the molecular level. Alongside smart sensing for robots, in open-loop operation, as accumulated mechanical and sen- with miniaturization of the electromechanical components, i.e., the sor errors would inevitably lead to disastrous discrepancies machinery of robotic manipulation and mobility, we quite natu- rally acquire the capability of smart sensing by robots.
    [Show full text]
  • Combining Search and Action for Mobile Robots
    Combining Search and Action for Mobile Robots Geoffrey Hollinger, Dave Ferguson, Siddhartha Srinivasa, and Sanjiv Singh Abstract— We explore the interconnection between search and action in the context of mobile robotics. The task of searching for an object and then performing some action with that object is important in many applications. Of particular interest to us is the idea of a robot assistant capable of performing worthwhile tasks around the home and office (e.g., fetching coffee, washing dirty dishes, etc.). We prove that some tasks allow for search and action to be completely decoupled and solved separately, while other tasks require the problems to be analyzed together. We complement our theoretical results with the design of a combined search/action approximation algorithm that draws on prior work in search. We show the effectiveness of our algorithm by comparing it to state-of-the- art solvers, and we give empirical evidence showing that search and action can be decoupled for some useful tasks. Finally, Fig. 1. Mobile manipulator: Segway RMP200 base with Barrett WAM arm we demonstrate our algorithm on an autonomous mobile robot and hand. The robot uses a wrist camera to recognize objects and a SICK laser rangefinder to localize itself in the environment performing object search and delivery in an office environment. I. INTRODUCTION objects (or targets) of interest. A concrete example is a robot Think back to the last time you lost your car keys. While that refreshes coffee in an office. This robot must find coffee looking for them, a few considerations likely crossed your mugs, wash them, refill them, and return them to office mind.
    [Show full text]
  • 2016-09-27-2-Generator-Basics
    Generator Basics Basic Power Generation • Generator Arrangement • Main Components • Circuit – Generator with a PMG – Generator without a PMG – Brush type –AREP •PMG Rotor • Exciter Stator • Exciter Rotor • Main Rotor • Main Stator • Laminations • VPI Generator Arrangement • Most modern, larger generators have a stationary armature (stator) with a rotating current-carrying conductor (rotor or revolving field). Armature coils Revolving field coils Main Electrical Components: Cutaway Main Electrical Components: Diagram Circuit: Generator with a PMG • As the PMG rotor rotates, it produces AC voltage in the PMG stator. • The regulator rectifies this voltage and applies DC to the exciter stator. • A three-phase AC voltage appears at the exciter rotor and is in turn rectified by the rotating rectifiers. • The DC voltage appears in the main revolving field and induces a higher AC voltage in the main stator. • This voltage is sensed by the regulator, compared to a reference level, and output voltage is adjusted accordingly. Circuit: Generator without a PMG • As the revolving field rotates, residual magnetism in it produces a small ac voltage in the main stator. • The regulator rectifies this voltage and applies dc to the exciter stator. • A three-phase AC voltage appears at the exciter rotor and is in turn rectified by the rotating rectifiers. • The magnetic field from the rotor induces a higher voltage in the main stator. • This voltage is sensed by the regulator, compared to a reference level, and output voltage is adjusted accordingly. Circuit: Brush Type (Static) • DC voltage is fed External Stator (armature) directly to the main Source revolving field through slip rings.
    [Show full text]
  • Molecular Nanotechnology - Wikipedia, the Free Encyclopedia
    Molecular nanotechnology - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Molecular_manufacturing Molecular nanotechnology From Wikipedia, the free encyclopedia (Redirected from Molecular manufacturing) Part of the article series on Molecular nanotechnology (MNT) is the concept of Nanotechnology topics Molecular Nanotechnology engineering functional mechanical systems at the History · Implications Applications · Organizations molecular scale.[1] An equivalent definition would be Molecular assembler Popular culture · List of topics "machines at the molecular scale designed and built Mechanosynthesis Subfields and related fields atom-by-atom". This is distinct from nanoscale Nanorobotics Nanomedicine materials. Based on Richard Feynman's vision of Molecular self-assembly Grey goo miniature factories using nanomachines to build Molecular electronics K. Eric Drexler complex products (including additional Scanning probe microscopy Engines of Creation Nanolithography nanomachines), this advanced form of See also: Nanotechnology Molecular nanotechnology [2] nanotechnology (or molecular manufacturing ) Nanomaterials would make use of positionally-controlled Nanomaterials · Fullerene mechanosynthesis guided by molecular machine systems. MNT would involve combining Carbon nanotubes physical principles demonstrated by chemistry, other nanotechnologies, and the molecular Nanotube membranes machinery Fullerene chemistry Applications · Popular culture Timeline · Carbon allotropes Nanoparticles · Quantum dots Colloidal gold · Colloidal
    [Show full text]
  • DC Motor Workshop
    DC Motor Annotated Handout American Physical Society A. What You Already Know Make a labeled drawing to show what you think is inside the motor. Write down how you think the motor works. Please do this independently. This important step forces students to create a preliminary mental model for the motor, which will be their starting point. Since they are writing it down, they can compare it with their answer to the same question at the end of the activity. B. Observing and Disassembling the Motor 1. Use the small screwdriver to take the motor apart by bending back the two metal tabs that hold the white plastic end-piece in place. Pull off this plastic end-piece, and then slide out the part that spins, which is called the armature. 2. Describe what you see. 3. How do you think the motor works? Discuss this question with the others in your group. C. Mounting the Armature 1. Use the diagram below to locate the commutator—the split ring around the motor shaft. This is the armature. Shaft Commutator Coil of wire (electromagnetic) 2. Look at the drawing on the next page and find the brushes—two short ends of bare wire that make a "V". The brushes will make electrical contact with the commutator, and gravity will hold them together. In addition the brushes will support one end of the armature and cradle it to prevent side- to-side movement. 1 3. Using the cup, the two rubber bands, the piece of bare wire, and the three pieces of insulated wire, mount the armature as in the diagram below.
    [Show full text]
  • Educational Outdoor Mobile Robot for Trash Pickup
    Educational Outdoor Mobile Robot for Trash Pickup Kiran Pattanashetty, Kamal P. Balaji, and Shunmugham R Pandian, Senior Member, IEEE Department of Electrical and Electronics Engineering Indian Institute of Information Technology, Design and Manufacturing-Kancheepuram Chennai 600127, Tamil Nadu, India [email protected] Abstract— Machines in general and robots in particular, programs to motivate and retain students [3]. The playful appeal greatly to children and youth. With the widespread learning potential of robotics (and the related field of availability of low-cost open source hardware and free open mechatronics) means that college students could be involved source software, robotics has become central to the promotion of in service learning through introducing school children to STEM education in schools, and active learning at design, machines, robots, electronics, computers, college/university level. With robots, children in developed countries gain from technological immersion, or exposure to the programming, environmental literacy, and so on, e.g., [4], [5]. latest technologies and gadgets. Yet, developing countries like A comprehensive review of studies on introducing robotics in India still lag in the use of robots at school and even college level. K-12 STEM education is presented by Karim, et al [6]. It In this paper, an innovative and low-cost educational outdoor concludes that robots play a positive role in educational mobile robot is developed for deployment by school children learning, and promote creative thinking and problem solving during volunteer trash pickup. The wheeled mobile robot is skills. It also identifies the need for standardized evaluation constructed with inexpensive commercial off-the-shelf techniques on the effectiveness of robotics-based learning, and components, including single board computer and miscellaneous for tailored pedagogical modules and teacher training.
    [Show full text]