Supramolecular Chemistry: from Early Concepts to Supramolecular Polymers

Total Page:16

File Type:pdf, Size:1020Kb

Supramolecular Chemistry: from Early Concepts to Supramolecular Polymers UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES Institut Charles Sadron THÈSE présentée par : Antoine GOUJON soutenue le : 20 Septembre 2016 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Chimie Organique et Supramoléculaire Macroscopic Amplification of Nanoscopic Motions Induced by Molecular Machines THÈSE dirigée par : Dr. GIUSEPPONE Nicolas Professeur, Université de Strasbourg RAPPORTEURS : Dr. HASENKNOPF Bernold Professeur, Université Pierre et Marie Curie – Paris 6 Dr. BOUTEILLER Laurent Directeur de Recherche, Université Pierre et Marie Curie – Paris 6 Dr. DE COLA Luisa Professeur, Université de Strasbourg – Présidente du Jury Table of Content Table of content TABLE OF CONTENT.............................................................................................................. 3 ABSTRACT ............................................................................................................................. 7 REMERCIEMENTS ................................................................................................................. 9 ABBREVIATIONS AND SYMBOLS ......................................................................................... 11 RESUME EN FRANÇAIS ....................................................................................................... 13 GENERAL INTRODUCTION AND OBJECTIVES ....................................................................... 27 BIBLIOGRAPHY ................................................................................................................... 31 Chapter I: Supramolecular Chemistry: from early concepts to supramolecular polymers ....................... 33 I. Supramolecular Chemistry ............................................................................................................ 33 II. Supramolecular Polymers ............................................................................................................. 38 A. Definition and examples ........................................................................................................... 38 B. Hydrogen bonding supramolecular polymers .......................................................................... 43 Chapter II: Interlocked molecules and molecular shuttles ...................................................................... 49 I. Interlocked molecules: synthetic strategies, molecular knots and early prototypes of molecular machines 49 A. Molecular topology .................................................................................................................. 49 B. Templated synthesis and increase of complexity ..................................................................... 51 C. Translational isomerism in catenanes: towards molecular shuttles and machines ................. 56 II. Molecular shuttles and molecular muscles: molecular machines in action .................................. 58 A. Molecular shuttles and applications......................................................................................... 58 B. [c2]daisy chains: towards muscle like molecular machines ..................................................... 68 Chapter III: Light-driven rotary molecular motors .................................................................................. 73 I. Rotational molecular motors ........................................................................................................ 73 II. Molecular motors: applications .................................................................................................... 79 General comment on the literature ........................................................................................................ 82 3 Table of Content RESULTS ............................................................................................................................. 83 Chapter IV: Poly[c2]daisy chains based on the 2,6-diacetylaminopyridine and N-hexyluracil recognition motifs ............................................................................................................................................................. 85 I. Objectives and retrosynthesis ....................................................................................................... 85 II. Results ........................................................................................................................................... 88 A. Synthesis of pseudo-rotaxane 12 ............................................................................................. 88 B. Synthesis of bis-N-hexyluracil [c2]daisy chains 1Ext .................................................................. 90 C. Synthesis of bis-uracil linker 3 .................................................................................................. 94 D. Synthesis of bis-2,6-diacetylaminopyridine [c2]daisy chains ................................................... 95 E. Characterization of the contraction/extension event of compound 2Ext ................................. 97 F. Synthesis and characterization of a hydrogen bonding supramolecular polymer ................... 99 G. Imaging of supramolecular polymers 2Ext:3 and 2Cont:3 by TEM and AFM microscopy techniques 102 H. In situ contraction/extension experiments ............................................................................ 106 I. Synthesis of a reticulated supramolecular polymer ............................................................... 107 III. Conclusion ................................................................................................................................... 109 Chapter V: Poly[c2]daisy chains based on the ureidopyrimidinone recognition motif .......................... 111 I. Objectives and retrosynthesis ..................................................................................................... 111 II. Results ......................................................................................................................................... 113 A. Synthesis of protected bis-Upy[c2]daisy chain ....................................................................... 113 B. Characterization of the contraction/extension event of 5Ext .................................................. 117 C. Photo-triggered supramolecular polymerization of 5Ext and 5Cont .......................................... 118 D. Stimuli-responsive behavior of supramolecular polymers 6Ext and 6Cont ................................ 121 E. Characterization of supramolecular polymers 6Ext and 6Cont .................................................. 122 F. Characterization of monomers 5Ext and 5Cont by Small Angle Neutron Scattering (SANS) ...... 125 G. Characterization of supramolecular polymers 6Ext and 6Cont by Small Angle Neutron Scattering (SANS) and Small Angle X-ray Scattering (SAXS) ........................................................................................ 126 III. Conclusion ................................................................................................................................... 129 Chapter VI: Covalent poly[c2]daisy chains and their associated chemical gels ..................................... 131 I. Objectives and retrosynthesis ..................................................................................................... 131 II. Results ......................................................................................................................................... 133 A. Synthesis of covalent polymer 7Ext ......................................................................................... 133 B. Characterization of the contraction/extension event of 7Ext .................................................. 135 C. Characterization of polymers 7Ext and 7Cont by scattering techniques .................................... 137 D. Synthesis of a chemical gel 8Gelx ............................................................................................. 139 E. Stimuli-responsive behavior of gels 8GelxM .............................................................................. 141 4 Table of Content F. Characterization of the contraction/extension event of 8Gel1M by SANS ................................ 144 III. Conclusion ................................................................................................................................... 145 Chapter VII: Dual light control of a contractile gel that integrates molecular motors and modulators subunits ....................................................................................................................................................... 147 I. Objectives and retrosynthesis ..................................................................................................... 147 II. Results ......................................................................................................................................... 150 A. Synthesis of motor/polymer conjugates tetra-alkyne M-9 and tetra-azide M-10 ................. 150 B. Study of the regulating unit R-11 ........................................................................................... 155 C. Synthesis and contraction/extension experiments of Gel-XX ................................................ 159 D. Dual-light control of Gel 50 .................................................................................................... 163 E. Contraction/extension
Recommended publications
  • DNA-Functionalized Supramolecular Polymers
    DNA-functionalized supramolecular polymers Citation for published version (APA): Wijnands, S. P. W., Meijer, E. W., & Merkx, M. (2019). DNA-functionalized supramolecular polymers: dynamic multicomponent assemblies with emergent properties. Bioconjugate Chemistry, 30(7), 1905-1914. https://doi.org/10.1021/acs.bioconjchem.9b00095 Document license: CC BY-NC-ND DOI: 10.1021/acs.bioconjchem.9b00095 Document status and date: Published: 17/07/2019 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Spatiotemporal Control and Superselectivity in Supramolecular Polymers Using Multivalency
    Spatiotemporal control and superselectivity in supramolecular polymers using multivalency Lorenzo Albertazzia, Francisco J. Martinez-Veracoecheab, Christianus M. A. Leendersa, Ilja K. Voetsa, Daan Frenkelb, and E. W. Meijera,1 aInstitute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; and bDepartment of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved May 28, 2013 (received for review February 22, 2013) Multivalency has an important but poorly understood role in pegylated BTAs self-assemble in water through a combination of molecular self-organization. We present the noncovalent synthesis hydrogen bonding and hydrophobic effects to create long su- of a multicomponent supramolecular polymer in which chemically pramolecular polymers of ∼0.1–10 μminlength(9). distinct monomers spontaneously coassemble into a dynamic, In the biology and chemistry communities, there is intense functional structure. We show that a multivalent recruiter is able interest in the role of multivalency as a tool to encode structure to bind selectively to one subset of monomers (receptors) and and function into soft materials. Several fascinating papers trigger their clustering along the self-assembled polymer, be- reported how nature exploits multivalency to exert control over havior that mimics raft formation in cell membranes. This phe- spatial segregation and phase separation inside living cells (10). nomenon is reversible and affords spatiotemporal control over Segregation of proteins and sphingolipids in lipid raft domains the monomer distribution inside the supramolecular polymer by superselective binding of single-strand DNA to positively charged (11) is a remarkable example of this phenomenon.
    [Show full text]
  • Nanotechnology Measurement Handbook a Guide to Electrical Measurements for Nanoscience Applications Nanotechnology Measurement Handbook Nanotechnology
    NanoCov_grn.tiff 12/13/07 10:47 AM Page 1 www.keithley.com st 1Edition Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications Nanotechnology Measurement Handbook Specifications are subject to change without notice. All Keithley trademarks and trade names are the property of Keithley Instruments, Inc. All other trademarks and trade names are the property of their respective companies. Keithley Instruments, Inc. Corporate Headquarters • 28775 Aurora Road • Cleveland, Ohio 44139 • 440-248-0400 • Fax: 440-248-6168 • 1-888-KEITHLEY (534-8453) www.keithley.com 1 st Edition © Copyright 2007 Keithley Instruments, Inc. No. 2819 Printed in the U.S.A. 020731KIPC Nanotechnology Measurement Handbook A Guide to Electrical Measurements for Nanoscience Applications 1st Edition A GREATER MEASURE OF CONFIDENCE Foreword Nanotechnology research often demands skills in multiple disciplines, from phys- ics and materials science to chemistry and measurement system design. Although it would be impossible to predict all the technical innovations that nano research will offer, it’s already clear that nanoscience will be a major driver of the economy of the future. However, characterizing tomorrow’s nanoscale components and materials will be far from trivial because many of their electrical properties lie at the very edge of the measurement envelope. To unravel tiny mysteries and turn nanoscale materials and devices into commercial products, researchers must have tools with the flexibility to handle a variety of electrical measurements, including current vs. voltage (I-V) characterization, resistance, resistivity and conductivity, differential conductance, transport, and optical spectrum and energy. They must also gain an in-depth understanding of the principles and pitfalls associated with low-level electrical measurements.
    [Show full text]
  • Controlling Nanoparticle Dispersion for Nanoscopic Self-Assembly
    CONTROLLING NANOPARTICLE DISPERSIONS FOR NANOSCOPIC SELF- ASSEMBLY A Project Report presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Polymers and Coatings by Nathan Stephen Starkweather March 2013 © 2013 Nathan Stephen Starkweather ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Controlling Nanoparticle Dispersions for Nanoscopic Self- Assembly AUTHOR: Nathan Stephen Starkweather DATE SUBMITTED: March 2013 COMMITTEE CHAIR: Raymond H. Fernando, Ph.D. COMMITTEE MEMBER: Shanju Zhang, Ph.D. COMMITTEE MEMBER: Chad Immoos, Ph.D. iii ABSTRACT Controlling Nanoparticle Dispersions for Nanoscopic Self-Assembly Nathan Stephen Starkweather Nanotechnology is the manipulation of matter and devices on the nanometer scale. Below the critical dimension length of 100nm, materials begin to display vastly different properties than their macro- or micro- scale counterparts. The exotic properties of nanomaterials may trigger the start of a new technological revolution, similar to the electronics revolution of the late 20th century. Current applications of nanotechnology primarily make use of nanoparticles in bulk, often being made into composites or mixtures. While these materials have fantastic properties, organization of nano and microstructures of nanoparticles may allow the development of novel devices with many unique properties. By analogy, bulk copper may be used to form the alloys brass or bronze, which are useful materials, and have been used for thousands of years. Yet, organized arrays of copper allowed the development of printed circuit boards, a technology far more advanced than the mere use of copper as a bulk material. In the same way, organized assemblies of nanoparticles may offer technological possibilities far beyond our current understanding.
    [Show full text]
  • Formation of Functionalized Supramolecular Metallo-Organic Oligomers with Cucurbituril a Thesis Presented to the Faculty Of
    Formation of Functionalized Supramolecular Metallo-organic Oligomers with Cucurbituril A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Ian M. Del Valle December 2015 © 2015 Ian M. Del Valle. All Rights Reserved. 2 This thesis titled Formation of Functionalized Supramolecular Metallo-organic Oligomers with Cucurbituril by IAN M. DEL VALLE has been approved for the Department of Chemistry and Biochemistry and the College of Arts and Sciences by Eric Masson Associate Professor of Chemistry and Biochemistry Robert Frank Dean, College of Arts and Sciences 3 Abstract DEL VALLE, IAN M., M.S., December 2015, Chemistry Formation of Functionalized Supramolecular Metallo-organic Oligomers with Cucurbituril Director of Thesis: Eric Masson The goal of this project is to functionalize supramolecular oligomer chains with amino acids and nucleic acids in order to observe interactions with proteins and DNA. Chiral substituents are also desirable to induce helicality in the oligomer much like DNA. We explored different pathways to afford these oligomers. The first project involves forming metallo-organic oligomers using non-covalent bonds and then functionalizing them. We synthesize ligands and use alkyne-azide cycloadditions to functionalize them. These ligands can then be coordinated to various transition metals. The aromatic regions of these oligomers can then self-assemble into tube-like chains with the participation of cucurbit[8]uril. Second, we explore an alternate pathway to form functionalized chains. This second set of chains coupled amines with carboxylic acid groups attached to the ligands. This project hopes to avoid solubility problems experienced with the first project.
    [Show full text]
  • PMSE Washington F'2000 Preprint Template
    American Chemical Society Division of Polymeric Materials: Science and Engineering Spring 2009 PMSE Preprints Volume 100, Spring 2009 Salt Lake City, Utah, USA 22-26 March 2009 ISBN: 978-1-60560-960-7 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 www.proceedings.com Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2009) by PMSE Division of ACS All rights reserved. Printed by Curran Associates, Inc. (2009) For permission requests, please contact PMSE Division of ACS at the address below. PMSE Division of ACS 5200 Bayway Drive Baytown, Texas 77520 Phone: (281) 834-0222 Fax: (281) 834-2395 [email protected] TABLE OF CONTENTS 6FDA-6FpDA as a Multipurpose Polymer: Synthesis and Influence of Casting Process on Gas Separation Properties of Ultra High MW 6FDA-6FpDA.........................................................................1 Javier de Abajo, Mariola Calle, José G. de la Campa, Carolina García-Sanchez, Angel E. Lozano, Antonio Hernandez, Angel Marcos-Fernandez, Dulce M. Muñoz, Laura Palacio, Pedro Pradanos, Alberto Tena Advances in Polymeric Systems .........................................................................................................................3 Eric Baer, A. Hiltner Characterization and Modelling of Organic Vapors Sorption, Diffusion and Swelling in High Free Volume Polynorbornene with Trimethyl-Silyl Side Groups .........................................................4 Michele Galizia,
    [Show full text]
  • Arxiv:2005.01804V1 [Q-Bio.QM] 1 May 2020
    Modeling in the Time of COVID-19: STATISTICAL AND RULE-BASED MESOSCALE MODELS APREPRINT Ngan Nguyen1, Ondrejˇ Strnad1, Tobias Klein2,4, Deng Luo1, Ruwayda Alharbi1, Peter Wonka1, Martina Maritan3, Peter Mindek2,4, Ludovic Autin3, David S. Goodsell3, and Ivan Viola1 1King Abdullah University of Science and Technology (KAUST), Saudi Arabia. E-mails: {ngan.nquyen j ondrej.strnad j deng.luo j ruwayda.alharbi j peter.wonka j ivan.viola }@kaust.edu.sa. , N. Nguyen and O. Strnad are co-first authors. 2TU Wien, Austria. E-mails: {tklein j mindek}@cg.tuwien.ac.at. 3Scripps Research Institute, US. E-mail: {mmaritan j autin j goodsell}@scripps.edu. 4Nanographics GmbH May 6, 2020 ABSTRACT We present a new technique for rapid modeling and construction of scientifically accurate mesoscale biological models. Resulting 3D models are based on few 2D microscopy scans and the latest knowledge about the biological entity represented as a set of geometric relationships. Our new technique is based on statistical and rule-based modeling approaches that are rapid to author, fast to construct, and easy to revise. From a few 2D microscopy scans, we learn statistical properties of various structural aspects, such as the outer membrane shape, spatial properties and distribution characteristics of the macromolecular elements on the membrane. This information is utilized in 3D model construction. Once all imaging evidence is incorporated in the model, additional information can be incorporated by interactively defining rules that spatially characterize the rest of the biological entity, such as mutual interactions among macromolecules, their distances and orientations to other structures. These rules are defined through an intuitive 3D interactive visualization and modeling feedback loop.
    [Show full text]
  • The Nanobank Database Is Available at for Free Use for Research Purposes
    Forthcoming: Annals of Economics and Statistics (Annales d’Economie et Statistique), Issue 115/116, in press 2014 NBER WORKING PAPER SERIES COMMUNITYWIDE DATABASE DESIGNS FOR TRACKING INNOVATION IMPACT: COMETS, STARS AND NANOBANK Lynne G. Zucker Michael R. Darby Jason Fong Working Paper No. 17404 http://www.nber.org/papers/w17404 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 September 2011 Revised March 2014 The construction of Nanobank was supported under major grants from the National Science Foundation (SES- 0304727 and SES-0531146) and the University of California’s Industry-University Cooperative Research Program (PP9902, P00-04, P01-02, and P03-01). Additional support was received from the California NanoSystems Institute, Sun Microsystems, Inc., UCLA’s International Institute, and from the UCLA Anderson School’s Center for International Business Education and Research (CIBER) and the Harold Price Center for Entrepreneurial Studies. The COMETS database (also known as the Science and Technology Agents of Revolution or STARS database) is being constructed for public research use under major grants from the Ewing Marion Kauffman Foundation (2008- 0028 and 2008-0031) and the Science of Science and Innovation Policy (SciSIP) Program at the National Science Foundation (grants SES-0830983 and SES-1158907) with support from other agencies. Our colleague Jonathan Furner of the UCLA Department of Information Studies played a leading role in developing the methodology for selecting records for Nanobank. We are indebted to our scientific and policy advisors Roy Doumani, James R. Heath, Evelyn Hu, Carlo Montemagno, Roger Noll, and Fraser Stoddart, and to our research team, especially Amarita Natt, Hsing-Hau Chen, Robert Liu, Hongyan Ma, Emre Uyar, and Stephanie Hwang Der.
    [Show full text]
  • Formation of Self-Healing Supramolecular Materials Using Inclusion Complexes Between Cyclodextrin and Hydrophobic Guest Groups
    Formation of Self-healing Supramolecular Title Materials Using Inclusion Complexes between Cyclodextrin and Hydrophobic Guest Groups Author(s) 角田, 貴洋 Citation Issue Date Text Version ETD URL https://doi.org/10.18910/34046 DOI 10.18910/34046 rights Note Osaka University Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ Osaka University Formation of Self-healing Supramolecular Materials Using Inclusion Complexes between Cyclodextrin and Hydrophobic Guest Groups A Doctoral Thesis by Takahiro Kakuta Submitted to the Graduate School of Science, Osaka University February, 2014 Acknowledgements This work was carried out from 2011 to 2014 under the supervision of Professor Dr. Akira Harada at the Department of Macromolecular Science, Graduate School of Science, Osaka University. The author would like to express his sincere gratitude to Professor Dr. Akira Harada for his guidance and assistance throughout this study. Grateful acknowledgements are made to Assistant Professor Dr. Yoshinori Takashima for his continuing help. The author is also grateful to Professor Dr. Hiroyasu Yamaguchi, Associate Professor Dr. Akihito Hashidzume, Dr. Yuichiro Kobayashi, Dr. Takashi Nakamura, Mrs. Miyuki Otsubo, Dr. Yongtai Zheng, Mr. Masaki Nakahata, Ms. Tomoko Sekine, Mr. Kazuhisa Iwaso, Mr. Chun-Yen Liu, Mr. Lee Isaac Eng Ting, and Mr. Takaaki Sano, for their helpful suggestion and all the members of Harada laboratory for their cooperation and friendship. Grateful acknowledgements are also made to Professor Dr. Tadashi Inoue for dynamic viscoelastic measurement, Mr. Seiji Adachi and Dr. Naoya Inadumi for NMR measurement, and Dr. Akihiro Ito for SEM experiments. The author appreciates the financial support from JST-CREST (Japan Science Technology, Core Research of Excellence Science Technology) (May, 2010-present).
    [Show full text]
  • Cancer Nanomedicine: from Targeted Delivery to Combination Therapy
    Review Cancer nanomedicine: from targeted delivery to combination therapy 1,2,3 1 1 1,2 Xiaoyang Xu , William Ho , Xueqing Zhang , Nicolas Bertrand , and 1 Omid Farokhzad 1 Laboratory of Nanomedicine and Biomaterials, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA 2 The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3 Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA The advent of nanomedicine marks an unparalleled op- advantages of NPs have brought widespread attention to portunity to advance the treatment of various diseases, the field of nanomedicine, including their large ratio of including cancer. The unique properties of nanoparticles volume to surface area, modifiable external shell, biode- (NPs), such as large surface-to-volume ratio, small size, gradability, and low cytotoxicity [4]. Furthermore, nano- the ability to encapsulate various drugs, and tunable medicine brings us dramatically closer to realizing the full surface chemistry, give them many advantages over their promise of personalized medicine [5]. bulk counterparts. This includes multivalent surface mod- Engineered therapeutic NPs offer numerous clinical ification with targeting ligands, efficient navigation of the advantages. Surface modification with polyethylene glycol complex in vivo environment, increased intracellular traf- (PEG) protects NPs from clearance from the blood by the ficking, and sustained release of drug payload. These mononuclear phagocytic system (MPS), markedly increasing advantages make NPs a mode of treatment potentially both circulation times and drug uptake by target cells superior to conventional cancer therapies. This review [2,6].
    [Show full text]
  • Information in Biological Systems and the Fluctuation Theorem
    Entropy 2014, 16, 1931-1948; doi:10.3390/e16041931 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Information in Biological Systems and the Fluctuation Theorem Yaşar Demirel Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, 820 N. 16th Street, Lincoln, NE, 68588, USA; E-Mail: [email protected]; Tel.: 1-402-472 2745; Fax: 1-402 472 6989 Received: 17 January 2014; in revised form: 27 March 2014 / Accepted: 28 March 2014 / Published: 1 April 2014 Abstract: Some critical trends in information theory, its role in living systems and utilization in fluctuation theory are discussed. The mutual information of thermodynamic coupling is incorporated into the generalized fluctuation theorem by using information theory and nonequilibrium thermodynamics. Thermodynamically coupled dissipative structures in living systems are capable of degrading more energy, and processing complex information through developmental and environmental constraints. The generalized fluctuation theorem can quantify the hysteresis observed in the amount of the irreversible work in nonequilibrium regimes in the presence of information and thermodynamic coupling. Keywords: information theory; biological systems; fluctuation theorem; thermodynamic coupling 1. Introduction Definition and quantification of information have created broad discussions; particularly, “information theory” in living systems is an evolving field [1–14]. Evolution is an axiomatic consequence of organismic information obeying the second law of thermodynamics; as entropy increases, the information within a biological system becomes more complex and diversifies at bifurcation points [15–18]. Behavior of living systems is decomposable into functional modes and the ensemble of modes at an agent’s disposal constitutes functional repertoire. The modes may be subjected to operational signals and a mechanism that sequentially selects a mode so that it controls the functional dynamics [18,19].
    [Show full text]
  • Nano-Engineered Scaffold for Osteoarticular Regenerative Medicine
    dicine e & N om a n n a o t N e f c o h Schwinté et al., J Nanomed Nanotechnol 2015, 6:1 l n Journal of a o n l o r g u DOI: 10.4172/2157-7439.1000258 y o J ISSN: 2157-7439 Nanomedicine & Nanotechnology Review Article Open Access Nano-Engineered Scaffold for Osteoarticular Regenerative Medicine Pascale Schwinté1,2,§, Laetitia Keller1,2,§, Stéphanie Lemoine1,2, Jacques-Eric Gottenberg1, Nadia Benkirane-Jessel1,2 and Maximilien Vanleene1,2* 1INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine” laboratory, FMTS, Faculté de Médecine, F-67085 Strasbourg Cedex, France 2Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l’Hôpital, F-67000 Strasbourg, France Abstract In the last decade, regenerative medicine has benefited from the exponential development of nanomaterial sciences, tissue engineering and cell-based therapies. More and more sophisticated designed structures and surface topologies are being developed to basically mimic the extracellular matrix of native tissues such as cartilage and bone. Here we give an overview of the progress made in osteochondral lesion repair, with nano-engineered scaffolds comprising building blocks such as nanoparticles, nanotubes, layer-by-layer nano-assemblies, molecular self-assembly, nanopatterned surfaces…. This nano-engineering technology is coupled with bio-functionalization, by the use of adhesion peptides, growth factors, or deoxyribonucleic acid, to drive cell adhesion, proliferation and behavior towards tissue regeneration. In osteochondral regeneration, the challenge is the simultaneous development of chondrocytes and cartilage extracellular matrix on the one side and a well vascularized bone tissue with osteoblasts on the other side. Keywords: Biocompatible scaffolds; Osteochondral lesion; type I molecules (90% of the bone matrix protein) and apatite crystals Regenerative nanomedicine; Nanostructures; Bone; Cartilage; Tissue organized, at the nanoscale, into mineralized collagen micro-fibrils and engineering fibers.
    [Show full text]